
 

 
Abstract— the finite difference method for boundary value 

problems having curved boundaries containing singular points 
is developed using high precision algorithms. A description of 
the algorithm creation method together with the construction 
of multi regions to neutralize the effect of boundary 
singularities will be presented. Using a discontinuous 
concentric sphere as the test geometry, precisions in excess of 
10-15 are demonstrated. A comparison of the order 2 with the 
order 10 algorithm will show that gains in the resultant 
precision of ~12 orders of magnitude may be derived from the 
use of the highest order algorithm. 

 
Index Terms— Finite difference method, boundary value 

problems, electrostatics, high precision, FDM. 
 

I. INTRODUCTION 

 boundary value problem can be described in terms of a 
closed geometry within which the value of the function 
must satisfy a differential equation whose value on the 

boundary is specified (the Dirichlet boundary condition).  In 
this work no restriction will be placed on the type of 
boundary – curved or linear – nor on the possibility that 
discontinuities in the function may occur on the boundary 
itself. Such a solution with singular boundary points will 
enable the high precision modeling of geometries in which a 
regular curved boundary may be broken into segments.  By 
suitable adjustment of the segment values, optical properties 
may be optimized by an appropriate selection of segment 
values. Although the general process which is described 
below can be shown to be valid for any linear boundary 
value problem the discussion that follows will be restricted 
to cylindrically symmetric electrostatics this being an area in 
which high precision calculations are worthwhile. 
The finite difference method in electrostatics has a rather 
long history starting in the 1940’s and likely even earlier, 
becoming extensively used after the advent of automated 
computing machines.  Although its formulation is simple the 
method found serious difficulties when the boundaries were 
curved. Due to this apparent limitation, the finite element 
method (FEM) was created (~1970) and has been a 
successfully competitive technique to FDM in moderate 
precision calculations [1].  
The attempt to extend electrostatic FDM algorithms to a 
precision higher than  the commonly used order 2 or five 
point algorithm was made by Durand (1957) [2] who 
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developed an order 4 algorithm using 9 surrounding 
meshpoints. Additional attempts at further extension of the 
algorithm precision were made (1972-1978, by Kuyatt et al 
[3, 4]) with negligible success. A large part of the difficulty 
occurred in testing the effectiveness of the newly created 
algorithms which originated from edges or corners of the 
boundary which were in fact singular points of the geometry 
and whose detrimental effect on precision influenced the 
values throughout the entire net. As this limited the resultant 
precision of a relaxation calculation, no clear advantage of 
the high order algorithms could be found since none existed. 
Or said slightly differently, the single point precisions 
afforded by the higher order algorithms were never realized 
in the mesh calculations themselves.  In ~1983 [5] an 
enhancement to the precision in such singular geometries 
was produced by using multiple telescoping regions 
converging on the singular point itself (7 regions were used 
in this work resulting in a modest but definite error 
reduction of ~7).  In this same work an algebraic process for 
algorithm creation was first described.  In 2005 [6] this work 
was extended both with the use of high order algorithms and 
~ forty telescoping regions surrounding the singular points 
yielding precisions ~10-12. It is noted that these geometries 
were rectangular, i.e. that the construction boundary lines 
for the geometries not only were either vertical or 
horizontal, but had to lie on rows or columns of meshpoints. 
In spite of this limitation this work represented the first time 
that the enhanced algorithm accuracy made a significant 
effect on the precision of the relaxation process itself. 
Between 2005 and the present the applicability of high 
precision fdm has been incrementally extended from these 
rectangular geometries to regular curved geometries (2014) 
[7].  This work extends the high precision process to curved 
geometries with singular points and represents the 
completion of the application of high precision FDM to 
arbitrary geometries. 

To insert images in Word, position the cursor at the 
insertion point and either use Insert | Picture | From File or 
copy the image to the Windows clipboard and then Edit | 
Paste Special | Picture (with “float over text” unchecked).  

II. THE FDM PROCESS 

A description of the FDM process can be found in any 
differential equation text.  A reference for electrostatics is 
given by Heddle [8].  A discussion of the FDM process is 
given here both to standardize the notation employed and 
enable certain limiting features of the standard method to be 
readily understood when applied to curved boundaries. 
In figure 1 a closed cylindrical geometry is shown on which 
a uniform array of meshpoints is overlaid. 
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Fig. 1.  A cylinder is drawn together with a uniform mesh covering 
enabling a discussion of the FDM process in a simple geometry. 

 
 
The values of meshpoints on the boundaries are fixed and do 
not change during the relaxation.  The values at all other 
points are initialized and following this the mesh is iterated 
over in the following manner:  At each mesh point it is 
assumed that its value is not known but the values at the 
surrounding points are. Using these values as input to an 
algorithm the value of the central point found as the output 
to the algorithm. Continuing, the values of succeeding 
points are determined, the process terminating when end 
criterion is reached.  At this point the mesh is said to be 
relaxed. Thus an algorithm is required and its creation is 
discussed in the following section. 

III. THE ALGORITHM PROCESS 

The algorithm development process has been previously 
reported [5, 6, and 7] and only a brief summary of is 
presented, in order to familiarize the reader with the basic 
strategy. 
About any mesh point in the geometry there is assumed to 
be a power series expansion of the potential v(r, z) as a 
function of the relative coordinates r, z with respect to the 
location of the mesh point. In this notation the potential at 
the position of the mesh point itself is v (0, 0).   
 The power series expansion of v (r, z) for an 8th order 
algorithm for example is:  
 

,ݎሺݒ ሻݖ ൌ ܿ  ܿଵݖ  ܿଶݎ  ܿଷݖ
ଶ ⋯ ܿସସݎݖ

 
ܿସହݎ

଼ 					                  (1)	ሺ9ሻߴ
Where ߴሺ9ሻ (read order 9) means terms ݎݖ	are neglected 
for k+l> 8. In general the order of the algorithm is taken to 
be the degree of the truncated power series used to 
represent	ݒሺݎ,  ሻ. Seen from (1) is that there are 45ݖ
coefficients ܿ which need to be determined for the order 8 
algorithm.  It is noted that ݒሺ0,0ሻ ൌ ܿ is the potential of the 
central meshpoint about which the expansion (1) is made. 
  For cylindrically symmetric electrostatics the differential 
equation is taken to be Laplace’s equation in cylindrical 
coordinates which may be written: 
 

	ሺݎ  ܽሻ ∗
డమ௩ሺ,௭ሻ

డమ	


డ௩ሺ,௭ሻ

డ	
 ሺݎ  ܽሻ ∗

డమ௩ሺ,௭ሻ

డ௭మ	
ൌ 0											ሺ2ሻ  

where a is the distance of the meshpoint from the axis. 
As noted previously ݒሺݎ,  ሻ must satisfy (2) at all pointsݖ
within the geometry.  Thus after applying (2) to (1) a single 

equation results with each term having a factor of	ݎݖ.  
Collecting similar terms each of which has the factor of	ݎݖ 
and realizing that the only way that the resulting equation 
can be true is if each coefficient of ݎݖ	is identically zero.  
For the 8th order algorithm this yields 28 equations each 
involving the coefficients ܿ and a. To solve for the 
complete set of 45 ܿ’s, an additional 17 equations are 
required.  Realizing that (1) is valid for any value of r, z, it 
may be evaluated at a selection of 17 mesh points 
surrounding the central point. Thus a set of 45 simultaneous 
equations, linear in	 ܿ  are obtained and may be solved for 
all	 ܿ. It is noted that the linearity in ܿ of the set of 
simultaneous equations results from the fact that the 
differential equation itself is linear and allows the solution 
set to be found by elementary techniques. 
It is noted that ܿ depends on both the particular set of 17 
meshpoints { ܾ } selected for the algorithm and	ܽ. It is 
expressed as a sum over the set of mesh points:   
ܿ 	ൌ ∑ 	coeff_b	ሺܽ, kሻ ∗∈ሼ	ௗ௦ሽ ܾ   (3) 
where coeff_b	ሺܽ, kሻ is for any k  a series in al.  It is noted 
that the highest power of ܽ appearing in this series is 
dependent upon the order of the algorithm and is 
approximately equal to the number of non meshpoint 
equations in the set of linear equations which were solved to 
find	c. The coefficients coeff_b		are determined as a result 
of the algorithm development process described above. 

A. The meshpoints for the average algorithm 

From an algorithmic point of view the only constraint on 
these mesh points is that the resultant set of simultaneous 
equations should have a solution, which in fact most 
selections satisfy.  However a number of sets of meshpoints 
although forming a valid solution, cause the relaxation 
process using that algorithm to be unstable, i.e. successive 
iterations through the mesh grow in an unbounded manner. 
In [8] a special algorithm had been discovered which 
exhibits robust stability properties, the details being given in 
[8].  
As the average of n algorithms is also an algorithm a 
minimal algorithm may be formed from a set of base points 
together with one additional point.  In figure 2 the set of 
points used in forming this algorithm is displayed for 
various algorithm orders.   
 

 
Fig. 2. The set of required mesh points for an algorithm of the indicated 
order.  Both order 6 and order 10 need two base sets as discussed in the 
text. 
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For example, in the order 4 algorithm there are 9 required 
points, 8 of these are base points given by the solid discs and 
1 is taken from any of the trianglular points. Since each 9 
point set is a separate algorithm, the average algorithm is the 
sum of the 8 single algorithms each of these algorithms 
taking a separate additional triangular point.   
Seen in figure 2 when forming the order 6 and 10 algorithms 
two separate base sets are used. Further it is readily seen that 
the actual meshpoints in the minimal algorithm for orders 6, 
8, and 10 are identical to those of the order 8 algorithm. 

IV. THE MESHPOINT COVERING 

For the majority of mesh points shown in figure 1, the 
required neighboring meshpoints exist for any of the 
algorithms of figure 2.  However for meshpoints one unit 
from any boundary (see point r=5, z=9 of figure 1) any 
algorithm of order >2 would not have the necessary 
neighboring meshpoints. This limitation has been one of the 
fundamental difficulties of the FDM technique.  The 
strategy used here is to place by construction meshpoints on 
the other side of the boundary and hence overcoming this 
restriction. 

When constructing the meshpoint overlay of the 
geometry, the covering is extended sufficiently beyond the 
geometric boundary so that any meshpoint internal to but 
near the boundary would have the required meshpoints for 
any order algorithm.  An example of such a covering for the 
discontinuous hemisphere is shown in figure 3. 

 

 
Fig. 3. A concentric sphere is shown consisting of two hemispheres at 
different potentials thus creating a singular point at their junction. 
 

A.  Determining values of the external points 

The value of any external point s is found as follows: first 
find the closest boundary point b to the point s. Then select 
point c, an ingeometry point closest to point b, while also 
being j units from the boundary (see figure 3).   The electric 
field surrounding point c is then determined and extended to 
the region between s and b and thus the value at s can be 
found by integrating this field from b to s.  The separation of 
point c from b is necessary for stability considerations as 
discussed in [8]. A useful separation of point c from the 
boundary has been found to lie between 2 and 3 units. The 
details of calculation can be understood by referring to 

figure 4 in which a curved boundary is shown together with 
an external point s, a boundary point b closest to s, and the 
point c about which the field is calculated.  It is noted that 
the coordinates of all points in figure 4 are in absolute mesh 
units. 

 
Fig. 4. In this figure are depicted three points: an external point to the 
boundary at s, the closest boundary point b to s, and an ingeometry point 
about which the electric field is to be determined. 

Simplifying the notation of (1), the potential at any point x 
in an nhbd of c may be written as:  
 
,ݎሺݒ																												 ሻݖ ൌ ܾ  ∑ ܿ

ೌೣ
ୀଵ ݂ሺݎ,  ሻ     (4)ݖ

݇௫ being the index of the last term in (1), r and z being 
the relative coordinates wrt point c. Further ܾ  is the value 
at the mesh point c,	 ݂ሺݎ,  ሻ is rl*zm for the kth term in theݖ
expansion (1), and ݇௫ the index of the last term in (1).  
Note that ݇௫ will depend upon the order of the algorithm 
used. 

Now the potentials at b and s may be explicitly written in 
terms of the coefficients ck:  
ܞ																					 ൌ ܾ  ∑ ܿ

ೌೣ
ୀଵ ݂ሺrb, zbሻ             (5) 

௦ܞ																					 ൌ ܾ  ∑ ܿ
ೌೣ
ୀଵ ݂ሺrs, zsሻ       (6) 

Letting r, z be the coordinates of point c. The coordinates 
of b or s relative to point c may be written: 
ݔݎ																							 ൌ ݔݎ െ r,					ݔݖ ൌ ݔݖ െ z																 (7) 
for x being either b or s. 
Using (3), (5), and (6) it is found after a brief calculation:   
௦ܞ																			 ൌ ݒ  ∑ ݄_ܾ ∗ ܾ	∈ሼ	ௗ௦ሽ 																		(8) 
Where:  
						݄_ܾ ൌ 	∑ 	coeff_b	ሺܽ, kሻ

ೌೣ
ୀଵ ∗ ݃ሺݏݎ, ,ݏݖ ,ܾݎ  ሻ      (9)ܾݖ

Defining ݃ by:  
								݃ሺݏݎ, ,ݏݖ ,ܾݎ ሻܾݖ ൌ ݂ሺݏݎ, ሻݏݖ െ ݂ሺܾݎ,  ሻ     (10)ܾݖ

Thus at the end of the day an equation for vs is 
formulated in terms of a summation over the neighboring 
meshpoints, each meshpoint multiplied by  coeff_bj.  This is 
of identical form as the expression for the evaluation of all 
of the ingeometry meshpoints (see (3)) and is useful in the 
software development as the coefficients may be calculated 
only once during mesh initialization for each external point 
and not during the runtime iteration process.  It may be 
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worthwhile to remark that when determining the value of s, 
the neighboring mesh points used in the algorithm are those 
surrounding  c and not the neighbors of s itself since the 
coefficients ck used in (8) in determining the value of mesh 
point s depended upon the neighbors of point c.  
In summary the values of ingeometry points are found using 
equation 3 while those for external points equation 8 is used.  
It is noted that for any order only one algorithm is 
necessary, namely the average or minimal algorithm 
regardless of the situation in which it is applied. 

V. NEUTRALIZING THE EFFECT OF THE SINGULARITY 

It was found as mentioned in the introduction that by 
increasing the point density surrounding a singularity, the 
errors resulting from the singularity would be mitigated.   To 
this end one needs create a structure of regions telescoping 
into the singularity each region in the structure having an 
enhanced density (x4) over the density of its parent.  The 
first step in this process is to create a child region about the 
singularity which is defined by a bounding rectangle 
centered on the singularity. The points within the child are 
placed at integer and half integer points within this 
rectangle.  This is illustrated in figure 5 in which a single 
child region is placed about the juncture of the two 
hemispheres – a singular point - at r=5, z=5. For illustration 
the height and width is taken to be 6 units. Shown in this 
figure are: the internal, external, and shadow points of the 
child region. 

 

 
Figure 5. A child region is shown defined by a bounding rectangle and 
centered on the singular point.  Also present are the shadow points 
(squares), external points (triangles), and ingeometry points (discs). 

 
As the child itself is considered to be a Dirichlet region 

the values on its enclosing boundary must be evaluated 
before the region is relaxed.  The boundary points of the 
region are constructed by not only taking those points lying 
on the bounding rectangle but in addition the 2 internal 
rows, the complete set of boundary points being named 
shadow points.  This construction is effected so that when 
relaxing any ingeometry point of the child the c0 algorithm 
may be used (equation 3) as the complete 3 rings of 
neighboring meshpoints are by construction available.  To 
determine the value of any external non shadow point of the 

child region the analysis given in IV applies and equation 8 
is used. And likewise for any internal non shadow point 
equation 3 is used. 

Special consideration must be given the shadow points 
themselves.  If the shadow point is an even point (its 
coordinates being even) then it is the image of a parent point 
and hence the parent’s value is assumed.  For non-even 
ingeometry shadow points, their values are set by integration 
to it from the closest parent point c on the bounding 
rectangle, this point also being greater than ~2 units from 
the geometric boundary.  For non-even external shadow 
points their values are also set by integration to it from the 
closest point on the geometric boundary using the field 
surrounding a parent point c on the bounding rectangle again 
~ 2 units from the geometric boundary. 

In this manner all shadow points are set from the parent’s 
net before the child is relaxed. The child itself is then 
relaxed in the same manner as the parent discussed in I. 
Again it is remarked that for any order only one algorithm is 
used regardless of the variety of tasks to be performed. 
One proceeds with the creation of the next child by 
induction, i.e. one treats the child region as the parent of its 
child and continues as described above.  This process is then 
repeated until a specified number of regions have been 
established. As an example, a region structure consisting of 
a chain of 10 regions is shown in figure 6 for Router of 360, 
Rinner of 180, and an hw of each child of 120 (hw = 
height=width of the bounding rectangle). 
 

 
Figure 6. The concentric sphere geometry with a singularity at the juncture 
of the two outer hemispheres is shown. A measurement sphere of radius 
300 is also drawn being used in the section of the testing of precision. 

 
In this work the region structure is created by defining the 

total number of regions in the chain, the hw parameter for 
the 1st child and the last child. Then the hw for each region 
is required to vary linearly from the first to the last child. 
This construction takes into account that the errors in the jth 
region in the chain, depending on its region index, will be 
have a reduced effect on the precision of the values in the 
main net.  Thus this strategy for region structure definition 
represents a reasonable, although likely not optimal, 
compromise between error reduction and memory 
allowance. It is shown in the next section that a high 
precision result is be obtained using this approach. 
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VI. TESTING THE PRECISION OF THE MULTI 

REGION STRUCTURE 

The discontinuous concentric sphere is one of the few 
singular geometries having a known solution (see Jackson 
[9]) and is used in our tests of precision.  The parameters 
defining this geometry together with the region structure 
defined above are: Rout = radius of outer sphere, Rin = 
radius of inner sphere, nt = total number of child regions, hw 
(j) the width and height of the bounding rectangle of the jth 
child. The highest precision which was obtained by taking nt 
= 36, hw (0) = 120, and hw (nt) = 40. With these 
parameters, the error spectra on measurement spheres both 
near the outer and inner boundaries are given in figure 7 for 
algorithms of order 2 and 10.   
Figure 7. The error spectra measured along test spheres both 
near the outer and inner spheres for both order 2 and order 
10 algorithms used in the process. Apparent is the clear 
separation in precisions between the order 2 and 10 
algorithms 
Figure 7. The error spectra measured along test spheres both 
near the outer and inner spheres for both order 2 and order 
10 algorithms used in the process. Apparent is the clear 
separation in precisions between the order 2 and 10 
algorithms 
 

 
Fig 7. The error spectra measured along test spheres both near the outer and 
inner spheres for both order 2 and order 10 algorithms used in the process. 
Apparent is the clear separation in precisions between the order 2 and 10 
algorithms. 

 
Seen is that the maximum error for the order 10 algorithm 

is ~10-16 and occurs near the outer boundary as expected.  
The maximum error in both plots has been found to decrease 
monotonically for measurement spheres going from the 
outer to inner one. The cusps present in these spectra are 
likely due to the change of the sign of the error as the error 
point proceeds along the path on the measurement sphere. 
Since the error spectra is a continuous function the error will 
be close to 0 somewhere between this sign change in the 
error spectra. 

Similar physical geometries may be obtained by 
multiplying both the inner and outer radii by a scale factor 
and the result of the maximum error along a measurement 
sphere approximate to the median sphere of the scaled 
geometry is shown in figure 8. 

 
Fig 8. The maximum error is plotted vs the value of Rout for the 
measurement spheres being ~ the median sphere for a constant region 
structure. 

Seen in this figure is that the maximum error is a weak 
function of the density of the main net. 

The maximum error over the geometry Rout=360, 
Rin=180 was measured as a function of the order of the 
algorithm used in the relaxation process and is given in fig. 
9. 

 
Figure 9. To obtain the data for this figure the geometry was fixed and the 
maximum error plotted as a function of order for either the main net only 
(no child regions) or for the 36 region structure (lower curve). 

 
The dependence on the maximum error on order is thus 

seen to be strong for the process using the 36 region 
structure.  However for relaxing the main net without any 
child regions essentially no reduction in the error is found as 
a function of algorithm order.  This is a result consistent 
with the early attempts mentioned in the introduction at 
improving the relaxation precision with more precise 
algorithms and emphasizes the necessity of not only using 
high order algorithms but using them with an appropriate 
region structure in order to effect high precision results.  The 
other rather remarkable and perhaps surprising feature seen 
in figure 9 is that the resultant error of the order 2 algorithm 
is independent on whether or not a 36 region structure is 
incorporated into the geometry. Said somewhat differently 
no gain in the precision can be obtained when using a low 
order algorithm by attempting to neutralize the singularity 
using telescopic child regions. 

To investigate the dependence of the maximum error on 
hw (0),   hw(0) was varied while hw (nt) was taken to be 40 
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independent of hw(0), for nt of 36.  The result is shown in 
figure 10. 

 

 
Fig. 10. The maximum error on the indicated measurement sphere is found 
and plotted vs hw(0). 
 

Seen in this figure that to achieve precisions greater than 
~10-12 hw (0) must be larger than 40. 

To evaluate the dependence of the precision of an order 2 
algorithm on relaxation time the discontinuous concentric 
sphere was overlaid with meshes of various densities (from 
Rout = 480 to 120, Rin = Rout/2), the particular mesh 
relaxed (using an end criterion of 2*10-12) and both the 
relaxation time and the maximum error on a median 
measurement sphere determined and plotted in figure 11. It 
is noted that no child regions were incorporated since their 
effect on the precision of the order 2 algorithm has been 
seen to be negligible (see figure 9). 

 

 
Figure 11. The main net having been created for various discontinuous 
concentric sphere geometries was relaxed using an order 2 algorithm and 
the maximum error on a median measurement sphere  plotted vs the time to 
relax the net. A linear interpolation of the data to large relaxation times has 
been made.   
 

Seen from this figure that to achieve precisions of the 
order 10-10 would require relaxation times of the order 1019 
seconds and a time in excess of the age of the universe.  
This example demonstrates the difficulty of achieving high 
precisions using an order 2 algorithm. 

 

VII. SUMMARY AND CONCLUSION 

The process of neutralizing the effect of singularities on a 
curved boundaries has been described. The solution has 
necessitated the creation of a telescoping set of regions of 
ever higher density converging on the singular points 
themselves. 

It has been shown that the effect of these singular points 
can be neutralized to a level of ~10-16 using an order 10 
algorithm together with a telescoping region structure 
consisting of 36 child regions.  

The conclusion is clear, namely, that a very precise 
potential distribution interior to curved singular boundaries 
can be found using the finite difference method. 

This paper both completes and concludes the effort which 
the author began in ~1980 to calculate electrostatic 
potentials for arbitrary geometries to a very high precision.  
Newark December 24, 2014 
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