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Abstract—An algorithm is developed to interpolate node
unknowns from cell-centered ones for the construction of dif-
fusion schemes on skewed meshes. And a cell-centered scheme
for solving anisotropic problems is then constructed. Its main
characteristic lie in that an explicit expression is obtained
for the interpolation. And the discontinuity can be dealt with
strictly. The effectiveness of the scheme is demonstrated by the
numerical experiments.

Index Terms—diffusion equation, cell-centered scheme,
anisotropic, discontinuity.

I. INTRODUCTION

Skewed meshes arise in various fields, e.g., grid generation
on physical domains with complex geometry. For simulating
problems such as heat transfer, plasma physics, oil reservoir
etc., anisotropic diffusion equations need to be solved on
these meshes.

In the construction of finite volume schemes, due to the
skewness of the grids, as well as the anisotropy, auxiliary un-
knowns defined at the vertices or edges are often introduced
in addition to the cell-centered unknowns. The schemes with
nine or even more stencils are then resulted on quadrilateral
meshes.

In the early local support operator method (LSOM) [1],
auxiliary unknowns defined at the edges are introduced
and treated as primary unknowns, so that the flux can be
discretized with local stencils. The edge unknowns are also
the primary ones in the hybrid finite volume scheme [2]
and at the discontinuous interfaces of SUSHI shceme[3].
On the other hand, vertex unknowns are introduced and
used as the primary ones in the diamond schemes [4]
[5]. The supplementary primary unknowns will increase the
computational cost since the diffusion equation needs to be
solved implicitly.

So diffusion schemes with cell-centered unknowns only
are preferred. And the cell-centered scheme is constructed
by interpolating the auxiliary unknowns from cell-centered
ones. Usually, a local linear system is formulated and solved,
satisfied by auxiliary (edge or vertex) unknowns in Refs.[6]-
[9].

To avoid the need of solving such local linear systems,
an explicit interpolation algorithm is presented in Ref.[10]
for the calculation of node unknowns. In Refs. [11][12],
the auxiliary unknowns are defined at a specific point on
the edge. The position of the point depends on the mesh
geometry and the distribution of the diffusion tensor. Then
an interpolation method with two stencils are obtained. By
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enlarging the stencils, the auxiliary unknowns can be defined
at any point on the edge in Ref. [13].

In this paper, the interpolation method given in Ref.[10]
is extended to handle anisotropic problems. Its main charac-
teristic are the following:
• It can handle anisotropic diffusion problems on skewed

meshes.
• It gives an explicit expression for calculating the auxil-

iary unknowns from cell-centered ones. Specifically, the
auxiliary unknowns are defined as the difference of the
values at the adjacent nodes.

• It deals rigorously with discontinuities.
• It results a nine-point scheme on skewed quadrilateral

meshes.
The remainder of this paper is organized as follows. First

we describe the problems. The method for the interpolation
of the auxiliary unknowns is then given in section 3, followed
by numerical examples in section 4. Finally, we conclude in
section 5.

II. PROBLEM DESCRIPTION

Let Ω be an open bounded subset of Rd with ∂Ω being
its boundary. We consider the following diffusion problem

−∇ · (D(x)∇u) = f in Ω, (1)

where
• u is a scalar function. In the case of heat conduction,

u denotes the temperature. For flows through porous
media, u represents the pressure.

• f is the intensity of sources.
• D(x) = (di,j) is a given tensor which is symmetric.

Moreover, there exists a constant c > 0 such that

D(x)ξ · ξ ≥ c|ξ|2 for all ξ ∈ Rd. (2)

We consider boundary conditions of the Dirichlet type

u = ū, on ∂Ω.

Suppose that the domain Ω ∈ R2 is made up of a number
of non-overlapping polygonal cells {Ωi}. The vertices of cell
Ωi are labeled with Mr, Mr+1, Mr+2, Mr+3, · · · (see Figure
1). Ci is its centroid. δr,r+1 = MrMr+1 is the common edge
between cell Ωi and its adjacent cell Ωj . We assume that
each cell Ωi is star-shaped with respect to its centroid Ci,
which means that any ray emanating from Ci intersects the
boundary of Ωi at only one point.

By integrating (1) over Ωi and using the Green formula,
we obtain

−
∫

∂Ωi

D∇u · ndl = fi|Ωi|, (3)
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Fig. 1. Stencils for the descretization of the flux

where n is the unit vector outward normal to the length
element dl on ∂Ωi, and ui is the mean value of u in Ωi:

ui =
1
|Ωi|

∫

Ωi

udΩ.

Di and fi are defined in a similar fashion.
Defining the normal component of the flux density on edge

σ ∈ ∂Ωi as

Fσ = −
∫

σ

D∇u · nσdl/|σ|, (4)

we can write

−
∫

∂Ωi

D∇u · ndl =
∑

σ∈∂Ωi

Fσ|σ|.

A control volume scheme is determined when the discretiza-
tion of Fσ is specified on each edge.

III. INTERPOLATION OF THE NODE UNKNOWNS

Eq. (4) is rewritten as

Fσ = −
∫

σ

∇u · Dnσdl/|σ|,

since D is symmetric.
We introduce the following notations

nDi
r,r+1 = Dini,j , κi = nDi

r,r+1 · nr,r+1, (5)

nDj

r,r+1 = Djni,j , κj = nDj

r,r+1 · nr,r+1, (6)

where Di and Dj are the diffusion tensors defined on Ωi and
Ωj respectively.

Assuming that the center Ci, as well as Cj , is not on
the line which contains MrMr+1, we can express the flux
density on edge δr,r+1 as

Fr,r+1 = − λiλj

λi + λj
(uj − ui − Dr,r+1

|δr,r+1| (ur+1 − ur)), (7)

where ur+1 and ur are the unknowns defined at the vertex
Mr+1 and Mr, respectively.

λi =
κi

hi
, λj =

κj

hj

hi(resp. hj) is the distance from Ci (resp. Cj) to δr,r+1. The
details of the derivation of Eq.(7) can be found in Ref.[13].

Dr,r+1 = −nDi
r,r+1 · tr,r+1

λi
−nDj

r,r+1 · tr,r+1

λj
+(xj−xi)·tr,r+1.

(8)
tr,r+1 is the unit vector tangential to δr,r+1.
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Fig. 2. Schematic skewed mesh

Now, the third item ur+1 − ur remains unknown. In
the following, we shall show how to derive the explicit
expression for ur+1 − ur. The problems with discontinuous
coefficient will be considered later.

To obtain the interpolation, we enlarge the stencils so that
the adjacent cells are involved for constructing the flux. As
an example, we choose the cell ΩL

i , ΩR
i , ΩL

j and ΩR
j as the

stencils for interpolation, as shown in Figure 2.
With ΩL

i and ΩR
j , the discretization of Fr,r+1 can be

written as

FLR
r,r+1 = −τLR(uR

j − uL
i −

DLR
r,r+1

|δr,r+1| (ur+1 − ur)), (9)

where uL
i and uR

j are the values defined at the centers of ΩL
i

and ΩR
j , respectively.

τLR =
λL

i λR
j

λL
i + λR

j

, λL
i =

κL
i

hL
i

, λR
j =

κR
j

hR
j

hL
i (resp. hR

j ) is the distance from CL
i (resp. CR

j ) to δr,r+1.

DLR
r,r+1 = −nDi

r,r+1 · tr,r+1

λL
i

−nDj

r,r+1 · tr,r+1

λR
j

+(xR
j −xL

i )·tr,r+1.

(10)
Similarly, with ΩR

i and ΩL
j , we obtain

FRL
r,r+1 = −τRL(uL

j − uR
i −

DRL
r,r+1

|δr,r+1| (ur+1 − ur)), (11)

where uR
i and uL

j are the values defined at the centers of ΩR
i

and ΩL
j , respectively.

τRL =
λR

i λL
j

λR
i + λL

j

, λR
i =

κR
i

hR
i

, λL
j =

κL
j

hL
j

hR
i (resp. hL

j ) is the distance from CR
i (resp. CL

j ) to δr,r+1.

DRL
r,r+1 = −nDi

r,r+1 · tr,r+1

λR
i

−nDj

r,r+1 · tr,r+1

λL
j

+(xL
j −xR

i )·tr,r+1.

(12)
FLR

r,r+1 and FRL
r,r+1 are both the discretization of flux across

δr,r+1. So we have

FLR
r,r+1 = FRL

r,r+1 (13)

Combining Eqs.(9), (11) and (13), we finally obtain

ur+1 − ur =
τLR(uR

j − uL
i )− τRL(uL

j − uR
i )

τLRDLR
r,r+1 − τRL

r,r+1DRL
|δr,r+1|.

(14)
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By substituting Eq.(14) into Eq.(7), the discretization of
the flux is obtained with cell-centered unknowns only.

Note that Eq.(14) is used for the construction of flux. So
the method presented here is different form that in Ref.[13],
which aims to reconstruct the unknowns defined at the edges.

For discontinuous problems, the adjacent cells across the
discontinuity cannot be chosen as the stencil for interpola-
tion. For example, if the diffusion tensor is discontinuous
between ΩL

i and Ωi, other adjacent cell will be used as a
substitute for ΩL

i .

IV. NUMERICAL EXAMPLES

Assume that the exact solutions are known. Let ui be the
value of the exact solution at the centroid of the cell Ωi, uh

i

the numerical solution, |Ωi| the area of Ωi and N(J ) the
number of cells. Then we calculate the relative asymptotic
errors for the solution using the mean-square norm

Eu
l2 =




N(J )∑
i=1

(
uh

i − ui

)2 |Ωi|
N(J )∑
i=1

ui
2|Ωi|




1
2

. (15)

Similarly, the relative asymptotic errors for the flux is defined
as

EF
l2 =




∑
σ∈Γ

(
Fh

σ − Fσ

)2 |Sσ|
∑
σ∈Γ

Fσ
2|Sσ|




1
2

, (16)

where Γ = ΓI ∪ ΓO, and ΓI and ΓO are the sets of interior
and boundary edges respectively. Sσ is a representative area
for σ. In our numerical test, Sσ is calculated by summing
the area of the adjacent two sub-triangles. Note that there is
only one adjacent sub-triangle for the boundary.

Calculations are performed on a sequence of grids with
different mesh sizes. For two grids J1 and J2, we denote the
corresponding asymptotic errors by E1 and E2, respectively.
Then the order of convergence is approximated by

q = −2
log(E2)− log(E1)
log(N2)− log(N1)

, (17)

where N1 and N2 are the number of unknowns in the meshes
J1 and J2, respectively. The order of convergence is also
defined with respect to the mesh size

η =
log(E2)− log(E1)
log(h2)− log(h1)

, (18)

where h1 = sup
Ωi∈J1

{diam Ωi} and h2 = sup
Ωi∈J2

{diam Ωi}.

A. Mildly anisotropy problem

This test originates from Refs. [14]. The diffusion tensor
is given by

D =
(

1.5 0.5
0.5 1.5

)
.

The exact solution is smooth and defined as

ū(x, y) = sin((1− x)(1− y)) + (1− x)3(1− y)2,

Dirichlet boundary condition is consider here. The boundary
condition and source term are specified by the exact solution.
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Fig. 3. Sheshtakov meshes
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Fig. 4. Random meshes

We perform the calculation on the Sheshtakov meshes,
random meshes, and Kershaw meshes, presented in Figure
3, Figure 4 and Figure 5 respectively. Table I lists the
convergence analysis data. It shows that our scheme is
close to second order accurate for the solution. And the
convergence rate of the flux is more than one.
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Fig. 5. Kershaw meshes
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TABLE I
THE RESULTS FOR MILDLY ANISOTROPY PROBLEM ON VARIOUS

SKEWED MESHES

Mesh N Eu
l2

qu
l2

EF
l2

qF
l2

Sheshtakov 256 0.375e−2 − 0.207e−1 −
1024 0.935e−3 2.00 0.872e−2 1.25
4096 0.264e−3 1.82 0.306e−2 1.51
16384 0.703e−4 1.91 0.107e−2 1.52
65536 0.185e−4 1.93 0.382e−3 1.49

Random 400 0.134e−2 − 0.775e−2 −
1600 0.316e−3 2.09 0.359e−2 1.11
6400 0.788e−4 2.00 0.173e−2 1.06
25600 0.225e−4 1.81 0.833e−3 1.05
102400 0.487e−5 2.21 0.410e−3 1.02

Kershaw 400 0.124e−1 − 0.627e−1 −
1600 0.478e−2 1.37 0.247e−1 1.34
6400 0.141e−2 1.76 0.880e−2 1.49
25600 0.373e−3 1.92 0.302e−2 1.54
102400 0.951e−4 1.97 0.104e−2 1.54

TABLE II
THE RESULTS FOR THE DISCONTINUOUS PROBLEM ON RANDOM MESHES

N Eu
l2

qu
l2

EF
l2

qF
l2

64 0.268e−1 − 0.892e−1 −
256 0.632e−2 2.08 0.239e−1 1.90
1024 0.159e−2 1.99 0.197e−1 0.28
4096 0.399e−3 2.00 0.697e−2 1.50
16384 0.971e−4 2.04 0.309e−2 1.17

B. Discontinuous problem

We consider a diffusion problem with the discontinuous
piecewise constant tensor function

D =
{ D1,
D2,

where

D1 =
(

1 0
0 1

)
if x ≤ 0.5,

D2 =
(

100 0
0 0.01

)
if x > 0.5.

The analytical solution is given by

ū =
{

cos(πx)sin(πx) if x ≤ 0.5,
0.01cos(πx)sin(πx) if x > 0.5,

and the source term by f = −∇(D∇ū). Here the Dirichlet
conditions are considered on the boundary. This example
comes from Ref. [15].

Calculation are performed on a series of random meshes,
displayed in Figure 6. The errors on those meshes are
presented in Table II. Our scheme is second order accurate
for the solution. For the flux, the convergence rate is not
stable. The reason may lie in that the skewness of our
random grids deteriorates or alleviate randomly as the grids
are refined, which will affect the convergence order more or
less.
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Fig. 6. Random meshes with a straight line at the discontinuity

V. CONCLUSIONS

In this paper an interpolation method is developed for
solving heterogeneous anisotropic diffusion problems on
skewed meshes. Using the continuity condition of the
solution and flux, an explicit expression is derived for
interpolating the node unknowns from the cell-centered
unknowns. Discontinuity can be dealt with strictly by
choosing the proper stencils. A scheme with cell-centered
unknowns only is resulted. And there is no need for
reconstructing the gradient, which makes the scheme
concise.
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