
 

  
Abstract— The Black-Scholes equation models the fair value 

of a European call option under certain market assumptions. 
The terminal condition is derived from the difference between 
the stock price upon maturity and the option strike price, while 
the boundary conditions are derived from the put-call parity. 
In this work, we modify one market assumption, namely that of 
constant interest rate, and numerically solve a version of the 
Black-Scholes equation with time-dependent risk-free interest 
rates. We use a Chebyshev collocation scheme that performs 
spectral discretization in the stock variable and backward-
difference in the time variable. We present numerical evidence 
of the spectral accuracy of the scheme against the known 
analytic solution.  
 
 

Index Terms—Black-Scholes equation, differentiation 
matrices, spectral collocation method, variable interest rate 
 

I. THE BLACK-SCHOLES MODEL WITH VARIABLE INTEREST 
Let V(S,t) denote the fair value of a European call option 

with an underlying asset of price S at time t. Let r be the 
risk-free interest rate for all t from 0 to maturity time T, and 
let √𝑣 be the volatility of the stock. In the 1973 paper of 
Fischer Black and Myron Scholes [1], the authors derived 
the following equation that governs the time-evolution of 
the function V:  
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Theoretically, the stock price S can increase without 
bound. But in reality and in numerical computations, we 
often set a maximum value for S, say at S = 𝑆!"# . The 
boundary condition at 𝑆 = 𝑆!"# with the strike price E is 
derived by discounting from 𝑆!"# the interest incurred by E 
for the time (T-t) at a constant annualized interest rate r. 
This is a consequence of the put-call parity [1]. On the other 
hand, at S=0, the option value is 0. Thus the boundary 
conditions are: 

𝑉 0, 𝑡 = 0   
and 

𝑉 𝑆!"# , 𝑡 = 𝑆!"# − 𝐸𝑒!! !!! . 
 

The option is exercised if the stock price exceeds the 
strike price of the call option upon maturity. The holder of  
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the option can buy the underlying asset at price E and sell it 
at market price S. The pay-off is S-E. Thus, the terminal 
condition is: 
       𝑉 𝑆,𝑇 = max  (𝑆 − 𝐸, 0) 

Equation (1) was derived under certain assumptions—that 
an arbitrage-free market exists, that the underlying stock 
price follows a geometric Brownian motion with constant 
drift and volatility, that there are no transaction costs or 
dividend yields, and that securities are continuous variables, 
and hence perfectly divisible.  Admittedly, these 
assumptions are not always met in reality. 

In the recent years, some of the market assumptions have 
been relaxed. In particular, the Vasicek model [8] assumes 
that the interest rate follows a geometric Brownian motion 
and satisfies the stochastic differential equation 

                            

𝑑𝑟 =   
𝐼 − 𝑟
𝐶

𝑑𝑡 +   𝜚𝑑𝐵! 
 

where I and C are constants. This is a mean reverting model 
where the interest rate approaches the limiting value of I. 
Under the assumption that 𝜚 is 0 (this is the standard 
deviation of the interest rate), the equation for r becomes an 
ordinary differential equation whose solution is 

  𝑟 𝑡 =    𝑟!  𝑒
!!

!   + 𝐼(1 − 𝑒!! !  )              (2) 
 

Given this time-dependent interest rate, the solution to the 
Black-Scholes PDE is 

 
    𝑉 𝑆, 𝑡 =     𝑆𝛷 𝑧 − 𝐸  exp(− 𝑟 𝜏 𝑑𝜏)!!!

! 𝛷 𝑧 𝑣(𝑇 − 𝑡)  
 
where 

𝑧 =   
ln 𝑆

𝐸 + 𝑟 + !
! 𝑇 − 𝑡

𝑣 𝑇 − 𝑡
. 

 
Here the function 𝛷 is the cumulative standard normal 

distribution.  
 In this work, we solve the PDE in (1) with the variable 

interest rate given in (2). We use Chebyshev spectral 
collocation in the stock variable and backward-differences 
in the time variable.  

The work is not without precedent. In [5], the authors 
present a spectral collocation scheme in the stock variable 
and a time-discretization that yields an differential 
algrebraic equation (DAE) which they solved using fourth-
order Runge-Kutta method. Our scheme is conceptually 
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simpler in that only first order backward-difference is used 
in discretizing the time variable.  

II. METHOD 

A. Spectral Collocation 
We first work on the stock variable S, discretizing the 

stock values on the interval 0, 𝑆!"#  using Chebyshev grid 
points given by the equation: 

 

𝑆! =
𝑆!"#
2

  𝑆! +
𝑆!"#
2

,𝑤ℎ𝑒𝑟𝑒 

𝑆! = cos 𝑘𝜋 𝑁 , 𝑘 = 1,2,… ,𝑁. 
 
Below is an illustration of the distribution of the 

Chebyshev points with N=20.  
 

 
Fig 1   Discrete Chebyshev points with N=20 

 Notice that the points are not equally spaced but are 
instead more clustered towards the ends. Discretizing the 
stock variable in this manner makes the interpolating 
polynomial more accurate and less prone to the Runge 
phenomenon [7]. 

We then interpolate V at each point 𝑆! using a global 
interpolating polynomial p of Lagrange form. From the 
minimax property of the Chebyshev polynomial, we are 
assured of minimal error in interpolation. 

In the Black-Scholes PDE, V is given as a function of its 
partial derivatives, and so we approximate !"

!"
 by 

differentiating the interpolating polynomial. Note that the 
minimax property applies to the interpolating polynomial 
and not its derivative. Nevertheless, we can still be confident 
of a small error in our interpolation of the derivative. [2, 3, 
4] 

  Furthermore, since differentiation is a linear operation, 
we can represent it by matrix multiplication. In this case, we 
use the Chebyshev differentiation matrix D so that 
𝐷 ∗ 𝑉 ≅ !"

!"
.  Weidman and Reddy [9] provide a Matlab code 

that computes D for a given N. 
Hence, we are now able to simplify the Black-Scholes 

PDE 
𝜕𝑉
𝜕𝑡

= 𝑟𝑉 − 𝑟𝑆
𝜕𝑉
𝜕𝑆

−
1
2
𝑣𝑆!

𝜕!𝑉
𝜕𝑆!

 
as follows: 

𝜕𝑉
𝜕𝑡

= 𝑟𝑉 − 𝑟𝑆 𝐷𝑉 −
1
2
𝑣𝑆! 𝐷!𝑉 . 

B. Backward-differences 
For the time variable, we discretize using a first order 

backward-difference. The finite-difference scheme allows us 
to solve differential equations by approximating the 
derivative of a function on a discrete grid. In this case, we 
partition the given time frame [0, T] into !

!!
+ 1 equally 

spaced intervals of length  Δ𝑡. 
The backward-difference approximation is obtained from 

the definition of a derivative: 
 

𝑑𝑉
𝑑𝑡

= lim
!!→!

𝑉 𝑡 − 𝑉 𝑡 − Δ𝑡
Δ𝑡

	  
	  

We take ∆𝑡 to be a very small number and get:  
 

𝜕𝑉
𝜕𝑡

≅
(𝑉! − 𝑉!!!)  

∆𝑡
, 

where 𝑉! is the value of the call option at the nth time 
step.  

Note that 𝑉! is known for the final time step !
∆!
+ 1,  

which allows us to use this formula recursively, marching 
backward in time to obtain the price of the call option today 
(t=0), which is what we want.  

  Substituting back into the Black-Scholes PDE and with 
spectral differentiation on S, we get: 
 

(𝑉! − 𝑉!!!)  
∆𝑡

= 𝑟𝑉 − 𝑟𝑆 𝐷𝑉 −
1
2
𝑣𝑆! 𝐷!𝑉 . 

 

Solving for 𝑉!!!, we have: 
 

𝑉!!! = 𝑉! − ∆𝑡 𝑟𝑉 − 𝑟𝑆 𝐷𝑉 −
1
2
𝑣𝑆! 𝐷!𝑉 , 

 

which can be simplified to  
 

𝑉!!!   = 1 − 𝑟∆𝑡 𝐼 + 𝐿∆𝑡 𝑉!, 
 

where I is the N+1 by N+1 identity matrix, and  𝐿 =
!
!
𝑣𝑆!𝐷! + 𝑟𝑆𝐷. L is called the spectral operator. 
 To account for the final and boundary conditions of the 

Black-Scholes PDE, it is necessary to adjust the spectral 
operator L for each recursion  𝑉!!!   = 1 − 𝑟∆𝑡 𝐼 +
𝐿∆𝑡 𝑉!. This can be done simply by replacing the necessary 
rows and columns with the corresponding rows and columns 
of the identity matrix. 
 

III. TIME-DEPENDENT INTEREST RATES 
In the above discussion, r has been kept constant, as this 

is one of the assumptions of the Black-Scholes model. 
However, we now choose r to be dependent on time, as is 
more representative of realistic conditions. We find that the 
method can be applied in much the same way.  

With variable interest rates, the Black-Scholes equation 
may be written as: 

𝜕𝑉
𝜕𝑡

= 𝑟 𝑡 𝑉 − 𝑟 𝑡 𝑆
𝜕𝑉
𝜕𝑆

−
1
2
𝑣𝑆!

𝜕!𝑉
𝜕𝑆!

.   

 
From (2), suppose 𝑟 𝑡 =    𝑟!  𝑒

!!
!   + 𝐼 1 − 𝑒!! !   . As 

mentioned previously, (2) gives the analytic solution to the 
time-dependent interest rate modeled by Vasicek [8]. The 
graph of the function is shown below. Inputting 
parameters  𝑟!, I, and c into the equation, we use the same 
equally-spaced time grid to discretize the function r and 
obtain the required interest rate value for each step in our 
backward recursion. 
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Fig 2 A graph of the Vasicek interest rate model with parameters 
𝒓𝟎 = 𝟎.𝟎𝟓,𝒂 = 𝟒,𝒃 = 𝟏; 

IV. RESULTS 
We implemented the above scheme in Matlab and ran the 

program several times with varying input parameters and 
compared them against the known analytic solution. The 
graph below shows one such run of the program with 
parameters E=2.2, M=34000, N=30, 𝑆!"#=3, T=0.5, 
a=0.05, b=0.5, r=0.5, v=√0.15. The following result is 
typical of what we have observed in general. 
 

 
Fig 3 The numerical solution to the Black-Scholes equation with variable 
interest rates and parameters as stated above 

Notice that at t=T, the function is shaped like a hockey-
stick, with a sharp corner at the strike price E. This tells us 
that the strike price is the indifference point in exercising the 
call option; that is, at prices greater than the strike price, the 
pay-off to the call option is positive, while at prices less than 
the strike price, they pay-off is negative. Further, the sharp 
corner smoothens out as we step backward in time, which is 
expected of parabolic PDEs. At the initial time, the function 
is smooth. 

Using these particular parameters, when compared with 
the analytic solution, the norm of error is 0.1625. This is a 
grid matrix with 6801 time steps by 31 stock points. 
 

 
Fig 4 Mesh of the error between the analytic and numerical solution in the 
order of 10-3 

The error norm is graphed above. Pointwise, the 
maximum error is in the order of 10-3. The error spikes at the 
point where the first derivative of the call option value is 
discontinuous, namely, at the strike price. This eventually 
smoothens out as the solution is computed backward in 
time. Again, this is typical because of the parabolic nature of 
the Black-Scholes equation. 
 

V. CONCLUSION 
We have developed a numerical method for solving the 

Black-Scholes equation with time-dependent interest rates 
using spectral collocation in stock and backward-differences 
in time. With multiple runs of the program, we have given 
numerical evidence that the scheme works based on the 
error of the numerical solution against the known analytic 
solution. 
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