
Scientific Computing with HOMsPy
Asif Mushtaq, Anne Kværnø, and Kåre Olaussen

Abstract—The development of HOMsPy is motived by our
own research work. This program solves the Hamiltonian
problems by proposed kick-move-kick higher order scheme with
an automatically generated numerical solver. These proposed
systematic algorithms are extensions of the Störmer-Verlet
method and increases the accuracy of the integration for a
large class of Hamiltonian systems.

Index Terms—HOMsPy, Störmer-Verlet, code-generation,
Hamilton-equations, symplecticity.

I. INTRODUCTION

H IGHER Order Methods in Python (HOMsPy), is a
collection of Python routines designed to generate nu-

merical code for solving the differential equations generated
by Hamiltonian of the form,

H(q,p) =
1

2
pT M−1p+ V (q). (1)

These methods preserve the symplectic property exactly.
The main goal of this program is to provide a framework
for solving the Hamilton’s equations by some higher order
symplectic algorithms proposed in [1], [2], using a symbolic
program, published in [3], which automatically constructs the
numerical solver for each specific Hamiltonian problem. The
implemented symplectic schemes are based on extensions
of the Störmer-Verlet method. Explicit implementation of
the numerical code for a specific potential may be rather
laborious and erroneous to do by hand, since repeated differ-
entiation (with respect to many variables) and multiplication
by lengthy expressions are often involved.

We have therefore written a code-generating program us-
ing the sympy symbolic manipulation package. This takes a
given potential V as input, performs all the necessary algebra
symbolically, and automatically writes a python module for
solving one full timestep τ to the higher order (or selected
order) of accuracy. The program also writes a runfile example
(driver module) which demonstrates how the solver module
can be used.

II. IMPORTANT FEATURES OF THE PROGRAM

Important aspects of this program are listed below:
• The program can handle Hamiltonian problems of the

form
H(q,p) = T (p) + V (q), (2)

where T (p) = 1
2p

Tp is the kinetic term and V (q) is
potential term. This program is very efficient for a large
class Hamiltonian where potential term is sufficiently
differentiable.

Manuscript received December 03, 2014.
A. Mushtaq is with the Department of Mathematical Sciences, NTNU,

N-7048 Trondheim, Norway. e-mail: Asif.Mushtaq@math.ntnu.no.
A. Kværnø is with the Department of Mathematical Sciences, NTNU.

e-mail: Anne@math.ntnu.no.
K. Olaussen is with the Department of Physics, NTNU. e-mail: Kare

Olaussen@ntnu.no.

• The program has options for generating double-
precision (DP) and/or multi-precision (MP) solver(s)
for method(s) up to eight order in the timestep τ , and
provides an automatic code generating environment.

• For a given Hamiltonian, a set of driver modules are
automatically generated. In these, several parameters
are given default values to this program. Further, initial
values are generated randomly. It is straightforward for
the user to change those.

III. INSTALLATION AND CONFIGURATION

This program, as well as the generated solver and driver
modules, is written in the Python programming language,
using the sympy [4], numpy [5], and optionally mpmath [6]
libraries. In addition matplotlib [7] is used for plotting.
In this section the focus of discussion will be the installation
and configuration of necessary softwares as well as HOMsPy.
For the basic understanding on scientific computations in
Python and for general installation in detail, see [8].

A. Prerequisites

We have used Python version 2.7.x, including the packages
sympy, numpy, mpmath (for multi-precision calculations),
and matplotlib for all development and testing. We have
registered that incompatible combinations of these packages
can lead to problems.

B. Installation of HOMsPy

• Download aesd_v1_0.tar.gz or later versions
from
http://cpc.cs.qub.ac.uk/summaries/AESD v1 0.html,
or ask the author for a copy of HOMsPy.tar.

• HOMsPy contains three subdirectories:

kimoki: The directory containing the code generating
module.
examples: A directory containing a single file, named as
makeExamples.py. By running makeExamples.py eight
new files will be generated, four solver modules (Vi-
bratingBeam.py, AnharmonicOscillator.py, Anharmoni-
cOscillatorMP.py, TwoDPendulumMP.py), and four run-
file examples known as driver modules (runVibrating-
Beam.py, runAnharmonicOscillator.py, runAnharmoni-
cOscillatorMP.py, runTwoDPendulumMP.py). By run-
ning each runfile example two .png plots will be
generated, <example> soln.png and <example>

EgyErr.png. Each runfile example will also generate
several intermediate Python pickle (.pkl) files. These can
normally be deleted after use.
demo: This directory demonstrates how the examples
directory should look like after running makeExam-
ples.py, and the runfile examples. Note that the figures

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

will not look identical, because the examples are solved
with random initial conditions. This directory in addi-
tion contains six .log-files with output which is normally
printed to screen. These files contains information about
how long it takes to run the various programs.

IV. USING HOMSPY ON A SIMPLE PENDULUM PROBLEM

Let us start with a simple illustrative example. Consider
the pendulum problem defined by the Hamiltonian

H(q, p) =
1

2
p2 − cos(q). (3)

The corresponding set of ODEs are

q̇ = p, ṗ = −sin(q). (4)

User can include the following code snippet in makeExam-
ples.py to get the solver as well as driver modules. One can
opt the following procedure in oder to solve the pendulum
problem by HOMsPy:

• First write a function specifying the Hamiltonian, giving
symbolic names for the coordinates (q) and momentum
(p) to be used (and optionally also additional parame-
ters), and the symbolic expression of the potential V .
In the present example there is just one coordinate and
one momentum involved, with V = − cos(q). A code
snippet for the pendulum problem is shown below, with
the potential defined on line 9.

Creating a module for solving a pendulum problem
from sympy import cos
def makePendulum():

Choose names of coordinates
q, p = sympy.symbols([’q’, ’p’])
qvars= [q]; pvars = [p]
Define the potential terms
V = -cos(q)
Code for DP solver
kimoki.makeModules(’Pendulum’,

V, qvars, pvars)

Note that the sympy versions all the functions which
occur in V must be known to the code generating
program, since it must compute (higher order) symbolic
derivatives of V . This is why one has to import the cos-
module from sympy in the snippet above.
Further, the numerical numpy and/or mpmath version
of all these functions, and their generated derivatives,
must be known to the solver module (with the same
names as used by sympy). For this reason the solver
module(s) always import most of the elementary func-
tions1, using the appropriate names (see the top of
Pendulum.py in this example). If more advanced
functions (f.i. Bessel functions) are required, they must
be added by hand to the imports at the top of the solver
module.

• The call of
kimoki.makeModules(’Pendulum’,...)

will generate a solver module, Pendulum.py, and
runPendulum.py as a demonstration driver module.

1I.e., sqrt, log, exp, sin, cos, tan, sinh, cosh, tanh, asin, acos, atan, atan2,
asinh, acosh, and atanh.

0 2 4 6 8 10 12 14 16
Time t

1.5

1.0

0.5

0.0

0.5

1.0

1.5

So
lu

tio
n

Numerical solution for timestep 1
10

 and method of order 8

z0

z1

Fig. 1. Numerical solution of pendulum problem

– Pendulum.py, the solver, contains all necessary
code which is essential for our proposed higher or-
der method. The user does not need to do anything
with this file at the moment. But as an editable text
file it is of course available for modification.

– runPendulum.py, an example driver module,
is made to test the solver module, and provide
a starting point for real applications. It provides
solutions of the Hamilton equations for schemes
of various orders, using random initial conditions
and parameters, and generate plots of the results.
The drivers modules are added in HOMsPy for the
user convenience. They are ready to be executed,
but user can easily be modified. This is sometimes
even necessary.

• One may now run the program runPendulum.py.
Two separate tasks are executed by this program:
First the subroutine plotSingelSolution()
is called. This routine plots all components of a
solution, generated with random initial values and
parameters. The routine first checks if a solution has
already been generated and saved to a pickle
file, #Pendulum_SolnTau100Ord8.pkl.
If the file does not exist, the subroutine
computeSingleSolution(order) is called
in order to generate a file with the solution. The
solution is now read in and plotted, and the plot is
saved to the file Pendulum_Soln.png; it will look
similar to the plot in Fig. 1.
NB! New execution of the makeExample.py can be
result in overwriting the existing driver module.
Second the subroutine plotEnergyErrors() is
called. This routine plots how well energy is preserved
by the solver, for different values of the timestep τ
and order N of the solution. The energy error is
expect to scale like τN with τ . The routine checks
if #Pendulum_EgyErrTau<T>Ord<N>.pkl (with
<T> = 500, 1000, and 2000, and <N> = 2, 4, 6,
8), has already been generated. If not, the subrou-
tine computeEnergyErrors() is called in order
to generate the required file(s), before the data is

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

read in and plotted. The plots are saved to the file
Pendulum_EgyErr.png; it will look similar to the
plot in Fig. 2.

0 2 4 6 8 10 12 14 160.12
0.10
0.08
0.06
0.04
0.02
0.00
0.02
0.04

(E
(t

)−
E

(0
))
/τ

N

2nd order (N=2)

0 2 4 6 8 10 12 14 160.005

0.000

0.005

0.010

0.015

0.020
4th order (N=4)

τ=1
5

τ= 1
10

τ= 1
20

0 2 4 6 8 10 12 14 16
Time t

0.006
0.005
0.004
0.003
0.002
0.001
0.000
0.001

(E
(t

)−
E

(0
))
/τ

N

6th order (N=6)

0 2 4 6 8 10 12 14 16
Time t

0.0005

0.0000

0.0005

0.0010

0.0015

0.0020
8th order (N=8)

Approximate energy conservation

Fig. 2. Scaled energy errors for different values of the timestep τ and
order N of the integrator. This figure verifies that the error scales like τN .
The periodicity of the solution is reflected in the periodic variation of the
energy error.

• Some comments:
The code in the driver module is organized to first
generate the solution and additional data, and save
these to files, before the plots are made. For small
demonstrations this is superfluous (by default the pickle
files are removed immediately after they have been
read), but such a separation is advantageous when fine-
tuning plots (which may require many iterations) from
data taking long time to generate.
If the driver module crashes or is aborted, some pickle
files (with names starting with the symbol #) may not
have been removed.
For high-quality figures one may want to generate the
plots in .pdf-format, with axes labels and legends
by use of LATEX. This is possible in matplotlib,
provided a working TEX-installation is detected. The
driver module contains code for this (commented out
to avoid unnecessary errors). In fact, most of the code
in the driver module is related to plotting solution and
data, very little to generating it.

• Fig. 3 illustrates use of the code generator.When the
optional parameter MP=True a multiprecision version of
the solver module and runfile is generated. The solver
module consists of various functions and variables. Its
most important function is kiMoKi(z), which updates
the solution z through one full timestep. The function
energy(z) evaluates the Hamiltonian at the phase
space point z. Many other functions are also defined.

V. MULTI-PRECISION (MP) VERSION OF HOMSPY

In this section, we will present the second important
aspect of our program by an illustrative example which
we have discussed using double-precision (DP) version in
ref. [3]. Higher order methods and multi-precision container

DP = True

kimoki

makePendulum

MP = True

 Pendulum.py PendulumMP.py

runPendulum.py runPendulumMP.py

Functions & Variables Functions & Variables

Functions & Variables

tau

energy(z) kiMoKi(z)

epsilon

order maxorder

dim params

Fig. 3. Graphical representation of the procedure

solvers play very important rule to achieve high accuracy.
Often some situations arise when minute information are
required in many field of engineering, mathematics and
physics. To tackle these situation multi-precision solvers can
be important. In higher order accuracy for small values of
time-steps rounding errors exceed the numerical truncation
errors, multi-precision calculation is one of the way to fix
this problem. In our paper [10], we discussed very-high-
precision about the solutions of a class of Schrödinger type
equations.

A. One parametric family of quartic anharmonic oscillator:
procedural explanation

For the demonstration, we choose a problem of which the
exact solution is known. In this example, we also demonstrate
how parameter(s) (as α is a parameter given in equation
(5)) can be included. Consider the non-linear anharmonic
oscillator defined by the Hamiltonian

H =
1

2
p2 +

α

2
q2 +

1

4
q4. (5)

Exact solution to this problem can be expressed in terms of
the Jacobi elliptic functions [9],

q(t) = q0 cn(νt|k), (6a)
p(t) = −q0ν sn(νt|k) dn(νt|k). (6b)

Here the initial conditions are q(0) = q0, and p(0) = p0,
which implies that q0 is either a maximum or a minimum of
q(t). The parameters and energy of the solution are given by

ν =
(
α+ q20

)1/2
,

k =2−1/2 q0/ν,

E =
α

2
q20 +

1

4
q40 .

For detailed description of this problem see ref. [3]. A
code snippet to generating multi-precision solver and driver
modules is the following:

Solving anharmonic oscillators with multi-precision (MP)
def makeAnharmonicOscillator():

Choose names
q, p, alpha = sympy.symbols([’q’,

’p’, ’alpha’])
qvars = [q]; pvars = [p]

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

