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Abstract—The particle filter method has been used in data as-
similation problems for estimating states of nonlinear dynamic
systems when both system errors and observation errors are
present, and are possibly non-Gaussian. Weighted particles are
used to represent the probability density function of the system
states at any time. The particles are propagated through the
system evolvement and the weights are updated. The method
becomes very inefficient when the system dimension is high and
the model is large and complicated. The notorious phenomenon
of the method is the so called “particle degeneration” where the
particles collapse until only one particle carries the majority
of the weights. In this paper, we implement an improved
hybrid particle filter method which aims to tackle the particle
degeneration problem. The improved method introduces an
auxiliary procedure which redistributes particles according
to the information from the newest observation. The hybrid
particle filter is tested on the Lorenz-63 model, the numerical
analysis shows the method is effective for alleviating the particle
degeneration problem.

Index Terms—particle filter, particle swarm optimization,
Lorenz 63 model

I. INTRODUCTION

IN many fields which study how various systems evolve
over time, methods for performing time series analysis

and time series forecasting are essential. Often such
methods rely on data assimilation techniques, which use
real observations in combination with a theoretical forecast
model in order to reduce the uncertainty in the system
prediction and improve the model forecast ability.

Data assimilation techniques optimally combine the model
forecast and available observational data to generate an
improved forecast. The combination process takes into con-
sideration both the error in the model and the error in
the observations. In general, there are two prevailing data
assimilation techniques: sequential data assimilation and
variational data assimilation. In sequential data assimilation,
the assimilation occurs whenever the next observation be-
comes available, and observations are considered one at a
time. The famous Kalman filter (KF) method produces the
optimal solution. When the model is large and efficiency
is a concern, the Ensemble Kalman filter (EnKF) can be
used to approximate the error covariance through a Monte
Carlo sampling process. Alternatively, variational data as-
similation takes into account several observations within one
assimilation window, minimizing the cost function to obtain a
better state for the starting state of the window. Both methods
have their advantages and disadvantages in terms of ease of
implementation and efficiency for large scale models.
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A particle filter is a method that models the evolution of
probability densities over time. It was originally proposed
by Gordon [6] as an improvement to the Extended Kalman
Filter (EKF) for solving nonlinear, non-Gaussian problems.
The algorithm works by recursively resampling particles
based on a weight which is recalculated at each time
step according to the prior probability density. In the
classic implementation, the weight update is carried out
through the “importance sampling” step. The method suffers
from the so called “particle degeneration”. In this paper,
we apply an improved particle filter with the goal of
alleviating the effect of the particle degeneration. Section
II introduces the particle filter method and illustrates the
degeneration problem. Section III describes the particle
swarm optimization algorithm and its use as an auxiliary
procedure to improve the particle filter performance.
Numerical simulation and analysis are provided in section
IV. Conclusions and future work are given in Section V.

II. BACKGROUND

Forecasting problems predict system states based on the
current system states and the evolvement of the system
over time. The prediction process is complicated by either
a large number of interrelated variables acting on the state
in question or by the prevalence of randomness within the
system.

The particle filter has been successfully applied to wide
variety of fields, and is often used for object tracking
applications and in various forecasting models, such as
object tracking and robotic localization [9], [12], image and
video processing [1], [10], [13], [16], as well as forecast
models of natural systems, wave modeling [8], [15] and
weather forecasting [7], [11].

The general non-linear system and observation equations
can be represented as:

θt = f (t, θt−1, ε1,t)

ξt = g (t, θt, ε2,t)
(1)

in which the system states θt evolve according to the non-
linear function f , where the function g acts as the mapping
function between the state space and the observation space.
ε1,t and ε2,t indicate the errors in system evolvement and the
errors in the observations.

In a particle filter implementation, the system state is
represented as a probability density function, which is ap-
proximated by an ensemble of random variables, called
particles. F ξt denotes the history of observations up to time t.
With some additional assumptions, the particle filter delivers
a recursive formula for the conditional density p

(
θt

∣∣∣F ξt )
of

the unobservable state θt, given the history of observations
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F ξt . Suppose we know the density p
(
θt−1

∣∣∣F ξt−1

)
, and that

we can sample, or generate, random variables from this
density. By Bayes’ formula

p
(
θt−1

∣∣∣F ξt )
∝ p

(
ξt

∣∣∣F ξt−1, θt−1

)
p

(
θt−1

∣∣∣F ξt−1

)
(2)

or

p
(
θt−1

∣∣∣F ξt )
p

(
θt−1

∣∣∣F ξt−1

) ∝ p
(
ξt

∣∣∣F ξt−1, θt−1

)
(3)

The right side of Equation (3) is the observation likelihood
function ξt at time t, and the left side of Equation (3) is
a ratio of an unknown density p

(
θt−1

∣∣∣F ξt )
to a known

density p
(
θt−1

∣∣∣F ξt−1

)
. Applying the importance sampling

method [2], [4] to the ratio on the left side of Equation (3),
we obtain an ensemble of particles drawn from the density
p

(
θt−1

∣∣∣F ξt )
. Finally, we use this ensemble of particles

and the system dynamics equation to generate an ensemble
of particles drawn from the conditional density p

(
θt

∣∣∣F ξt )
.

Because the filter computes the entire conditional probability
density function at each time step, all the moments of the
probability distribution are preserved.

A. Particle Degeneration

Particle degeneration, or sample impoverishment, occurs
when the use of importance sampling fails and the par-
ticles are incorrectly positioned in the state-space. More
particularly, it occurs when the majority of the particles
in the resultant probability distribution are “wasted” (that
is, they hold a weight value of approximately zero) while
the remaining weights are concentrated in a small number
of high weight particles. It was noted in [5] that particle
degeneration is undesirable for two reasons. The first is that
preserving particles with low weights wastes computational
effort, as these particles will contribute nearly nothing to the
estimation; the second is that the absence of particle diversity,
sometimes manifesting in having multiple copies of the same
particle, causes the filter to descend into statistical chaos.

Daum and Huang [3] note that the primary cause of
particle degeneration is the use of Bayes’ rule in the sam-
pling step. Bayes’ rule performs a point-wise multiplication
between the prior density and the proposal density in order
to obtain the posterior distribution function; this works well
when the proposal distribution and the sample distribution
are close, but results in weight collapse when the two
probability densities overlap minimally because the particles
in high-probability regions are not multiplied (or rather, are
multiplied by approximately zero), and only the tail regions
of the two distributions are taken into account.

Since the weight calculation step (that is, the sampling
step) causes particle degeneration, it stands to reason that
versions of the particle filter which have been developed
for the purpose of mitigating particle degeneration typically
focus on improving upon the sampling step. Most rely on the
addition of a resampling step, where particles in the sample
distribution are guided closer to the proposal distribution in
some way or another. This helps to minimize the problem of

particle degeneration, and also improves upon the accuracy
of the filter overall.

III. PARTICLE SWARM OPTIMIZATION AND HYBRID
PARTICLE FILTER

Particle Swarm Optimization (PSO) is a swarm intelli-
gence optimization technique based on naturally occurring
swarm behavior observable in nature, such as a flock of birds
or a school of fish. It was originally developed by Kennedy
and Eberhart. In the PSO algorithm, the ensemble of particles
each has a velocity and a state value. The velocity v and the
state of the particles x are updated according to the following
formula:

v = ωv + c1rp(p− x) + c2rg(g − x)
x = x+ v

(4)

where p and g are the current best known individual value
and best global value respectively. rp and rg are uniformly
distributed random variables. ω (inertial weight), c1 (cogni-
tive weight) and c2 (social weight) are control parameters.
The difficulty of the PSO algorithm lies in the selection
of those constants and setting the stopping criteria. In our
experiment, we use the classic setting for those parameters
and we stop the iteration when the magnitude of the error
decrease is within certain threshold.

The hybrid particle filter was initially proposed by
Zhang [14] and aims to alleviate the problems of particle
degeneration by iteratively converging the particles onto the
system observation prior to the next prediction step in the
particle filter. It has been successfully applied as an auxiliary
procedure to the particle filter to image and robotics tracking
problems, where observations on the system play a larger
role on the outcome of the system than the system model,
however it has yet to be applied to forecasting problems,
where observations may be subject to higher degrees of error.

In this paper, we propose a hybrid particle filter method
which introduces the PSO as a sub-optimal routine between
the resampling and prediction steps of the particle filter and
apply the algorithm to the 3-dimensional Lorenz 63 model
for atmospheric convention.

The sub-optimal routine is introduced after the resampling
step in the particle filter, as a way of further addressing the
problem of particle degeneration. In the swarm, the probably
distribution function is represented as a swarm of particles
representing the current predicted state of the system. Each
particle is given a social weight c2 which determines the
importance the particles movement places on the states of the
other particles, and a cognitive weight c1 which determines
the importance the particles movement places on its own
state. The algorithm then iteratively attempts to attract each
particle closer towards the system observation. Because the
algorithm can potentially be costly with respect to time,
we introduce the PSO as a sub-optimal routine, which only
iterates until the given criteria (in our case, minimum change
in mean) is met.

Although the introduction of an auxiliary algorithm does
add to the overall runtime cost of the particle filter, the
additional of the sub-optimal PSO also greatly improves upon
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Fig. 1. Classic behavior of the Lorenz 63 Attractor

the particle filters performance. The following sections shows
the numerical analysis results.

IV. NUMERICAL SIMULATION AND ANALYSIS

Tests of the algorithm were run over the 3-dimensional
Lorenz 63 model shown in (5), which are used as a
simplified model for atmospheric convection.

dx

dt
= σ(y − x)

dy

dt
= x(ρ− z)− y (5)

dz

dt
= xy − βz

When calculated using the classic parameter values where
ρ = 28, β = 8/3 and σ = 10, the Lorenz 63 equations
produce the chaotic system seen in Figure 1. This chaotic
behavior makes the Lorenz 63 attractor an ideal model on
which to test the particle filter.

Tests were run on the ordinary particle filter and the
hybridized PF-PSO using exponentially increasing ensemble
sizes from 21 to 210, with each test running over the course
of 20 time steps. Observations for the densely occurring
observation tests were recorded twice per time step, while
observations for sparsely occurring observation tests were
recorded once every other time step.

Parameters for the sub-optimal PSO are as follows. Each
particle was assigned a random velocity v = N(−5, 5), an
inertial weight ω = 2, a cognitive weight c1 = 1, and a
social weight, c2 = 0.5. Additionally, a stopping criteria
∆µk−1 − µk < 0.1 was applied between each iteration
of the Particle Swarm in order to prevent the PSO from
overshooting the targeting position.

The root mean square error is shown in Figures 2 for
different number of ensemble size, where the x-axis shows
the log2 of the particle numbers. The lines with star markers
indicate the traditional particle filter implementation and the
lines with circles indicate the hybrid particle filter implemen-
tation. The solid lines are for dense observation case and the
dashed lines are for sparse observations. From the figure,
we can see that the hybrid particle filter has significantly

Fig. 2. Log plot of RMSE

Fig. 3. Runtime Cost

reduced the error for both dense and sparse cases. However,
increasing the number of ensemble members does not lead
to further improvement.

The runtime analysis is shown in Figure 3, where both
methods for dense observations consume more time than
sparse observations. Comparing the runtime of the classic
particle filter and the hybrid particle filter, we only see a
slightly increase.

V. CONCLUSION

We implemented a hybrid particle filter with the attempt
to improve the efficiency of the classic particle filter. An
auxiliary procedure based on the particle swarm optimization
method was added to the classic particle filter implementa-
tion. We tested the hybrid method on the Lorenz 63 model
for both dense observation and sparse observation cases, as
well as for different number of ensemble members. Numer-
ical results indicate that the hybrid method improves the
numerical accuracy with a slight runtime cost increase. Our
results show potential benefits of using the hybrid particle
filter for nonlinear non-Gaussian chaotic model. In the future,
we plan to apply the hybrid method to a real application
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and further explore the optimal stopping criteria for particle
swarm optimization procedure.
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