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Abstract—Calculating portions of eigenvalues and eigenvec-
tors of matrices or matrix pencils has many applications. An
approach to this calculation for Hermitian problems based on
a density matrix has been proposed in 2009 and a software
package called FEAST has been developed. The density-matrix
approach allows FEAST’s implementation to exploit a key
strength of modern computer architectures, namely, multiple
levels of parallelism. Consequently, the software package has
been well received and subsequently commercialized. A de-
tailed theoretical analysis of Hermitian FEAST has also been
established very recently. This paper generalizes the FEAST
algorithm and theory, for the first time, to tackle non-Hermitian
problems. Fundamentally, the new algorithm is basic subspace
iteration or Bauer bi-iteration, except applied with a novel
accelerator based on Cauchy integrals. The resulting algorithm
retains the multi-level parallelism of Hermitian FEAST, making
it a valuable new tool for large-scale computational science and
engineering problems on leading-edge computing platforms.

I. I NTRODUCTION

General non-Hermitian eigenvalue problems arise in many
important applications of applied sciences and engineering
that include economic modeling, Markov chain modeling,
structural engineering, fluid mechanics, material science, and
more (see [1], [2] for example). Solving complex symmetric
(still non-Hermitian) eigenvalue problems are crucial in
modeling open systems based on the perfectly matched layer
(PML) technique that is staple tool in electromagnetics [3],
nanoelectronics [4], and micro electromechanical systems
MEMS [5]. As a tool in numerical linear algebra, non-
Hermitian eigensolvers are kernels to non-linear eigenvalue
problems such as quadratic or polynomial eigenvalue prob-
lems [2], [6]. More generally, advances in high-performance
and big-data computing will only increase the use for general
eigenvalue solvers in areas such as bioinformatics, social
network, data mining, just to name a few. Compared to
the Hermitian case, the arsenal of solvers available for non-
Hermitian eigenproblems are much more meager (see for
example [7] and more discussions in the end). Any addition
to the software toolbox for the general scientific computing
is therefore always timely and welcome.
For eigenproblems of moderate size, robust solvers are well
developed and widely available [8], [9] and are sometimes
referred to as direct solvers [10]. These solvers typically
calculate the entire spectrum of dense matrices or matrix
pencils. In many large-scale applications, the underlying
linear systems are typically large and sparse and that of-
ten only selected regions of the spectrum are of interest.
A new approach for these calculations for Hermitian ma-
trices and matrix pencils based on density matrices has
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been proposed recently [11]. From an algorithmic point of
view, this new approach tries to compute an exact invariant
subspace – which is the action of the density matrix –
approximately, as opposed to, for example, Krylov subspace
methods (see for example [12], [13], [14], [15]) or Jocobi-
Davidson method [16], [17] which try to compute subspaces
that approximate invariant subspaces in a certain sense.
The density-matrix approach maintains a basis for a fixed-
dimension subspace but updates it per iteration. In this view,
it is similar to the non-expanding subspace version of an
eigensolver based on trace minimization [18], [19] but with
a different subspace update strategy. From an implementation
point of view, this new approach is similar to spectral divide-
and-conquer [20], [21] in that the calculation is expressed
in terms of high-level building blocks that can much better
exploit the advantages of modern computing architectures.
In this case, the high-level building block is a numerical-
quadrature based technique to approximate an exact spectral
projector. This building block consists of solving independent
linear systems, each for multiple right hand sides. A software
package FEAST [22], for Hermitian eigenproblems, based
on this approach has been made available since 2009 and
has recently been adopted in the commercial package IntelR©

Math Kernel Library. A comprehensive theoretical analysis
of Hermitian FEAST has been completed very recently [23]
by two of the authors of this present work.

In this paper, we extend the FEAST algorithm and theory
to tackle non-Hermitian eigenproblems. Similar to the Her-
mitian case, the non-Hermitian FEAST algorithm takes the
form of standard subspace iteration in conjunction with the
Rayleigh-Ritz procedure (see for example [10], page 157,
or [2], page 115.) For non-Hermitian matrices, left and right
eigenvectors are in general non-orthogonal and different.
There are two natural generalizations of subspace iterations
to handle this complication. A one-sided approach where one
focuses on either the right or left invariant subspace, or a
Bauer bi-iteration approach where both invariant subspaces
are targeted simultaneously. The crucial ingredient is that the
subspace iteration here is carried out on an approximate spec-
tral projector obtained by numerical quadrature. Our analysis
shows that the quadrature approximation perturbs the projec-
tor’s eigenvalues but not the eigenvectors. Consequently, the
convergence of subspace iteration can be established similar
to the approaches shown in [2], suitably generalized as the
left and right eigenspaces are now different. By exploring
the structure of the generated subspaces, we show that the
Rayleigh-Ritz procedure produces the targeted eigenpairs.
Typical to many large-scale applications, the target eigenpairs
are a small portion of the entire spectrum. In this case, the
dominant work of our algorithm is the quadrature computa-
tion which possesses multiple levels of parallelism, making
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this an excellent algorithm for high-performance computing.
This paper aims to show how the various components of non-
Hermitian FEAST fit together, with just enough mathematical
analysis to make the presentation credible. A detailed numer-
ical analysis similar to [23] for the Hermitian case is beyond
the scope here. In subsequent sections we will describe the
numerical-quadrature-based method to compute approximate
spectral projector, establish the convergence of subspace
iteration and bi-iteration with this approximate projector as
an accelerator, prove convergence of the associated Rayleigh-
Ritz procedure, and present numerical and performance ex-
amples.

II. OVERVIEW

To focus our discussion, we will concentrate on the simple
eigenvalue problem (as opposed to the generalized eigenvalue
problem of a matrix pencil) of a diagonalizable general
matrix A. Section VIII will discuss FEAST’s applicability
beyond these assumptions. For the rest of this paper,A will
be an × n general matrix with the following eigendecom-
position

A = XΛY H , XY H = I,

whereΛ is a diagonal matrix of eigenvalues andX andY
areA’s right and left eigenvectors, respectively:

X = [x1, x2, . . . , xn], Y = [y1, y2, . . . , yn],

Axj = λjxj , and yHj A = λjy
H
j ,

whereY H stands for complex-conjugate transposition ofY .
Unlike the Hermitian case whereA = AH , X and Y are
not necessarily the same and do not have a standard normal-
ization convention. It is customary to call the relationship
Y HX = I asX andY being bi-orthogonal.
Consider that the eigenvalues of interest, totalingm of them,
are those that reside inside a simply connected domainC (e.g.
disk, ellipse, etc.). LetXC andYC be the corresponding sets
of right and left eigenvectors. In particular,XC andYC are
n×m matrices withY H

C XC = Im. Our strategy is based on
the use of the spectral projectorsXCY

H
C andYCX

H
C which

project to the right and left invariant subspaces, respectively.
If we can compute(XCY

H
C )u for anyn-vectoru, then apply-

ing XCY
H
C on a set of random vectors1 U = [u1, u2, . . . , up],

p ≥ m, will lead to span(XCY
H
C U) = span(XC) provided

that rank(XCY
H
C U) = m. A basis for XC can then be

constructed which in turn can be used (more details later)
to compute the desired eigenvalues and right eigenvectors.
The same approach usingYCX

H
C would lead us to the

corresponding left eigenvectors.
The operatorXCY

H
C (and equallyYCX

H
C ) can be represented

as a Cauchy integral (full details in Section III). Replac-
ing this integral with a numerical quadrature rule yields a
different operator that nevertheless approximatesXCY

H
C . It

turns out that applying this approximate spectral projector to
vectorsU is tantamount to solving a number of independent
linear systems withU as right-hand sides; a procedure that
is inherently parallel on a number of levels. Furthermore,

1The effectiveness of randomized methods have been studied rigorously
in a large body of recent works. Excellent surveys can be found in [24],
[25].

the approximate spectral projector in fact preserves–exactly–
the invariant subspacesspan(XC) and span(YC). Conse-
quently, performing subspace iteration or Bauer bi-iteration
with the approximate spectral projector becomes numerically
effective as well as computationally efficient in capturing
invariant subspaces as well as the associated eigenpairs. The
general flow of the remaining sections is as follows. In
Section III, we review the integral representations ofXCY

H
C

and YCX
H
C and analyze the properties of the quadrature-

based operator. Based on the properties of the quadrature-
based approximate spectral projectors, Section IV presents
several variants of subspace iteration algorithms adapted for
general non-Hermitian eigenvalue problems. We establish
basic convergence properties of the subspaces generated by
these iterative procedures. The structure of the subspaces
generated in the iterative process are further analyzed in
Section V, demonstrating their use in capturing the desired
eigenpairs, which is the actual problem at hand. We present
in Section VI a number of numerical experiments to illustrate
the theoretical analysis. Scalability results are also presented,
supporting our claim that this building block is a great
addition to the overall toolbox for HPC calculation of non-
Hermitian eigenvalue problems. In the concluding section,
we put our new method in the context of other popular
existing methods and share our views of future work.

III. PROJECTION VIA QUADRATURE

In this section, we focus on the (right) spectral projector
XCY

H
C . This can be viewed as a function of the matrixA,

represented as a Cauchy integral.2 We will show that when
this integral is approximated by a numerical quadrature, the
resulting approximate spectral projector has a number of
useful properties. All discussions are applicable to the left
projector,YCX

H
C , in a straightforward manner.

LetA be a diagonalizable matrix with spectral decomposition
A = XΛY H , XY H = I. That is,X and Y are right and
left eigenvectors andΛ is a diagonal matrix whose diagonal
entries are the corresponding eigenvalues. Let the eigenvalues
of interest reside in the interior of a simply connected region
C. We further assume that none ofA’s eigenvalues are on∂C,
the boundary ofC. Let π(λ) be the complex-valued function
defined by the Cauchy integral (in the counter clockwise
direction)

π(λ) =
1

2πι

∮

∂C

1

z − λ
dz, λ /∈ ∂C. (1)

The Cauchy integral theorem shows thatπ(λ) = 1 for λ
inside theC andπ(λ) = 0 for λ outside ofC. The function
π(λ) of a complex variable can be extended to a function of
a matrix via

π(A) =
1

2πι

∮

∂C

(zI −A)
−1

dz. (2)

On the other hand, becauseA = XΛY H , XY H = I, one
can see that

π(A) = X

(

1

2πι

∮

∂C

(zI − Λ)
−1

dz

)

Y H = XCY
H
C .

2Representing functions of matrices as Cauchy integrals is well studied.
The interested reader can find further details in [26], [27].

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I, 
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015



This is because the middle integral is simply a diagonal
matrix whose diagonal entries are all zeros except for the 1’s
at the locations corresponding toλ ∈ C. Equation 2 shows
that the application of the projectorXCY

H
C to a set of vectors

U = [u1, u2, . . . , up] admits an integral representation

(XCY
H
C )U =

1

2πι

∮

∂C

(zI −A)
−1

U dz. (3)

It is therefore natural to approximate the integral in Equa-
tion 3 by a quadrature rule. For the rest of the paper, we
consider∂C to be ellipses parametrized by

φ(t) = c+R
(

cos
(π

2
(1 + t)

)

+ ιa sin
(π

2
(1 + t)

))

, (4)

where c ∈ C is the center, with horizontal and vertical
axes of lengthsR > 0 and Ra > 0, respectively. We
can apply any quadrature rule for integrating a function
f(t) on [−1, 1] to obtain an approximation ofπ(λ). Let
∫ 1

−1
f(t)dt ≈

∑q
k=1 wkf(tk) be a quadrature rule based onq

pairs of(node,weight), {(tk, wk)|tk ∈ [−1, 1], wk > 0, k =
1, 2, . . . , q}.

π(λ) =
1

2πι

∮

∂C

1

z − λ
dz,

=
1

2πι

∫ 3

−1

φ′(t)

φ(t)− λ
dt,

=
1

2πι

∫ 1

−1

(

φ′(t)

φ(t)− λ
+

φ′(2− t)

φ(2− t)− λ

)

.

Applying the quadrature rule3 yields ρ(λ) ≈ π(λ),

ρ(λ)
def
=

q
∑

k=1

wk

2πι

(

φ′(tk)

φ(tk)− λ
+

φ′(t̃k)

φ(t̃k)− λ

)

, t̃k = 2−tk.

(5)
Applying Equation 5 toA results in an approximate spectral
projection operationπ(A)U ≈ ρ(A)U , ρ(A)U defined as
q

∑

k=1

wk

2πι

[

φ′(tk)(φ(tk)I −A)
−1

+ φ′(t̃k)(φ(t̃k)I −A)
−1

]

U.

(6)
For a quadrature rule that uses neither−1 nor 1 as nodes,
computingρ(A)U via Equation 6 involves solving2q sys-
tems of linear equations, each withp right hand sides. For a
quadrature rule witht1 = −1 andtq = 1, there are2(q− 1)
linear systems to solve. Solutions of multiple independent
linear systems for multiple right hand sides makeρ(A)U a
kernel operation with rich parallelism. Furthermore,ρ(A)U
is numerically effective, as we now explain.
BecauseA = XΛY H , we have

ρ(A) = Xρ(Λ)Y H . (7)

In other words, whileρ(A) is not exactlyXCY
H
C , span(XC)

and span(YC) nevertheless remain to be right and left
invariant subspaces ofρ(A). Moreover, if ρ(λ) maintains
|ρ(λ)| ≈ 1 for λ ∈ C and |ρ(λ)| ≪ 1 for λ /∈ C, thenρ(A)U
would be effective in “tilting” U towards the direction of
span(XC). We therefore examine the ratio of|ρ(µ)/ρ(λ)|
for λ ∈ C and µ /∈ C. To this end, if suffices to study the
referenceρ functionρref for the domainC that centers at the
origin, with R = 1 because theρ(λ) function for an ellipse

3See [28] for a different application of numerical quadrature to eigenvalue
problems.
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Fig. 1. For Hermitian eigenproblems, one only needs aρref(λ) function
that behaves well on the real line, namely, is close to 1 inside[−1, 1] and
small outside. Because of symmetry, this figure shows|ρref(λ)| only for
λ ≥ 0. For comparable computational cost of applyingρ(A) to vectorsU ,
Gauss-Legendre performs somewhat better than trapezoidal rule does.

of a same “a” parameter but centered atc with “radius” R′

is simply givenρ(λ) = ρref((λ− c)/R′).
To underline the difference between Hermitian and non-
Hermitian problems, an effective quadrature rule for the
former requires|ρref(λ)| ≈ 1 for λ ∈ C and |ρref(λ)| ≪ 1
for λ /∈ C only for λ on the real line. Figure 1 shows
log10 |ρref(λ)| for real-valuedλ for a Gauss-Legendre (with
q = 8) and a trapezoidal rule (withq = 9). The percip-
itous drop of |ρref(λ)| for λ outside of [−1, 1] signifies
the effectiveness of quadrature-based approximate spectral
projections.
For non-Hermitian problems,ρref(λ) has to “behave well”
for λ in the complex plane. Consequently, for a given
quadrature rule, we evaluateρref(λ) at level curves similar
to the boundary∂C:

λ(r, t) = r
[

cos
(π

2
(1 + t)

)

+ ιa sin
(π

2
(1 + t)

)]

.

At each r below 1, 0 ≤ r ≤ 1 − δ (δ set to 0.01), we
record the minimum of|ρref | over the level curve, and at
eachr ≥ 1+δ, we record the maximum. That is, we examine
the function

η(r)
def
=

{

mint |ρref(λ(r, t))| for 0 ≤ r ≤ 1− δ,
maxt |ρref(λ(r, t))| for 1 + δ ≤ r.

The functionη(r) serves as an indicator. Anη(r) that is
close to 1 forr < 1 and very small forr > 1 corresponds to
an approximate spectral projector that preserves the desired
eigenspace well while attenuating the unwanted eigencom-
ponents severely. Figure 2 shows threeη(r) functions, in log-
arithmic scale, corresponding to Gauss-Legendre quadrature
(q = 8) on three different shapes of ellipses. Figure 3 shows
different η(r) functions, in logarithmic scale, corresponding
to Gauss-Legendre and trapezoidal rules at different choices
of q. The domain is set to be a circle. It is interesting to note
that while Gauss-Legendre is in general a better choice for
Hermitian problems (as Figure 1 suggests), trapezoidal rule
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quadrature withq = 8 nodes on[−1, 1]. We exhibit the result for three
different elliptical domains. For simplicity, we employ circular domains for
the rest of the paper, but different types of domains can be used. See further
discussions in Section VIII.
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Fig. 3. This figure compares Gauss-Legendre quadrature to trapezoidal
rule on a circular domain. Because trapezoidal rule uses both−1 and1 as
nodes on the integration interval[−1, 1] while Gauss-Legendre uses neither,
a q-node Gauss-Legendre and aq+1-node trapezoidal both require solving
2q linear systems when applying the spectral projectorρ(A) to vectorsU .
The figure suggests that trapezoidal rule works better in general for non-
Hermitian problems.

seems to fare better for non-Hermitian problems.4

IV. SUBSPACEITERATION

Equation 7 in the previous section shows that the approx-
imate spectral projector is of the formρ(A) = XΓY H

where Γ = ρ(Λ). The invariant subspaces ofρ(A) are
identical to those ofA. Moreover,A’s eigenvalues insideC
are mapped to the dominant values inΓ. Subspace iteration
is a standard pedagogical method (see for example [10],
[2]) that can be used to capture invariant subspaces. While
subspace iteration is seldom used in practice in its pure form

4Assuming no information of the eigenvalues’ distribution is available a
priori.

as the requirements for this method to succeed are stringent,
the previous analysis onρ(A) suggests it to be a perfect
candidate for this simple iterative method to converge rapidly.
This is because the invariant subspace of interest corresponds
to highly dominant eigenvalues. Algorithm SIR below is a
straightforward adaptation of subspace iteration usingρ(A)
instead ofA.

Algorithm SIR(Subspace Iteration for Right Eigenspace)

1: Pick random orthogonalU(0) ∈ C
n×p, UH

(0)U(0) = I.
2: // In general,p≪ n.
3: Setk ← 1.
4: repeat
5: U(k) ← orthonormalize(ρ(A)· U(k−1))
6: // Orthonormalization is a numerical safeguard.
7: k ← k + 1
8: until Appropriate stopping criteria

While basic convergence properties about the sequence of
subspaces generated by subspace iteration of a Hermitian
matrices is easily available (see for example [2], [29]),
generalized results for non-Hermitian case is more obscure.5

Moreover, Algorithm SIR utilizes an approximate spectral
projector, which leads to properties not shared by general
subspace iterations.6 In the remaining part of this section, we
present several basic convergence properties of the generated
subspace by Algorithm SIR as well as by other variants of
SIR.
We start by numbering theγjs (the eigenvalues ofρ(A)) so
that

|γ1| ≥ |γ2| ≥ · · · ≥ |γn|,

and numberA’s eigenpairs accordingly:

γj = ρ(λj), Axj = λjxj , yHj A = λjy
H
j , j = 1, 2, . . . , n.

The eigenpairs of interest are now in the beginning part of
this numbering convention. Our analysis involves examining
sections of the right and left eigenvectorsX and Y , and
the corresponding eigenvalues. We set up some simplifying
notations: For integerℓ, 1 ≤ ℓ ≤ n,

Xℓ = [x1, x2, . . . , xℓ], Xℓ′ = [xℓ+1, xℓ+2, . . . , xn],
Yℓ = [y1, y2, . . . , yℓ], Yℓ′ = [yℓ+1, yℓ+2, . . . , yn],
Γℓ = diag(γ1, γ2, . . . , γℓ), Γℓ′ = diag(γℓ+1, γℓ+2, . . . , γn).

In particular, becauseX and Y are bi-orthogonal, we
have I = XY H = XℓY

H
ℓ + Xℓ′Y

H
ℓ′ , Y H

ℓ Xℓ = Iℓ,
Y H
ℓ′ Xℓ′ = In−ℓ, Y H

ℓ Xℓ′ = 0, and Y H
ℓ′ Xℓ = 0. We also

normalize the lengths of the right and left eigenvectors so
that ‖xj‖2 = ‖yj‖2 for j = 1, 2, . . . , n. This normalization,
while not crucial, is convenient for subsequent discussions.

Theorem 1. Consider Algorithm SIR. Let|γp| > |γp+1| and
that the randomly chosenU(0) yields an invertibleY H

p U(0).
Then there are constantsαj , j = 1, 2, . . . , p, such that for
eachj = 1, 2, . . . , p, the generated subspacespan(U(k)) at

5This may be due to the fact that subspace iteration is usually not
considered a powerful method for Hermitian problems, not to mention the
more difficult non-Hermitian problems.

6Readers acquainted with acceleration methods can also view approximate
spectral projection as a special acceleration, which warrant further analysis
beyond the readily available results for plain subspace iteration alone.
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every iterationk contains a vector of the formxj +Xp′e
(k)
j

wheree(k)j ∈ C
n−p and satisfies‖e(k)j ‖2 ≤ αj |γp+1/γj |

k.

There is an obvious left eigenspace variant Algorithm SIL
of Algorithm SIR. One simply replace (for notational clarity)
the letterU with V , and compute in Step 5

V(k) ← orthonormalize((ρ(A))HV(k−1)).

Theorem 1 has an obvious version for SIL. Namely, there
are constantsβj , j = 1, 2, . . . , p, such that vectors of the
form yj + Yp′f

(k)
j reside inspan(V(k)) where

‖f
(k)
j ‖2 ≤ βj |γp+1/γj |

k

for each left eigenvectoryj , j = 1, 2, . . . , p and each iteration
k. The proof is trivially similar to the one for Theorem 1.
SIR and SIL can be combined to target both the right
and left eigenspaces simultaneously. This is tantamount to
generalizing the classical Bauer bi-iteration [30], [31] to one
that uses an approximate spectral projector. The resulting
Algorithm BIT is outlined here.

Algorithm BIT (Bi-Iteration with Spectral Projector)

1: Pick randomU(0), V(0) ∈ C
n×p, with V H

(0)U(0) = I.
2: Setk ← 1.
3: repeat
4: (Ũ , Ṽ )← (ρ(A) · U(k−1), ρ(A)

H
· V(k−1))

5: (U(k), V(k))← bi-orthogonalize(̃U, Ṽ ).
6: // This makesV H

(k)U(k) = Ip.
7: k ← k + 1
8: until Appropriate stopping criteria

Mathematically, the subspaces spanned are unchanged when
their basis vectors are orthonormalized or bi-orthogonalized.
Thus, the spacespan(U(k)) that corresponds to Step 4
of BIT is the same as the one corresponds to Step 5
in SIR, had both SIR and BIT started with the same
random subspace ofspan(U(0)). The same holds for the
left subspacesspan(V(k)). Consequently, the convergence
properties described in Theorem 1 for the right subspaces
and the analogue for the left subspaces holdsimultaneously
in Algorithm BIT. The generated subspaces, as represented
by the basis vectorsU(k) andV(k) in the various variants of
subspace iteration algorithms SIR, SIL, and BIT can be used
in a Rayleigh-Ritz manner to yield good approximations to
the targeted eigenpairs. This is the subject of the next section.

V. NON-HERMITIAN FEAST

Intuitively, under favorable conditions, the orthogonal ba-
sis obtained in Algorithm SIR will have captured the right
eigenvectorsx1, x2, . . . , xp quite accurately after just a small
number of iterations. Consequently, solving the eigensystem
of the (small)p×p systemÃ = UHAU for eigenpairs(Λ̃, X̃)
should yieldΛ̃ ≈ Λp andUX̃ ≈ Xp (up to permutations).
This is the basic form of the “one-sided” FEAST algorithm
for non-Hermitian problem, which we call R-FEAST for
right-sided FEAST.

In this section, we first outline the basic analysis on
why Algorithm R-FEAST would work under very favorable
conditions. Using this as a building block, we show that
the algorithm would work under more realistic conditions.

Algorithm R-FEAST(Right-sided FEAST)

1: Pick random orthogonalU(0) ∈ C
n×p, UH

(0)U(0) = I.
2: Setk ← 1.
3: repeat
4: Ũ ← orthonormalize(ρ(A)· U(k−1))

5: Ã← ŨHAŨ
6: Solve eigenproblem̃AX̃ = X̃Λ̃ for (Λ̃, X̃)
7: SetU(k) ← ŨX̃ andΛ(k) ← Λ̃.
8: k ← k + 1
9: until Appropriate stopping criteria

Finally, similar analysis is carried out to Algorithm Bi-
FEAST, which is the natural R-FEAST analogue based on
two-sided iteration BIT.
We adopt in our analysis a simplified approach and express
resulting mathematical upper bounds in the form ofO(ǫ) for
small ǫ > 0 – despite the derivations themselves necessarily
involve extra details such as‖A‖2, condition number of the
matricesX, Xm, Xm′ , and their respective norms, etc. These
details also underline the mathematical complications that
correspond to non-Hermitian problems. Had the problem be
Hermitian, thatX andY are the same and unitary renders
virtually all related norms and condition numbers unity. The
purpose of this paper is to give an overall picture of non-
Hermitian FEAST and a high-level view of how and why
it works, corroborated by numerical illustration. A detailed
error analysis would require a dedicated and much longer
paper.

Theorem 2. Let Q = XpRp be orthogonal whereXp are
the first p right eigenvectors. LetX̃p = Xp + Xp′E be a
small perturbation ofXp where‖Xp′E‖2 ≤ ǫ‖Xp‖2, and
‖E‖2 ≤ ǫ for some smallǫ. Then there exist ãRp close to
Rp so that Q̃ = X̃pR̃p is orthogonal. In particular,R̃p =
Rp(1 + ∆R), ‖∆R‖2 = O(ǫ).

Theorem 3. LetQ = XpRp andQ̃ = X̃pR̃p be as described
in Theorem 2. Then‖QHAQ− Q̃HAQ̃‖2 = O(ǫ).

Theorem 3 shows why R-FEAST can yield thep eigen-
valuesΛp, at least under favorable conditions. Supposep
is such that|γp+1/γp| is reasonably small (for example,
below .1), then a moderate number of iterations of R-FEAST,
because of Theorem 1, would produce an orthogonal basis
U that contains vectors of the form̃Xp = Xp + Xp′E
that fit the description of Theorem 2. Theǫ will be of the
form O(|ρ(λp+1)/ρ(λp)|

k), k being the iteration number.
The orthogonal basis̃Q = X̃pR̃p described in Theorem 2
must therefore be equivalent toU , and thus the eigenvalues
of Q̃HAQ̃ are exactly thẽΛ computed in Step 6 of R-FEAST.
On the other hand, thep exact eigenvalues ofA, Λp, are those
of thep×p systemQHAQ becauseQ is an orthogonal basis
of span(Xp). Therefore,Λ̃ are the eigenvalues of̃QHAQ̃,
which is a slight perturbation ofQHAQ, whose eigenvalues
are Λp. In other words, R-FEAST is computing the exact
solutions of a slightly perturbed problem.
The requirement of|γp+1/γp| being small (a gap between
γp+1 and γp) is restrictive, and in fact unnecessary. The
property ofρ(λ) guarantees that for a givenm, as long as
p ≥ m is large enough,|γp+1/γj | ≪ 1 for j = 1, 2, . . . ,m.
It is not necessary to have a gap betweenγp+1 andγp where
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p is the dimension of the subspaces maintained by the algo-
rithms here. In essence, thep-dimensional subspaces, while
not necessarily capturing all the eigenvectorsx1 throughxp,
will nevertheless be capturingx1 throughxm, which should
be sufficient if they already include all of the ones we are
interested in. Therefore among thep eigenvalues computed in
Step 6 of R-FEAST,m of them should be close toλ1 through
λm. The following theorem affirms this general picture.

Theorem 4. Let Q̃ be p > m orthogonal vectors with the
first m columns of the formX̃mR̃m, X̃m = Xm + Xm′E,
Xm′E small as described in Theorem 2,‖E‖2 ≤ ǫ and
‖Xm′E‖2 ≤ ǫ‖Xm‖2. Partition thep× p matrix Q̃HAQ̃ as

Q̃HAQ̃ =

[

A′
11 A′

12

A′
21 A′

22

]

, (8)

A′
11 is m×m andA′

21 is (p−m)×m. Then‖A′
21‖2 = O(ǫ).

Theorem 4 shows that R-FEAST works in general. Sup-
posep is chosen large enough so that|γp+1/γm| ≪ 1 for
somem ≤ p where the desired eigenvalues are among the
firstm eigenvaluesλ1 throughλm. Provided the eigenvectors
are not too ill-conditioned, then as iterations proceed, the
reduced systems share the same eigenvalues to a matrix of the
form of Equation 8. BecauseA′

21 is small (Theorem 4) and
A′

11 is a small perturbation ofQHAQ, Q being an orthogonal
basis tospan(Xm) (Theorem 3),m of the eigenvalues found
in R-FEAST’s Step 6 should approximateΛm, which in turn
contains the targeted eigenvalues of interest.

Algorithm Bi-FEAST(Two-sided FEAST)

1: Pick randomU(0), V(0) ∈ C
n×p, with V H

(0)U(0) = I.
2: Setk ← 1.
3: repeat
4: (Ũ , Ṽ )← (ρ(A) · U(k−1), ρ(A)

H
· V(k−1)).

5: (Ũ , Ṽ )← bi-orthogonalize(̃U, Ṽ ).
6: // That is, Ṽ H Ũ = Ip.
7: Ã← Ṽ HAŨ
8: Solve eigenproblem̃A = X̃Λ̃Ỹ H for (Λ̃, X̃, Ỹ )
9: SetU(k) ← ŨX̃, V(k) ← Ṽ Ỹ , andΛ(k) ← Λ̃.

10: k ← k + 1
11: until Appropriate stopping criteria

Just as Algorithm R-FEAST is Algorithm SIR enhanced with
Rayleigh-Ritz, Algorithm Bi-FEAST on the next column
is the result of adding Rayleigh-Ritz to Algorithm BIT.
Laux [32] experimented with Bi-FEAST with some success,
but expressed his need for theoretical backing. This need is
now fulfilled by Theorems 2–4 for R-FEAST, as well as the
next three theorems, for Bi-FEAST.

Theorem 5. Let Xp and Yp be the firstp right and left
eigenvectors. Let̃Xp and Ỹp be small perturbations in the
form X̃p = Xp+Xp′E and Ỹp = Yp+Yp′F, ‖E‖2, ‖F‖2 ≤
ǫ, ‖Xp′E‖2 ≤ ǫ‖Xp‖2, and ‖Yp′F‖2 ≤ ǫ‖Yp‖2. Then there
exist R̃p = Ip + ∆R, S̃p = Ip + ∆S close toIp such that
Ũ = X̃pR̃p, Ṽ = ỸpS̃p are bi-orthogonalṼ H Ũ = Ip. In
particular, ‖∆R‖2, ‖∆S‖2 = O(ǫ2).

Theorem 6. Let Ũ = X̃pR̃p and Ṽ = ỸpS̃p be as described
in Theorem 5. Then‖Ṽ HAŨ − Λp‖2 = O(ǫ2).

Theorems 5 and 6 show that if|ρ(λp+1/λp| is reasonably
small, one would expect the “reduced system”Ã (Step 7
of Bi-FEAST) be similar7 to a matrix of the formΛp +
O(ǫ2), which is a better approximation obtainable by one-
sided iterations. Under the more realistic situation, one can
only expect|ρ(λp+1)/ρ(λj)| ≪ 1 for j = 1, 2, . . . ,m for
somem ≤ p (not necessarily all the way up tom = p).
In this case, as in R-FEAST, we can expectm of Ã’s p
eigenvalues to approximateΛp. This is formalized below by
Theorem 7, which mirrors Theorem 4.

Theorem 7. Let p > m and that Ũ , Ṽ are bi-orthogonal
with their first m columns of the formX̃mR̃m and ỸmS̃m,
close toXm and Ym, as in Theorem 5. Partition thep × p
matrix Ṽ HAŨ as

Ṽ HAŨ =

[

A′
11 A′

12

A′
21 A′

22

]

, (9)

A′
11 is m×m. Then‖A′

21‖2, ‖A
′
12‖2 = O(ǫ).

Standard perturbation theory (see for example Theorem
2.8 in [33]) shows that, under mild assumptions, eigenvalues
of the matrix in Equation 9 are those ofA′

11 + O(ǫ2) and
A′

22 + O(ǫ2). Theorems 5–7 lay the foundation for Bi-
FEAST: In the absence of ill conditioning, one expectsm
of the p eigenvalues inΛ(k) (Step 9) will converge toΛm

linearly at the rate|ρ(λp+1)/ρ(λm)|2k. While this is faster
than the rate of|ρ(λp+1)/ρ(λm)|k achievable by R-FEAST,
the word of caution is that R-FEAST is inherently more
stable. This is because Step 5 of R-FEAST utilizes a unitary
transform, whereas the transform̃V AŨ in Bi-FEAST’s Step
7 can be much less stable (cf. Example 2 in Section VI).

VI. N UMERICAL EXPERIMENTS

The first three experiments in this section serve to illustrate
the various convergence properties of non-Hermitian FEAST
and were run with matlab. The last one is extracted from an
actual application in electronic structure calculation and was
run on a cluster (detials later). The first three examples use
the matrices arise in quantum chemistry [34] called QC324
and QC2534 from the University of Florida collection [35].
These two matrices are similar in properties but differ in
size. Figure 4 profiles the location of the eigenvalues in
the complex plane. The last example uses two matrices of
different sizes from a common application problem. This
example illustrates the basic scalability properties of FEAST
due mainly to the many parallel execution opportunities
available in computing the quadrature-based approximate
spectral projections.

For each of the first three tests, a circular domain is picked
and one or several variants of FEAST are carried out with a
specific subspace dimensionp, which presumably is set to be
moderately bigger then the number of eigenvalues expected
inside the domain in question. Section VIII will discuss the
choice of p further. During the iterations, we monitor the
p eigenpairs computed from the reduced system (in Step
7 of R-FEAST, for example). A particular (right) eigenpair
(λ̃j , uj) is considered a candidate ifλ̃j ∈ C and the residual
is reasonably small, typically, residualj ≤ 10−4 where

residualj
def
= ‖Auj − λ̃juj‖2/‖uj‖2.

7Two matricesB andC are similar ifB = ZCZ−1 for someZ.
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Fig. 4. Eigenvalues of the matrix QC2534 from University of Florida
collection. Eigenvalues distribution of QC234 bears a resemblance.

To track convergence, we monitor the maximum of the
residualsmaxj(residualj). We also monitor the change in

trace
def
=

∑

j λ̃j to gauge if the eigenvalues are converging
to a certain level. While one should expect the maximum
residual to settle toO(ǫ‖A‖2) for machine epsilonǫ, one
cannot in general expect the change in trace to settle down
to the same level: It is well known that, unlike Hermitian
eigenvalues which are perfectly conditioned, a simple eigen-
valueλj of a non-HermitianA can change (see [36], [33])
by O(‖xj‖2‖yj‖2δ) whenA is perturbed byO(δ).

Example 1:Simple Convergence of R-FEAST:We illus-
trate the most basic convergence properties with the small
(dimension 324) matrix QC324. The domainC chosen
is the disk of radius0.01 centered on the real axis at
−0.5, containingm = 8 eigenvalues. We employ Gauss-
Legendre quadrature and pickedp = 8. With this choice,
log 10|ρ(λp+1)/ρ(λm)| = −0.93. The table here exhibits the
expected behavior from both R-FEAST and Bi-FEAST. The
eigenvalue and residual convergence rate are linear at roughly
0.9 digits per iteration, except that eigenvalues in Bi-FEAST
converge as fast as2× 0.9 digits per iteration.

p = m = 8, Gauss-Legendre withq = 8
log10 |change in trace| log10(max of residual)

Iter. R-FEAST Bi-FEAST R-FEAST Bi-FEAST

4 -5.4 -0.0 -5.3 -4.8
5 -6.4 -8.6 -6.2 -5.7
6 -7.3 -10.5 -7.1 -6.6
7 -8.2 -12.4 -8.1 -7.6
8 -9.2 -14.3 -9.0 -8.5
9 -10.2 -14.4 -9.9 -9.4
10 -11.1 -14.5 -10.9 -10.3
11 -12.1 -15.1 -11.8 -11.3
12 -13.1 -14.8 -12.7 -12.2
13 -14.1 -14.8 -13.7 -13.1
14 -14.7 -14.5 -14.6 -14.1

Example 2: R-FEAST and Bi-FEAST:This example il-
lustrates the sensitive nature of Bi-FEAST. We have seen
in the previous example that Bi-FEAST can offer a faster
convergence on the eigenvalues. But as discussed in Sec-
tion V, Bi-FEAST is more sensitive to the conditioning of

the eigenvalues. This is the case for the matrix QC2534 when
the region is chosen to be the disk of radius0.01 centered on
the real axis at0.85, containing 10 eigenvalues. Withp set
to p = m+ 5 = 15, Gauss-Legendre quadrature withq = 8
yields log 10|ρ(λp+1)/ρ(λm)| = −2.61. The condition of
the eigenvalues, however, are poor: the products‖xj‖‖yj‖
are of the order of1011. The table here shows that indeed
the eigenvalues cannot be resolved to be much better than
5 or 6 digits. R-FEAST is able to deliver small residuals,
while Bi-FEAST is hampered by the poor conditioning, as it
is difficult to maintain bi-orthogonality between thexj and
yj to full machine precision, precisely because their norms
are large.

p = m+ 5 = 15, Gauss-Legendre withq = 6
log10 |change in trace| log10(max of residual)

Iter. R-FEAST Bi-FEAST R-FEAST Bi-FEAST

2 0.6 1.0 -8.3 -4.1
3 -0.0 -5.3 -11.4 -5.8
4 -5.2 -5.3 -14.0 -5.9
5 -6.8 -5.4 -14.2 -6.2
6 -6.9 -5.3 -14.2 -5.9
7 -7.6 -5.3 -14.2 -6.1
8 -6.9 -5.6 -14.2 -6.0
9 -6.6 -5.4 -14.3 -6.0
10 -6.8 -5.7 -14.1 -5.8

Example 3: Different Quadratures:Figure 3 in Section III
suggests that trapezoidal rule may work better in general.
This example is consistent with this view, but illustrates
some subtlety. Figure 3 depicts minimal convergence rate.
Depending on the exact location of the eigenvalues, which
is problem specific, a quadrature with a lower minimal
convergence rate may actually still converge faster. Here we
compute the eigenvalues of QC2534 that reside inside the
disk of radius0.02, centered on the real line at−0.17, which
contains 28 eigenvalues. At each of two different settings, the
table below exhibits the residual convergence for both Gauss-
Legendre and trapezoidal quadrature. The behavior below is
consistent with the actual values of|ρ(λp+1)/ρ(λm)|.

R-FEAST, Gauss-Legendre(GL) vs. Trapezoidal(TR)
log10(max of residual)

p = m+ 3 = 31 p = m+ 6 = 34
Iter. GL-8 nodes TR-9 nodes GL-8 nodes TR-9 nodes

2 -4.1 -4.0 -4.6 -5.7
3 -5.6 -5.4 -6.4 -8.2
4 -7.0 -6.8 -8.3 -11.3
5 -8.7 -8.2 -10.1 -13.8
6 -10.9 -9.4 -11.9 -14.2
7 -12.9 -10.6 -13.7 -14.3
8 -14.1 -11.9 -14.4 -14.4

The typical convergence pattern of the residuals is as
follows. The subspace dimensionp is in general bigger
than the number of eigenvalues inside the targeted domain.
Some of the residuals that are not targeted (we usually
call them collaterals) will converge slowly, or not at all.
Figure 5 displays the residuals of our current QC2534 test
using Gauss-Legendre withp set tom + 6. Notice that the
28 targeted residuals converge linearly at the expected rate.
Convergence of the collaterals are much slower, and some
not at all.
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VII. D ISCUSSIONS

FEAST has a number of signature features. By nature it
works equally well regardless whether the targeted spectrum
consists of dominant eigenvalues or not. It zooms in on
all the targets simultaneously, at practically the same rapid
convergence rate. The dimension of the subspaces, as well as
the linear systems that need to be solved remained unchanged
throughout a fixed targeted domainC. Although the linear
systems are of the formzkI − A, they are not shifts in
the familiar sense. Thezks are not meant to be close
to any eigenvalues but merely correspond to nodes of a
numerical quadrature rule. Under ideal situations, they are
not near any eigenvalues and none of the linear systems is
ill-conditioned. Every one of these features is distinct from
those associated with popular non-Hermitian eigensolvers
such as unsymmetric Lanczos [39], Arnoldi [14], or Jacobi-
Davidson [16], [17].
We have purposely skipped over several relevant discussions
due to the limited scope of this paper. Theorems 2 through 7
focus on eigenvalues. One can show that, under appropriate
assumptions, the eigenvectors obtained yield small residual
and approximate the target eigenvectors. The general analysis
techniques used in [23] are applicable. Nevertheless, the
details would require too many lines of deltas and epsilons.
We believe that the numerical experiments have provided
reasonable assurances that the claims just made here are
credible. The FEAST algorithms require the user to set a
subspace dimensionp, which should exceed the number of
eigenvalues expected in the target region. In practice, thisp
is often chosen based on a priori knowledge or experience,
or trial-and-error. A more elaborate theory exists, similar to
those detailed in [23] for the Hermitian case, on estimation of
the size of spectrum inside the target regionC. For example,
one can use the eigenvalues ofṼ H Ũ (Ũ , Ṽ from Step 4
of Bi-FEAST) to estimate the eigenvalue count insideC
and to setp. While this paper discusses exclusively the
simple eigenvalue problemAx = λx, FEAST is designed
to work on the generalized eigenvalue problemAx = λBx.
In short, replace the approximate spectral projectorρ(A)
by ρ(A)B, and the simple “reduced” eigenvalue problem

Ãx̃ = λ̃x̃ by the generalized “reduced” eigenvalue problem
Ãx̃ = λ̃B̃x̃ whereB̃ = ŨHBŨ (Step 5 and 6 of R-FEAST)
or B̃ = Ṽ HBŨ (Step 7 and 8 of Bi-FEAST). Indeed, both
Laux’s experiment [32] and Experiment 4 here tackled matrix
pencils.

VIII. C ONCLUSION

In the paper, we have introduced a new non-Hermitian
eigensolver with rich inherent parallelism. The FEAST solver
for Hermitian problems [22], [23] has been extended to non-
Hermitian case in two flavors. Bi-FEAST is the “bullish-
but-riskier” sibling of the more conservative R-FEAST. For
well-conditioned problems, Bi-FEAST offers faster conver-
gence of eigenvalues; R-FEAST, however, is just as fast in
producing small residuals. Both are useful and complement
each other.
Opportunities for further work present themselves naturally,
in the directions of approximation theory, matrix analysis and
parallel computing. At FEAST’s core is a rational function
close to 1 inside a domainC, and 0 outside. Here we
have used either a Gauss or trapezoidal quadrature rule
to construct this rational function. In general, possibility
abounds for other quadrature rules, either general or domain,
C, specific (see [40] for example). Alternatively, one can
view this as a function approximation problem. Chebyshev
polynomials [41], [42] which work well on the real line
(for Hermitian problems) would not work on the complex
plane in terms of approximating theπ(λ) function: Poly-
nomials are analytic and must obey the maximum modulus
theorem (see [43] for example). Rational approximation can
contribute fruitfully here. We have already seen one such
case for Hermitian problem where Zolotarev approximation
is shown to outperform Gauss quadrature [44].
In non-Hermitian matrix computations, it is customary to
focus on the class of diagonalizable matrices. The Cauchy in-
tegral formulation of the spectral projector always transform
a Jordan block, even with nonzero superdiagonal, to either
identity or zero. How well an approximate spectral projector
preserves this property, and what the resulting implication
on FEAST’s convergence behavior in the face of deficient
eigenvectors will be, are worthy pursuit that requires classical
matrix and perturbation analysis.
Last but not least, FEAST offers multiple levels of par-
allelism: multiple target domains, multiple linear systems,
with multiple right hand sides. Exploiting these parallelism
fully, automatically, require much work still. On the highest
level, fast partitioning of a region in the complex plane
to subregions, each containing roughly the same number
of eigenvalues, for the obvious sake of load balancing, is
nontrivial. Challenging software engineering work is required
to automatically distribute and coordinate the linear solvers
– direct or iterative, sparse or dense – on multiple right hand
sides, among multiple nodes, cores and threads.
As always: so much worth doing, and so little time!
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