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Subspace Iteration on Steroids — A New Highly
Parallel Non-Hermitian Eigensolver

Ping Tak Peter Tang, James Kestyn, Eric Polizzi

Abstract—Calculating portions of eigenvalues and eigenvec- been proposed recently [11]. From an algorithmic point of
tors of matrices or matrix pencils has many applications. An  view, this new approach tries to compute an exact invariant
approach to this calculation for Hermitian problems based on subspace — which is the action of the density matrix —

a density matrix has been proposed in 2009 and a software imatel dto. f le Krvl b
package called FEAST has been developed. The density-matrix approximately, as opposed 1o, 1or exampie, Krylov subspace

approach allows FEAST’s implementation to exploit a key Methods (see for example [12], [13], [14], [15]) or Jocobi-
strength of modern computer architectures, namely, multiple Davidson method [16], [17] which try to compute subspaces

levels of parallelism. Consequently, the software package hasthat approximate invariant subspaces in a certain sense.
been well received and subsequently commercialized. A de-1pe density-matrix approach maintains a basis for a fixed-

tailed theoretical analysis of Hermitian FEAST has also been di . b but updates it iterati In this Vi
established very recently. This paper generalizes the FEAST Imension subspace but updates It per fieration. [n this view,

algorithm and theory, for the first time, to tackle non-Hermitian it is similar to the non-expanding subspace version of an
problems. Fundamentally, the new algorithm is basic subspace eigensolver based on trace minimization [18], [19] but with

iteration or Bauer bi-iteration, except applied with a novel g different subspace update strategy. From an implementation
accelerator based on Cauchy integrals. The resulting algorithm ,qint of view, this new approach is similar to spectral divide-
retains the multi-level parallelism of Hermitian FEAST, making ) . .
it a valuable new tool for large-scale computational science and &nd-conquer [20], [21] in that the calculation is expressed
engineering problems on leading-edge computing platiorms. ~ in terms of high-level building blocks that can much better
exploit the advantages of modern computing architectures.
In this case, the high-level building block is a numerical-
I. INTRODUCTION quadrature based technique to approximate an exact spectral
General non-Hermitian eigenvalue problems arise in magpyojector. This building block consists of solving independent
important applications of applied sciences and engineeriligear systems, each for multiple right hand sides. A software
that include economic modeling, Markov chain modelinpackage FEAST [22], for Hermitian eigenproblems, based
structural engineering, fluid mechanics, material science, a@@l this approach has been made available since 2009 and
more (see [1], [2] for example). Solving complex symmetribas recently been adopted in the commercial packagefintel
(still non-Hermitian) eigenvalue problems are crucial iMath Kernel Library. A comprehensive theoretical analysis
modeling open systems based on the perfectly matched lagéHermitian FEAST has been completed very recently [23]
(PML) technique that is staple tool in electromagnetics [3py two of the authors of this present work.
nanoelectronics [4], and micro electromechanical systems
MEMS [5]. As a tool in numerical linear algebra, nondn this paper, we extend the FEAST algorithm and theory
Hermitian eigensolvers are kernels to non-linear eigenvalt@tackle non-Hermitian eigenproblems. Similar to the Her-
problems such as quadratic or polynomial eigenvalue profitian case, the non-Hermitian FEAST algorithm takes the
lems [2], [6]. More generally, advances in high-performanderm of standard subspace iteration in conjunction with the
and big-data computing will only increase the use for generfdRyleigh-Ritz procedure (see for example [10], page 157,
eigenvalue solvers in areas such as bioinformatics, sod¥l[2], page 115.) For non-Hermitian matrices, left and right
network, data mining, just to name a few. Compared ®igenvectors are in general non-orthogonal and different.
the Hermitian case, the arsenal of solvers available for nohhere are two natural generalizations of subspace iterations
Hermitian eigenproblems are much more meager (see torhandle this complication. A one-sided approach where one
example [7] and more discussions in the end). Any additidacuses on either the right or left invariant subspace, or a
to the software toolbox for the general scientific computingauer bi-iteration approach where both invariant subspaces
is therefore always timely and welcome. are targeted simultaneously. The crucial ingredient is that the
For eigenproblems of moderate size, robust solvers are wailospace iteration here is carried out on an approximate spec-
developed and widely available [8], [9] and are sometimégal projector obtained by numerical quadrature. Our analysis
referred to as direct solvers [10]. These solvers typicalghows that the quadrature approximation perturbs the projec-
calculate the entire spectrum of dense matrices or matH}’s eigenvalues but not the eigenvectors. Consequently, the
pencils. In many large-scale applications, the underlyirgpnvergence of subspace iteration can be established similar
linear systems are typically large and sparse and that &-the approaches shown in [2], suitably generalized as the
ten only selected regions of the spectrum are of interelgft and right eigenspaces are now different. By exploring
A new approach for these calculations for Hermitian mahe structure of the generated subspaces, we show that the
trices and matrix pencils based on density matrices hBayleigh-Ritz procedure produces the targeted eigenpairs.
Typical to many large-scale applications, the target eigenpairs
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this an excellent algorithm for high-performance computinghe approximate spectral projector in fact preserves—exactly—
This paper aims to show how the various components of nghe invariant subspacegan(X¢) and span(Yz). Conse-
Hermitian FEAST fit together, with just enough mathematicauently, performing subspace iteration or Bauer bi-iteration
analysis to make the presentation credible. A detailed numeiith the approximate spectral projector becomes numerically
ical analysis similar to [23] for the Hermitian case is beyonédffective as well as computationally efficient in capturing
the scope here. In subsequent sections we will describe theariant subspaces as well as the associated eigenpairs. The
numerical-quadrature-based method to compute approximgemeral flow of the remaining sections is as follows. In
spectral projector, establish the convergence of subsp&ettion I, we review the integral representationsXefY,
iteration and bi-iteration with this approximate projector agnd Yz X/’ and analyze the properties of the quadrature-
an accelerator, prove convergence of the associated Rayleigdised operator. Based on the properties of the quadrature-
Ritz procedure, and present numerical and performance émased approximate spectral projectors, Section IV presents
amples. several variants of subspace iteration algorithms adapted for
general non-Hermitian eigenvalue problems. We establish
basic convergence properties of the subspaces generated by
these iterative procedures. The structure of the subspaces
To focus our discussion, we will concentrate on the simplgsnerated in the iterative process are further analyzed in
eigenvalue problem (as opposed to the generalized eigenvag@tion v, demonstrating their use in capturing the desired
problem of a matrix pencil) of a diagonalizable generaligenpairs, which is the actual problem at hand. We present
matrix A. Section VIII will discuss FEAST’s applicability jn Section VI a number of numerical experiments to illustrate
beyond these assumptions. For the rest of this papevill  the theoretical analysis. Scalability results are also presented,
be an x n general matrix with the following eigendecom-sypporting our claim that this building block is a great
position addition to the overall toolbox for HPC calculation of non-
A=XAYH XyH =1, Hermitian eigenvalue problems. In the concluding section,
we put our new method in the context of other popular
existing methods and share our views of future work.

Il. OVERVIEW

where A is a diagonal matrix of eigenvalues aid andY
are A’s right and left eigenvectors, respectively:

X =[z1,22,. ., 20), Y = [y1, Y2, -, Ynls IIl. PROJECTION VIA QUADRATURE

Ax; = M\jz;, and y}HA = /\jy}H, In this sgction, we fpcus on the (right) spectral projector
XcY/T. This can be viewed as a function of the matrix

whereY # stands for complex-conjugate transpositionyof represented as a Cauchy integrale will show that when
Unlike the Hermitian case wherd = A”, X andY are this integral is approximated by a numerical quadrature, the
not necessarily the same and do not have a standard normesdulting approximate spectral projector has a number of
ization convention. It is customary to call the relationshipseful properties. All discussions are applicable to the left
YHX =T asX andY being bi-orthogonal. projector, Y X!, in a straightforward manner.
Consider that the eigenvalues of interest, totalin@f them, et A be a diagonalizable matrix with spectral decomposition
are those that reside inside a simply connected dotééng. A = XAY#?, XY = J. Thatis, X andY are right and
disk, ellipse, etc.). LeX¢c andY; be the corresponding setsleft eigenvectors and is a diagonal matrix whose diagonal
of right and left eigenvectors. In particulak: andYc are entries are the corresponding eigenvalues. Let the eigenvalues
n x m matrices withY? X¢ = I,,,. Our strategy is based onof interest reside in the interior of a simply connected region
the use of the spectral projectal& Y/ and Yo X4 which . We further assume that none.4% eigenvalues are oiC,
project to the right and left invariant subspaces, respectivellie boundary of’. Let 7()\) be the complex-valued function
If we can computé XY/ )u for anyn-vectoru, then apply- defined by the Cauchy integral (in the counter clockwise

ing Xc Y on a set of random vectdrs/ = [uy,ua, ..., up,), direction)

p > m, will lead to span(Xc Y U) = span(X¢) provided 1 1

that rank(Xc Y7 U) = m. A basis for X¢ can then be 7\ = — dz, A ¢ oc. (1)
constructed which in turn can be used (more details later) 2m Joc 2 = A

to compute the desired eigenvalues and right eigenvectorfe Cauchy integral theorem shows thet\) = 1 for A
The same approach usinge X/ would lead us to the inside theC and«()\) = 0 for A outside ofC. The function

corresponding left eigenvectors. m(\) of a complex variable can be extended to a function of
The operatorX Y/ (and equallyyz X /?) can be representeda matrix via

as a Cauchy integral (full details in Section Ill). Replac-

ing this integral with a numerical quadrature rule yields a (A
different operator that nevertheless approximated’ /. It

turns out that applying this approximate spectral projector ton the other hand, because= XAYH, XYH = I, one
vectorsU is tantamount to solving a number of independerign see that

linear systems withiU as right-hand sides; a procedure that

is inherently parallel on a number of levels. Furthermore, 7(A) =X <217{ (21 — A)ldz> Y = XY
T Jac

_ _ —1
= om b GT- A= @)

1The effectiveness of randomized methods have been studied rigorously
in a large body of recent works. Excellent surveys can be found in [24], 2Representing functions of matrices as Cauchy integrals is well studied.
[25]. The interested reader can find further details in [26], [27].
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This is because the middle integral is simply a diagon [p(M)] on Real Line, Gauss-Legendre vs. Trapezoidal Quadrature
matrix whose diagonal entries are all zeros except for the : ‘ ‘ ‘ ‘ ‘
at the locations corresponding foc C. Equation 2 shows 0
that the application of the projectdfc Y to a set of vectors
U = [u1,us,...,u,] admits an integral representation

-1+

2k

Trapezoidal:

_3l a-9

(X YU = 2%” fgc (2 — A)"'U d=. (3)

It is therefore natural to approximate the integral in Equi
tion 3 by a quadrature rule. For the rest of the paper, v
considerdC to be ellipses parametrized by

o(t) :c—l—R(cos (g(l—&-t)) + tasin (g(l—i—t))) , (4) ui |

where ¢ € C is the center, with horizontal and vertical -5 ‘ , 1
axes of lengthsR > 0 and Ra > 0, respectively. We ) ‘ ‘ ‘ ‘ ‘

can apply any quadraf[ure rule for _mtegratlng a functio 0 0s A values Tom O to 3 25 3
fgt) on [—1,1] to obtain an approximation of-(\). Let

f_l f(t)dt = 3], wyf(ty) be a quadrature rule based®n Fig. 1. For Hermitian eigenproblems, one only needs.a () function

Loglo of |p(A)| for Real A
-
)
2
a
QO

pairs of(node,weight), {(tk’ w )|ty € [_1’ 1]7 wy > 0,k = that behaves well on the real line, namely, is close to 1 infidg 1] and
1.2 } small outside. Because of symmetry, this figure showys: ()| only for
4y A > 0. For comparable computational cost of applyjn@) to vectorsU,
1 1 Gauss-Legendre performs somewhat better than trapezoidal rule does.
mA) = — dz,
2w Joo 2 — A
12 ¢ : .
= 5 mdt, of a same “a” parameter but centeredcavith “radius” R’
) _ — o .
11 / ) is simply gwenp(/\) = pret (A —¢)/R)). N
_ 1 ( P'(¢) ¢'(2 1) ) . To underline the difference between Hermitian and non-
2 J_  \o(t) = A d(2—1t) — A Hermitian problems, an effective quadrature rule for the

former requiregp,er(A)] = 1 for A € C and |prer (M) < 1
for A ¢ C only for A on the real line. Figure 1 shows

def o~ W, &' (tr) &' (tr) - logy |pret(A)| for real-valuedi for a Gauss-Legendre (with
p(A) = ZQTH <¢(tk) —X o) — )\) e =2t q = 8) and a trapezoidal rule (with = 9). The percip-

=1 itous drop of |pre¢(\)| for A outside of [—1,1] signifies

Applying Equation 5 ta4 results in an approximate spectrathe. effgctiveness of quadrature-based approximate spectral
projection operationr(A)U = p(A)U, p(A)U defined as ~ Projections.
For non-Hermitian problemsy,.¢()\) has to “behave well”

q . .
Z% [¢’(tk)(¢(tk)I—A)_1+¢’(fk)(¢(fk)I—A)_1} 7. for A in the complex plane. Consequently, for a given
k=1

Applying the quadrature rufeyields p(\) ~ 7(\),

quadrature rule, we evaluatg.t(\) at level curves similar
(6) to the boundandC:
For a quadrature rule that uses neither nor 1 as nodes,

computingp(A)U via Equation 6 involves solvingq sys- Ar,t)=r [cos (I(l + t)) + tasin (z(l + t))} .
tems of linear equations, each withright hand sides. For a 2 2
quadrature rule witht; = —1 andt, = 1, there ar&2(¢ — 1) At eachr below 1,0 < r < 1 — § (§ set t00.01), we

linear systems to solve. Solutions of multiple independerécord the minimum ofip..¢| over the level curve, and at
linear systems for multiple right hand sides makel)U a eachr > 1+4, we record the maximum. That is, we examine
kernel operation with rich parallelism. FurthermopdA)U  the function
is numerically effective, as we now explain. ]
Becaused = XAY#, we have n(r) & { ming |pret(A(r, 1)) for 0 <r <1 -4,
maxy |pret(A(r, )] for 1+ <r.
p(A) = Xp(A)YH. @)

The functionn(r) serves as an indicator. An(r) that is

lose to 1 forr < 1 and very small for- > 1 corresponds to

n approximate spectral projector that preserves the desired
eigenspace well while attenuating the unwanted eigencom-
f ponents severely. Figure 2 shows thrge) functions, in log-

arithmic scale, corresponding to Gauss-Legendre quadrature
(¢ = 8) on three different shapes of ellipses. Figure 3 shows
differentn(r) functions, in logarithmic scale, corresponding
to Gauss-Legendre and trapezoidal rules at different choices
of ¢. The domain is set to be a circle. It is interesting to note

3See [28] for a different application of numerical quadrature to eigenval&pat V\_/h"e Gauss-Legendr_e IS 1IN general a better Ch_0|ce for
problems. Hermitian problems (as Figure 1 suggests), trapezoidal rule

In other words, whileo(A) is not exactlyXc Y, span(Xc)
and span(Yz) nevertheless remain to be right and le
invariant subspaces g#(A). Moreover, if p()\) maintains
lp(A)| = 1 for A € C and|p(A\)| < 1 for A ¢ C, thenp(A)U
would be effective in “tilting” U towards the direction o
span(X¢). We therefore examine the ratio §5(u)/p(N\)]
for A € C andyu ¢ C. To this end, if suffices to study the
referencep function p..¢ for the domairC that centers at the
origin, with R = 1 because the(\) function for an ellipse
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n(r) on Different Shapes, Gauss-Legendre Quadrature as the requirements for this method to succeed are stringent,
‘ ‘ ‘ ‘ ‘ ‘ ‘ the previous analysis op(A) suggests it to be a perfect
candidate for this simple iterative method to converge rapidly.
° | This is because the invariant subspace of interest corresponds
to highly dominant eigenvalues. Algorithm SIR below is a
- | straightforward adaptation of subspace iteration ugiag)
< instead ofA.
S -2 a=1/2 A
S Flat Ellipse - - - -
° Algorithm SIR(Subspace Iteration for Right Eigenspace)
g7 | 1: Pick random orthogonal/,y € C"*?, U{g)U(o) =1.
2: /I In generalp < n.
4 =1 b .
! d 3: Setk « 1.
4: repeat
-°r 5 Uy < orthonormalize(p(A) Ux—1))
6: /[ Orthonormalization is a numerical safeguard.
0 os 1 15 P 25 3 25 4 7 k+—k+1
r values from 0 to 4 8: until Appropriate stopping criteria

Fig. 2. These are thg(r) functions corresponding to Gauss-Legendre
quadrature withy = 8 nodes on[—1, 1]. We exhibit the result for three W

different elliptical domains. For simplicity, we employ circular domains for hile basic convergence properties about the sequence of

the rest of the paper, but different types of domains can be used. See furidbspaces generated by subspace iteration of a Hermitian
discussions in Section VIII. matrices is easily available (see for example [2], [29]),

generalized results for non-Hermitian case is more obsture.
, (0 on Circle, Gauss-Legendre vs. Trapezoidal Quadrature - Moreover, Algorithm SIR utilizes an approximate spectral
T T

projector, which leads to properties not shared by general
subspace iteratiorfsin the remaining part of this section, we
present several basic convergence properties of the generated
subspace by Algorithm SIR as well as by other variants of
SIR.

We start by numbering the;s (the eigenvalues gf(A)) so

that

apezoidal
=7

Gaussian
12

a= 71l > [yl = > |l

4 and numberd’s eigenpairs accordingly:
Jrapezoidal
=13

v = p(A;), Ax; = \jzj, yf]A:)\ijH, i=1,2...,n.

The eigenpairs of interest are now in the beginning part of
e ‘ ‘ ‘ ‘ ‘ this numbering convention. Our analysis involves examining
° o8 Y values from O o 4 89 *  sections of the. righ? and left eigenvectaks and Y,. anq '

the corresponding eigenvalues. We set up some simplifying

Fig. 3. This figure compares Gauss-Legendre quadrature tezwatal hotations: For integef, 1 < ¢ < n,
rule on a circular domain. Because trapezoidal rule uses bathnd1 as

nodesdonéhe integratiog inter\éfl\tl, 1] V\c’ih”e Gaus;(;LFgenhdre uses nelither, Xo = [z1,29,...,24], Xor = [Tog1,Tpso, -, Tnl,
ag-node Gauss-Legendre and & 1-node trapezoidal both require solving y, — Y, — .

2q linear systems when applying the spectral projegiod) to vectorsU. ¢ B 5{1’ V2ol FZ B 5{“1’ Yer2s- o Ynl,

The figure suggests that trapezoidal rule works better in general for norré = diag(v1,72,---»%), o = diag(vesr1, vet2, -+ Yn)-

Hermitian problems. . .
P In particular, becauseX and Y are bi-orthogonal, we

have I = XY = X, Y# + X, Y2, YAX, = I,

YHXy = Iy, YIXp =0, and VX, = 0. We also

normalize the lengths of the right and left eigenvectors so

that ||zl = [ly;|2 for j = 1,2,...,n. This normalization,

. _ _ . while not crucial, is convenient for subsequent discussions.

Equation 7 in the previous section shows that the approx- . )

imate spectral projector is of the form(4) = XTYH Theorem 1. Consider Algorithm SIR. Lf:}ty,,| > |’yp+hl[| and

where I' = p(A). The invariant subspaces gf(4) are that the randomly chosell, ‘ylelds an invertibleY,” U q).

identical to those ofd. Moreover, A's eigenvalues insid¢ Then there are constants;, j = 1,2,....p, such that for

are mapped to the dominant valuesTinSubspace iteration €achj = 1,2,...,p, the generated subspaspan(Uyy)) at

is a standard pedagogical method (see for example [10]5 _ S

[2]) that can be used to capture invariant subspaces WhiIeTh'S may be due to the fact that subspace iteration is usually not
;i ! . . . o ) considered a powerful method for Hermitian problems, not to mention the

subspace iteration is seldom used in practice in its pure fofre difficult non-Hermitian problems.

SReaders acquainted with acceleration methods can also view approximate
4Assuming no information of the eigenvalues’ distribution is available apectral projection as a special acceleration, which warrant further analysis
priori. beyond the readily available results for plain subspace iteration alone.

seems to fare better for non-Hermitian problems.

IV. SUBSPACEITERATION
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every iterationk contains a vector of the form; + X,,¢!*)  Algorithm R-FEASTRight-sided FEAST)
whereeg.k) € C" P and satisfie3|e§.k)\|2 < ajlypr1/vilk L g"i‘;rangom orthogondlq) € C**7, U5, Ugg) = 1.
2: oelk < 1.
There is an obvious left eigenspace variant Algorithm SlL;. repeat

of Algorithm SIR. One simply replace (for notational clarity) ,. U « orthonormalize(p(A) Ug_1))

the letterU with V, and compute in Step 5 5 A UHAT
V(s + orthonormalize((p(A)f Vii_1)). 6:  Solve eigenproblemiX = XA for (A, X)
) 7. SetU(k) —UX andA(k) «— A.
Theorem 1 has an obvious version for SIL. Namely, therg;. kek+1

form y; + Yp/f;k) reside inspan(V/)) where

(k) k

”fj 2 < Bilp /il Finally, similar analysis is carried out to Algorithm Bi-
for each left eigenvectay;, j = 1,2,...,pand each iteration FEAST, which is the natural R-FEAST analogue based on
k. The proof is trivially similar to the one for Theorem 1. two-sided iteration BIT.
SIR and SIL can be combined to target both the riglt/e adopt in our analysis a simplified approach and express
and left eigenspaces simultaneously. This is tantamounttylting mathematical upper bounds in the fornOgt) for
generalizing the classical Bauer bi-iteration [30], [31] to 0ongmall ¢ > 0 — despite the derivations themselves necessarily
that uses an approximate spectral projector. The resultipgolve extra details such g4 |,, condition number of the

Algorithm BIT is outlined here. matricesX, X, X, and their respective norms, etc. These
details also underline the mathematical complications that

Algorithm BIT (Bi-Iteration with Spectral Projector) correspond to non-Hermitian problems. Had the problem be
1: Pick randomU g, V(qy € C"*?, with V({;’) Uy =1. Hermitian, thatX andY are the same and unitary renders
2: Setk «+ 1. virtually all related norms and condition numbers unity. The
3: repeat purpose of this paper is to give an overall picture of non-
4: (U, V) + (p(A) - Uggp—1y, p(A)F . Vik—1)) Hermitian FEAST and a high-level view of how and why
5: Uy, Viwy) < bi-orthogonalizel(], V). it works, corroborated by numerical illustration. A detailed
6: /[ This makesV(f)U(k) = I,. error analysis would require a dedicated and much longer
7 k+—k+1 paper.
8: until Appropriate stopping criteria

Theorem 2. Let Q = X, R, be orthogonal whereX,, are
the firstp right eigenvectors. LeX, = X, + X, E be a
Mathematically, the subspaces spanned are unchanged W&@al perturbation ofX, where || X, E||y < €[|X,]||2, and
their basis vectors are orthonormalized or bi-orthogonalizeglz||, < ¢ for some smalk. Then there exist E{gp close to
Thus, the spacepan(U)) that corresponds to Step 4p so thatQ = X, R, is orthogonal. In particular,R, =
of BIT is the same as the one corresponds to Step > (14 Ag), ||Agll2 = O(e).

in SIR, had both SIR and BIT started with the same . )
random subspace ofpan(Up)). The same holds for the Theorem 3. LetQ = X%Rp a“dQH: Xp R, be as described
left subspacespan(V(;)). Consequently, the convergence” Theorem 2. ThefiQ™ AQ — Q7 AQ||2 = O(e).

properties described in Theorem 1 for the right subspacesrpeorem 3 shows why R-FEAST can yield thesigen-
and the analogue for the left subspaces rmidultaneously yajyes A, at least under favorable conditions. Suppgse
in Algorithr_n BIT. The generateq subspac.es, as r_epresenfgdsuch that|,+1/7,| is reasonably small (for example,
by the basis vector&/(x) and V() in the various variants of pejoy .1), then a moderate number of iterations of R-FEAST,
_subsgacT I'tey:ag'on algorithms S'IRla S”-':”d BIT can be usgdcause of Theorem 1, would produce an orthogonal basis
in a Rayleigh-Ritz manner to yield good approximations t ; v _ )
the targeted eigenpairs. This is the subject of the next sectigqhtthﬁ: tﬁzn(t;zrs]sri;zg?rsf ?fh;g?exrg(’}he,vﬁpbz g&é
form O(|p(Ap+1)/p(A\p)|¥), k being the iteration number.
V. NON-HERMITIAN FEAST The orthogonal basi§) = X,R, described in Theorem 2
Intuitively, under favorable conditions, the orthogonal banust therefore be equivalent t, and thus the eigenvalues
sis obtained in Algorithm SIR will have captured the righof Qf AQ are exactly the\ computed in Step 6 of R-FEAST.
eigenvectors'1, zs, . . ., 2, quite accurately after just a smallOn the other hand, theexact eigenvalues of, A,, are those
number of iterations. Consequently, solving the eigensystahthep x p systemQHAQ~ because) is an orthogonal basis
of the (small)pxp systemA = U AU foreigenpairs(fx,f() of span(X,). Therefore,A are the eigenvalues @) AQ,
should yieldA ~ A, andUX ~ X, (up to permutations). which is a slight perturbation ah” AQ, whose eigenvalues
This is the basic form of the “one-sided” FEAST algorithnare A,. In other words, R-FEAST is computing the exact
for non-Hermitian problem, which we call R-FEAST forsolutions of a slightly perturbed problem.
right-sided FEAST. The requirement ofvy,11/7,| being small (a gap between
In this section, we first outline the basic analysis on,.; and ~,) is restrictive, and in fact unnecessary. The
why Algorithm R-FEAST would work under very favorableproperty of p(\) guarantees that for a given, as long as
conditions. Using this as a building block, we show that > m is large enough}y,y1/v;| < 1 for j =1,2,...,m.
the algorithm would work under more realistic conditiondt is not necessary to have a gap betwegn; and~, where
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p is the dimension of the subspaces maintained by the algoTheorems 5 and 6 show that|#(A,+1/A,| is reasonably
rithms here. In essence, thedimensional subspaces, whilesmall, one would expect the “reduced syster”(Step 7

not necessarily capturing all the eigenvectersghroughz,, of Bi-FEAST) be similaf to a matrix of the formA, +

will nevertheless be capturing, throughz,,,, which should O(€?), which is a better approximation obtainable by one-
be sufficient if they already include all of the ones we argided iterations. Under the more realistic situation, one can
interested in. Therefore among theigenvalues computed inonly expect|p(A,+1)/p(A\;)| < 1 for j = 1,2,...,m for
Step 6 of R-FEASTyn of them should be close th, through somem < p (not necessarily all the way up tam = p).

Am. The following theorem affirms this general picture. In this case, as in R-FEAST, we can expectof A’'s p
eigenvalues to approximate,. This is formalized below by

Theorem 4. Let @ be p > m orthogonal vectors with the Theorem 7, which mirrors Theorem 4.

first m columns of the fornX,,R,,, X, = Xm + X E, Y
X,wE small as described in Theorem 2F||; < ¢ and Theorem 7. Letp > m and thatU, V are bi-orthogonal
| X Ell2 < €|| Xinl2- Partition thep x p matrix Q7 AQ as with their firstm columns of the formX,, R, and Y,,, S,
close toX,,, andY;,, as in Theorem 5. Partition thg x p
OH AG = Al | Al ®) matrix VH AU as
A/21 Al22 7 v, HA 7 Alll A/12 (9)
V7AU = ,
]
. Apy is m x m. Then|| Ay, |2, [[ A1,z = O(e).
Theorem 4 shows that R-FEAST works in general. Sup- .
posep is chosen large enough so that,1/ym| < 1 for Standard perturbation theory (see for example Theorem

somem < p where the desired eigenvalues are among tie8 in [33]) shows that, under mild assumptions, eigenvalues
firstm eigenvalues\; through),,.. Provided the eigenvectorsOf the matrix in Equation 9 are those df;, + O(e?) and
are not too ill-conditioned, then as iterations proceed, tH&z + O(¢®). Theorems 5-7 lay the foundation for Bi-
reduced systems share the same eigenvalues to a matrix of th@ST: In the absence of ill conditioning, one expeots
form of Equation 8. Becausd, is small (Theorem 4) and Of the p eigenvalues inA ;) (Step 9) will converge ta\,,

A, is a small perturbation af AQ, Q being an orthogonal linearly at the ratdp()\pﬂ)/p()\m)ﬁk.. While this is faster
basis taspan(X,,) (Theorem 3);n of the eigenvalues found than the rate ofp(A,11)/p(Am)|* achievable by R-FEAST,

in R-FEAST’s Step 6 should approximate,, which in turn the word of caution is that R-FEAST is inherently more

transform, whereas the transfoifAU in Bi-FEAST’s Step
7 can be much less stable (cf. Example 2 in Section VI).

Al ismxm and A}, is (p—m) xm. Then|| A% |l2 = O(e).

Algorithm Bi-FEAST(Two-sided FEAST)
1. Pick randomUg), Vo) € C"*7, with V{{U(q) = I. V1. NUMERICAL EXPERIMENTS
2: Setk + 1.

3: repeat
4 (U,V)« (p(A) - Ug-1y. p(A)" - Viu1y).

(U, V) < bi-orthogonalizely, V).

/Il Thatis, VU = I,.

A VHAD

Solve eigenproblemi = XAY ¥ for (A, X,

SetU(k) — UX, V(k) — VY/, andA(k) + A.

10: k+—Fk+1

11: until Appropriate stopping criteria

The first three experiments in this section serve to illustrate
the various convergence properties of non-Hermitian FEAST
and were run with matlab. The last one is extracted from an
actual application in electronic structure calculation and was
run on a cluster (detials later). The first three examples use

~ the matrices arise in quantum chemistry [34] called QC324
) and QC2534 from the University of Florida collection [35].
These two matrices are similar in properties but differ in
size. Figure 4 profiles the location of the eigenvalues in
the complex plane. The last example uses two matrices of
different sizes from a common application problem. This

Just as Algorithm R-FEAST is Algorithm SIR enhanced witlgxample illustrates the basic scalability properties of FEAST
Rayleigh-Ritz, Algorithm Bi-FEAST on the next columndue mainly to the many parallel execution opportunities

is the result of adding Rayleigh-Ritz to Algorithm BIT.available in computing the quadrature-based approximate
Laux [32] experimented with Bi-FEAST with some succes$pectral projections.

but expressed his need for theoretical backing. This need ig-or each of the first three tests, a circular domain is picked

now fulfilled by Theorems 2—4 for R-FEAST, as well as th@nd one or several variants of FEAST are carried out with a
next three theorems, for Bi-FEAST. specific subspace dimensipnwhich presumabily is set to be

] _ moderately bigger then the number of eigenvalues expected
Theorem 5. Let X, and Y, be the firstp right and left jnsjde the domain in question. Section VIII will discuss the
eigenvectors. LeX), and Y, be small perturbations in the chojce ofp further. During the iterations, we monitor the
form X, = X, + X E andY, =Y, + Y, F, |E2,[|Fll2 < eigenpairs computed from the reduced system (in Step
& [ Xy Ell2 < €| Xp|l2, and [|Yy Fll2 < €]|Yp|2. Then there 7 of R-FEAST, for example). A particular (right) eigenpair
exist R, = I, + Ag, 5, = I, + As close 101, such that (}; ;) is considered a candidateif € C and the residual
U= X,R,, V =Y,8, are bi-orthogonal VU = I,. In is reasonably small, typically, residyat 10~* where
particular, |Ag|l2, |As|lz = O(e2).

. def by
SO S residuaj = || Au; — Aju; ill2-
Theorem 6. LetU = X, R, andV =Y, S, be as described 3 = 1A = Azl /lusllz

in Theorem 5. Thefi V7 AU — A, ||z = O(€?). "Two matricesB and C' are similar if B = ZCZ~ for someZ.
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oo Locations of Eigenvalues. Matrix QC2534 the eigenvalues. This is the case for the matrix QC2534 when
the region is chosen to be the disk of radiugl centered on
oL | the real axis ab.85, containing 10 eigenvalues. With set
to p = m + 5 = 15, Gauss-Legendre quadrature with= 8
ool | yields log10|p(Ap+1)/p(Am)| = —2.61. The condition of
" the eigenvalues, however, are poor: the prodilets||y;||
3 ool | are of the order ofl0!!. The table here shows that indeed
> the eigenvalues cannot be resolved to be much better than
§ ool | 5 or 6 digits. R-FEAST is able to deliver small residuals,
g while Bi-FEAST is hampered by the poor conditioning, as it
B oosl L | is difficult to maintain bi-orthogonality between thg and
Lo y; to full machine precision, precisely because their norms
are large.
oal ,
p =m+ 5 =15, Gauss-Legendre with = 6
012, — L - . . ) log,, |change in trace| log,,(max of residual)
Real Axis Iter. R-FEAST Bi-FEAST R-FEAST Bi-FEAST
Fig. 4. Eigenvalues of the matrix QC2534 from University of i 2| o2 p o3 o
19. . |genva ues O_t e m_atnx rom University o a 3 -0.0 5.3 -11.4 5.8
collection. Eigenvalues distribution of QC234 bears a resemblance. 4 52 53 14.0 5.9
5 -6.8 -5.4 -14.2 -6.2
To track convergence, we monitor the maximum of the g 6732 gg ii; g?
residualsmax;(residuaj). We also monitor the change in ' ' ' '
def = ) , . 8 -6.9 -5.6 -14.2 -6.0
trace = Zj Aj to gauge if the eigenvalues are converging g 66 54 143 6.0
to a certain level. While one should expect the maximum 15 | g 57 141 58

residual to settle ta)(e||A|2) for machine epsilore, one
cannot in general expect the change in trace to settle dowrExample 3: Different QuadraturesEigure 3 in Section IlI
to the same level: It is well known that, unlike Hermitiarsuggests that trapezoidal rule may work better in general.
eigenvalues which are perfectly conditioned, a simple eigeThis example is consistent with this view, but illustrates
value \; of a non-HermitianA can change (see [36], [33]) some subtlety. Figure 3 depicts minimal convergence rate.
by O(||z;||2]lyj]]20) when A is perturbed byO(d). Depending on the exact location of the eigenvalues, which
Example 1:Simple Convergence of R-FEASWe illus- is problem specific, a quadrature with a lower minimal
trate the most basic convergence properties with the smadinvergence rate may actually still converge faster. Here we
(dimension 324) matrix QC324. The domaih chosen compute the eigenvalues of QC2534 that reside inside the
is the disk of radius0.01 centered on the real axis atdisk of radius).02, centered on the real line a0.17, which
—0.5, containingm = 8 eigenvalues. We employ Gauss<€ontains 28 eigenvalues. At each of two different settings, the
Legendre guadrature and picked= 8. With this choice, table below exhibits the residual convergence for both Gauss-
log 10[p(Ap+1)/p(Am)| = —0.93. The table here exhibits the Legendre and trapezoidal quadrature. The behavior below is
expected behavior from both R-FEAST and Bi-FEAST. Theonsistent with the actual values gf(\,+1)/p(Am)|-

eigenvalue and residual convergence rate are linear at roughly ., i .
0.9 digits per iteration, except that eigenvalues in Bi-FEAST R-FEAST, Gauss-Legendre(GL) vs. Trapezoidal(TR)

converge as fast asx 0.9 digits per iteration. o ;o_glggmax of reflil;?: 6 — 34
p =m = 8, Gauss-Legendre with = 8 ter p= § N p= -
1Og10 \change in trace logw(max of residua)l . | GL-8 nodes TR-9 nodeg GL-8 nodes TR-9 nodes
Iter. | R-FEAST Bi-FEAST | R-FEAST Bi-FEAST 2 4.1 -4.0 -4.6 -5.7
3 -5.6 -5.4 -6.4 -8.2
4 -5.4 -0.0 -5.3 -4.8
4 -7.0 -6.8 -8.3 -11.3
5 -6.4 -8.6 -6.2 -5.7
5 -8.7 -8.2 -10.1 -13.8
6 -7.3 -10.5 -7.1 -6.6
6 -10.9 -9.4 -11.9 -14.2
7 -8.2 -12.4 -8.1 -7.6
7 -12.9 -10.6 -13.7 -14.3
8 -9.2 -14.3 -9.0 -8.5 8 141 119 144 4.4
9 |-10.2 -14.4 -9.9 -9.4 ' : : :
10 | -111 -14.5 -10.9 -10.3 The typical convergence pattern of the residuals is as
11 | -121 -15.1 | -11.8 -11.3 follows. The subspace dimensign is in general bigger
12 | -13.1 -14.8 | -12.7 -12.2 than the number of eigenvalues inside the targeted domain.
13 | -141 -14.8 | -13.7 -13.1 Some of the residuals that are not targeted (we usually
14 | -14.7 -14.5 -14.6 -14.1 call them collaterals) will converge slowly, or not at all.

Example 2: R-FEAST and Bi-FEASTEhis example il- Figure 5 displays the residuals of our current QC2534 test
lustrates the sensitive nature of Bi-FEAST. We have seesing Gauss-Legendre with set tom + 6. Notice that the
in the previous example that Bi-FEAST can offer a fastéd8 targeted residuals converge linearly at the expected rate.
convergence on the eigenvalues. But as discussed in S8onvergence of the collaterals are much slower, and some
tion V, Bi-FEAST is more sensitive to the conditioning ofhot at all.
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Convergence of Resisudals of Computed Eigenpairs Az = \i by the generalized “reduced” eigenvalue problem
‘ ‘ ‘ ‘ ‘ ‘ A% = \B# whereB = U BU (Step 5 and 6 of R-FEAST)
or B=VHBU (Step 7 and 8 of Bi-FEAST). Indeed, both
Laux’s experiment [32] and Experiment 4 here tackled matrix
pencils.

!
a
T

VIIl. CONCLUSION

In the paper, we have introduced a new non-Hermitian
eigensolver with rich inherent parallelism. The FEAST solver
for Hermitian problems [22], [23] has been extended to non-
Hermitian case in two flavors. Bi-FEAST is the “bullish-

_ 5 - but-riskier” sibling of the more conservative R-FEAST. For
oo00000es © well-conditioned problems, Bi-FEAST offers faster conver-
lter. 7 eoo6000" gence of eigenvalues; R-FEAST, however, is just as fast in

oot 0 - = % P - = producing small residuals. Both are useful and complement

EigenvZIues: # 1to 28 are targets; 29 to 34 are 'Collaterals’ each other.

Opportunities for further work present themselves naturally,
in the directions of approximation theory, matrix analysis and
parallel computing. At FEAST’s core is a rational function
close to 1 inside a domaid, and O outside. Here we
VIl. DISCUSSIONS have used either a Gauss or trapezoidal quadrature rule

tg construct this rational function. In general, possibility

FEAST has a number of signature features. By nature i inds for other guadrature rules, either general or domain,
works equally well regardless whether the targeted spectrl.tm specific (see [40] for example). Alternatively, one can

consists of dO”T"”a”t eigenvalues or -not. It zooms in Q/rf w this as a function approximation problem. Chebyshev
all the targets simultaneously, at practically the same ra lynomials [41], [42] which work well on the real line

convergence rate. The dimension of the subspaces, as we {87 Hermitian problems) would not work on the complex
the linear systems that need to be solved remained unchan %%e in terms of approximating the(\) function: Poly-

throughout a fixed targeted domaih Although the linear nomials are analytic and must obey the maximum modulus

tsgestef;nms_lzrre S‘gng;e fﬁ:g"i ;rﬁ‘nt:te)r/'n:;entmt)ot Sk‘)r;ﬁilo'r;etheorem (see [43] for example). Rational approximation can
» ' k contribute fruitfully here. We have already seen one such
to any eigenvalues but merely correspond to nodes of

numerical drature rule. Under ideal situations. th $gse for Hermitian problem where Zolotarev approximation
umerical quadrature rule. er 1aeal situations, they €45 1o outperform Gauss quadrature [44].
not near any eigenvalues and none of the linear system§ IS

: " S n-non-Hermitian matrix computations, it is customary to
ll-conditioned. Every one of these features is distinct from, ., o o he class of diagonalizable matrices. The Cauchy in-
those associated W'th popular non—Hermman elgensolve[(rasgral formulation of the spectral projector always transform
such as unsymmetric Lanczos [39], Arnoldi [14], or Jacob

5 Jordan block, even with nonzero superdiagonal, to either
Davidson [16], [17]. a Jor ' superdiagonal, 1o
_ . .identity or zero. How well an approximate spectral projector
We have purposely skipped over several relevant discuss

| . . . . .
o . serves this property, and what the resulting implication
due to the limited scope of this paper. Theorems 2 througl% FEAST’s coﬂve?ge?]/ce behavior in the facegof geficient

focus on e|genvalu¢s. One can ShOYV that,_ under appropnglt envectors will be, are worthy pursuit that requires classical
assumptions, the eigenvectors obtained yield small resid

nd roximate the target eigenvectors. Th neral anal Itrix and perturbation analysis.
and approximate e target eigenvectors. The general a afa%t but not least, FEAST offers multiple levels of par-

techniques used in [23] are applicable. Nevertheless, t ffelism: multiple target domains, multiple linear systems,

details would require too many lines of deltas and epSIIonv?/th multiple right hand sides. Exploiting these parallelism

We believe that the numerical experiments have prowd? ly, automatically, require much work still. On the highest
reasonable assurances that the claims just made herelg\%l fast partiioning of a region in the complex plane

crebdlble. T(?e FEAST arllgohrlthhmsléequwe (tjhﬁ] user tg Set}gg subregions, each containing roughly the same number
subspace dimensiop, Which should excee € NUMDET 0f;¢ eigenvalues, for the obvious sake of load balancing, is

_(algenvalues expected in the target region. In praCtlce’1'?th'snontrivial. Challenging software engineering work is required
is often chosen based on a priori knowledge or experien

. . Periengg "automatically distribute and coordinate the linear solvers
or trial-and-error. A more elaborate theory exists, similar to

Lo " -~ = direct or iterative, sparse or dense — on multiple right hand
thosg detailed in [23] 'for'the Hermitian case, on estimation gfdes, among multiple nodes, cores and threads.
the size of spectrum inside the target regibr-or example, As always: so much worth doing, and so little time!
one can use the eigenvalues Bf'U (U,V from Step 4 ' ' '
of Bi-FEAST) to estimate the eigenvalue count inside
and to setp. While this paper discusses exclusively the
simple eigenvalue problema = Ax, FEAST is designed [1] Y. Saad, “Chebyshev acceleration techniques for solving nonsymmetric
to work on the generalized eigenvalue problem = A Bzx. ‘;'r?egg?'_“%grofggTS""'athemat'cs of Computation, vol. 42, no. 166,
In short, replace the approximate spectral projegiod) 2] . Numerical Methods for Large Eigenvalue Problem®hiladel-

by p(A)B, and the simple “reduced” eigenvalue problem  phia: SIAM, 2011.

|

N

o
T

Log10 of Residualj =||A u - )\j U, Al u, Il

|
N
o

Fig. 5. Convergence of residuals: targeted and the “coditérResiduals
are sorted to give a more tidy picture.
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