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Abstract—Some simple and efficient domain decomposition
algorithms for 2-dimensional heat equation are studied. The
values at the interface points are calculated by using implicit
schemes derived by discretizing the spatial partial derivatives
in two directions with large step lengths alternatively. On sub-
domain calculation, three algorithms including traditional fully
implicit scheme, Crank-Nicolson scheme and explicit-implicit
scheme are considered. By using a constructive reasoning
procedure with the help of discrete maximum principle, the
stability and accuracy properties of the new algorithms are
analyzed. Theoretical analysis and numerical experiments show
that by applying these algorithms, the calculation work is
simplified, and the stability and convergence conditions are
loosen to a quite great extent. The algorithms have perfect
accuracy and high parallel efficiency and scalability.

Index Terms—heat equation, domain decomposition, inter-
face evaluation, large step spatial discretizations, numerical
analysis

I. INTRODUCTION

Studies on parallel computational method for diffusion
problems have important significants in fast and accurate
numerical simulations for many practice problem [1]. On the
level of basic studies, parallel numerical solutions for PDEs
have two meanings. One is parallel discrete schemes, i.e.,
to construct discrete schemes with intrinsic parallelism and
good stability; the other is parallel algebraic methods, i.e.,
to solve the algebraic systems derived by discrete schemes
in parallel ways. Domain decomposition technique plays an
important role in designing parallel discrete schemes. It can
raise computation efficiency by dividing a large problem into
several small sub-problems and hence decreasing the scale
of the calculation. Evaluation of unknowns at the interfacial
points is the key in the study of domain decomposition
algorithms, its design can directly affect the accuracy, sta-
bility and efficiency of the parallel algorithm. There are
some researches on parallel discrete schemes for diffusion
problem [2]-[14]. In [2], a domain decomposition scheme
is proposed for heat equation in one-dimensional geometry
with large step length discrete approach for spatial derivative
on interface and is extended to two-dimensional geometry
with strip decomposition. In this paper, we study the parallel
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schemes for two-dimensional problem with large step length
discretization in both spatial directions for block decomposi-
tion and present their stability and convergence properties.
Three methods are applied to calculate the values at the
interior points. The algorithms are easy to implement and
need little communication. With strict theoretical analysis, it
shows the schemes have much looser stability and perfect
accuracy. Numerical tests verify the theoretical results and
show the high efficiency of the algorithms.

Consider the two-dimensional heat equation as follows

ut = uxx + uyy, (x, y) ∈ Ω, t ∈ (0, T ],
u(x, y, t) = 0, (x, y) ∈ ∂Ω, t ∈ (0, T ],

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω, (1)

where Ω = (0, L1) × (0, L2), L1, L2 and T are positive
constants; u0 is a known function.

In this paper, some preparation work is given in Section
II. Several simplified domain decomposition schemes for
heat equation (1) are given in Section III. In Section IV,
their stability and convergence properties are proved. Then
numerical tests are presented in Section V. Finally some
conclusions are given in section VI.

II. PREPARATION WORK

Before give approximations for (1), we do some prepara-
tion.

Divide interval [0, T ] and [0, L1], [0, L2] into N and
J1, J2 equal small intervals respectively, denote τ = T

N ,
tn = nτ , and h1 = L1

J1
, h2 = L2

J2
, h = max{h1, h2},

xi = ih1, yj = jh2. Let q1 and q2 be positive integers,
Q = min{q1, q2}. Denote H1 = q1h1 and H2 = q2h2

as large spatial step lengths, H = max{H1,H2}. For a
function φ(x, y, t) defined at mesh points (xi, yj , t

n), let
φn

ij = φ(xi, yj , t
n). Define the difference operators

∂t,τφ(x, y, t) = f(x,y,t)−f(x,y,t−τ)
τ ,

∂x,sφ(x, y, t) = f(x+s,y,t)−f(x,y,t)
s ,

∂y,sφ(x, y, t) = f(x,y+s,t)−f(x,y,t)
s ,

∂2
x,sφ(x, y, t) = f(x−s,y,t)−2f(x,y,t)+f(x+s,y,t)

s2 ,

∂2
y,sφ(x, y, t) = f(x,y−s,t)−2f(x,y,t)+f(x,y+s,t)

s2 .

Thus ∂t,τφn+1 = 1
τ (φn+1 − φn) for n ≥ 0, ∂x,h1φij =

1
h1

(φi+1,j − φij), ∂y,h2φij = 1
h2

(φi,j+1 − φij), ∂2
x,h1

φij =
1
h2
1
(φi+1,j − 2φij + φi−1,j), ∂2

y,h2
φij = 1

h2
2
(φi,j+1 −

2φij + φi,j−1), ∂x,H1φij = 1
H1

(φi+q1,j − φij), ∂y,H2φij =
1

H2
(φi,j+q2−φij), ∂2

x,H1
φij = 1

H2
1
(φi+q1,j−2φij +φi−q1,j),

∂2
y,H2

φij = 1
H2

2
(φi,j+q2 − 2φij + φi,j−q2).
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Denote the mesh ratios as r1 = τ
h2
1

, r2 = τ
h2
2

. Let R1 =
τ

H2
1

, R2 = τ
H2

2
be the “large” mesh ratios.

For n ≥ 0, by using implicit schemes with explicit large
step length discrete simulation for spatial derivatives in x
and y directions and implicit normal step discretization in
another direction alternatively,

∂t,τφn+1
ij = ∂2

x,H1
φn

ij + ∂2
y,h2

φn+1
ij ,

∂t,τφn+1
ij = ∂2

x,h1
φn+1

ij + ∂2
y,H2

φn
ij ,

we deduce

P1φ
n+1
ij =: −r2φ

n+1
i,j+1 + (1 + 2r2)φn+1

ij − r2φ
n+1
i,j−1

= R1φ
n
i+q1,j + (1− 2R1)φn

ij + R1φ
n
i−q1,j

=: Q1φ
n
ij ,

P2φ
n+1
ij =: −r1φ

n+1
i+1,j + (1 + 2r1)φn+1

ij − r1φ
n+1
i−1,j

= R2φ
n
i,j+q2

+ (1− 2R2)φn
ij + R2φ

n
i,j−q2

=: Q2φ
n
ij .

Now define

L1φ
n+1
ij =: P1φ

n+1
ij −Q2φ

n
ij ,

L2φ
n+1
ij =: P2φ

n+1
ij −Q2φ

n
ij .

(2)

Let

S1φ
n+1
ij = (1− τ∂2

x,h1
− τ∂2

y,h2
)φn+1

ij − φn
ij ,

S2φ
n+1
ij = (I − τ

2
∂2

x,h1
− τ

2
∂2

y,h2
)φn+1

ij

−(I +
τ

2
∂2

x,h1
+

τ

2
∂2

y,h2
)φn

ij ,

S3φ
2m+2
ij = (I − τ∂2

x,h1
− τ∂2

y,h2
)φ2m+2

ij − φ2m+1
ij

= (I − τ∂2
x,h1

− τ∂2
y,h2

)φ2m+2
ij

−(I + τ∂2
x,h1

+ τ∂2
y,h2

)φ2m
ij . (3)

We can see S1φ
n+1
ij = 0, S2φ

n+1
ij = 0 and S3φ

2m+2
ij

respectively stand for the traditional fully implicit scheme,
Crank-Nicolson scheme and explicit-implicit scheme. For
M = 1, 2, 3, substitute φn

pq = vnexp[i(αxp + βyq)] to the
relation SMφn

pq = 0, we get the increment factor

G1 =
vn+1

vn
=

1
1 + 4r1sin2 αh1

2 + 4r2sin2 βh2
2

,

G2 =
vn+1

vn
=

1− 2r1sin
2 αh1

2 − 2r2sin
2 βh2

2

1 + 2r1sin2 αh1
2 + 2r2sin2 βh2

2

,

G3 =
v2m+2

v2m
=

1− 4r1sin
2 αh1

2 − 4r2sin
2 βh2

2

1 + 4r1sin2 αh1
2 + 4r2sin2 βh2

2

,

where the last relation measures increment ratio by each two
even time steps. Obviously, |GM | ≤ 1 holds for ∀r1, r2 > 0,
thus SMφn

ij = 0 is absolutely stable.
Let un

ij be the real solution of problem (1), then from
Taylor’s expansion, we have the truncation error

L1u
n+1
ij = O(τ(τ + h2

2 + H2
1 )),

L2u
n+1
ij = O(τ(τ + h2

1 + H2
2 )),

S1u
n+1
ij = O(τ(τ + h2

1 + h2
2)),

S2u
n+1
ij = O(τ(τ2 + h2

1 + h2
2)),

S3u
2m+2
ij = O(τ(τ2 + h2

1 + h2
2)). (4)

III. SIMPLIFIED DOMAIN DECOMPOSITION ALGORITHMS

For simplicity, we first consider the case of decomposing
the domain into four sub-domains with interfacial line x =
xk and y = yl. Here and below, we will refer to points
(xi, yj , t

n) as boundary points (BPs) if i = 0 or J1, or if
j = 0 or J2, or if n = 0; similarly, we call them interface
points (IFPs) if i = k and n > 0, or if j = l and n > 0;
otherwise we call them interior points (IPs).

The numerical approximation Un
ij to un

ij is defined by

Un
ij = un

ij , BPs; (5)
L1U

n
kj = 0, IFPs (xk, yj , t

n), j 6= l; (6)
L2U

n
il = 0, IFPs (xi, yl, t

n), i 6= k; (7)
L1U

n
kl = 0, or L2U

n
kl = 0; (8)

SMUn
ij = 0, IPs (n = 2m for M = 3); (9)

where M = 1, 2, 3.
The algorithms are carried out as follows.
Step 1 First, Un

ij at boundary points are defined.
Step 2 Values at interface points are calculated. Two

choices are provided to realize this object.
Case 1: For L1U

n
kl = 0 in (8), first, equation system

L1U
n
kj = 0, j = 1, 2, · · · , J2 − 1 are solved with Un

k0, Un
kJ2

and Un−1
ij (i = 1, 2, · · · , J1 − 1; j = 1, 2, · · · , J2 − 1) al-

ready known. Next, two systems of equations are considered
respectively. They are L2U

n
il = 0, i = 1, 2, · · · , k − 1, with

boundary conditions Un
0l and Un

kl known, and L2U
n
il = 0,

i = k + 1, k + 2, · · · , J1 − 1, with boundary conditions Un
kl

and Un
J1l known.

Case 2: For L2U
n
kl = 0 in (8), first, resolve L2U

n
il = 0, i =

1, 2, · · · , J1−1 with Un
0l, Un

J1l and Un−1
ij (i = 1, 2, · · · , J1−

1; j = 1, 2, · · · , J2−1) known. Second, consider L1U
n
kj = 0,

j = 1, 2, · · · , l − 1, with boundary conditions Un
k0 and Un

kl

known, and L1U
n
kj = 0, j = l + 1, l + 2, · · · , J2 − 1, with

boundary conditions Un
kl and Un

kJ2
known.

Hence all the interface values at the n-th time level are
derived.

To keep balance on x and y directions, case 1 and case
2 can be chosen alternately. Note that each calculation of
interface unknowns is to solve a tridiagonal matrix system
and can be realized by sweeping method. The algorithm is
simple and economic.

Step 3 Finally, SMUn
ij = 0 are applied to get the interior

values in each of the four sub-domains.
On each sub-domain, SMUn

ij = 0 can be realized by the
following procedures.

(1) Implicit Scheme

−r1(Un
i+1,j + Un

i−1,j) + (1 + 2r1 + 2r2)Un
ij

−r2(Un
i,j+1 + Un

i,j−1)

= Un−1
ij . (10)

(2) CN (Crank-Nicolson) Scheme

−r1

2
(Un

i+1,j + Un
i−1,j) + (1 + r1 + r2)Un

ij

−r2

2
(Un

i,j+1 + Un
i,j−1)

=
r1

2
(Un−1

i+1,j + Un−1
i−1,j) + (1− r1 − r2)Un−1

ij

+
r2

2
(Un−1

i,j+1 + Un−1
i,j−1). (11)
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(3) EI (Explicit Implicit) Scheme

U2m−1
ij

= r1(U2m−2
i+1,j + U2m−2

i−1,j ) + (1− 2r1 − 2r2)U2m−2
ij

+r2(U2m−2
i,j+1 + U2m−2

i,j−1 ),

−r1(U2m
i+1,j + U2m

i−1,j) + (1 + 2r1 + 2r2)U2m
ij

−r2(U2m
i,j+1 + U2m

i,j−1)

= U2m−1
ij . (12)

EI Scheme (12) means a great save of calculation work.

IV. THEORETICAL ANALYSIS ON STABILITY AND
ACCURACY PROPERTIES

Denote Condition (A1): 1 − 2R1 ≥ 0 and 1 − 2R2 ≥ 0;
Condition (A2): 1−r1−r2 ≥ 0, 1−2R1 ≥ 0 and 1−2R2 ≥
0; Condition (A3): 1− 2r1 − 2r2 ≥ 0.

Algorithms (5)-(9) have the following stability and accu-
racy properties.

Theorem 1 For the numerical solution Un
ij of Algorithms

(5)-(9) and the real solution un
ij of (1), there is

for M = 1, under Condition (A1),
max |un

ij − Un
ij | = O(τ + h2 + Hτ + H3).

for M = 2, under Condition (A2),
max |un

ij − Un
ij | = O(τ2 + h2 + Hτ + H3).

for M = 3, under Condition (A3),
max |u2m

ij − U2m
ij | = O(τ2 + h2 + Hτ + H3).

Here C is a positive constant independent of τ and h.
The proof of Theorem 1 is somehow complicated, so we’ll

show it step by step. First we give a useful property.
Lemma 1 (Discrete maximum principle) For M =

1, 2, 3, under Condition (AM ), if there are

zn
ij ≤ 0, BPs; (13)

L1z
n
kj ≤ 0, IFPs (xk, yj , t

n), j 6= l; (14)
L2z

n
il ≤ 0, IFPs (xi, yl, t

n), i 6= k; (15)
L1z

n
kl ≤ 0, or L2z

n
kl ≤ 0; (16)

SMzn
ij ≤ 0, IPs (n = 2m for M = 3); (17)

then

zn
ij ≤ 0, ∀i, j, n (n = 2m for M = 3). (18)

Proof of Lemma 1:
Note that (18) holds for n = 0 by (13). Now for M = 1

and 2, suppose the conclusion holds up to some level n− 1
(where n ≥ 1); i.e.,

zn−1
ij ≤ 0, ∀i, j; (19)

thus for L1z
n
kl ≤ 0 in (16), from (14) and (13), the interface

value

zn
kj ≤ 0, j = 1, 2, · · · , J2 − 1,

specially, zn
kl ≤ 0, hence with (13), (19) and (15), there is

zn
il ≤ 0, i = 1, 2, · · · , J1 − 1, i 6= k,

each of zkj and zil is bounded by an average of values of
zn−1
ij , and the weights in the average are nonnegative with the

constraint (AM ). For L2z
n
kl ≤ 0 in (16), a similar procedure

shows the interface value

zn
il ≤ 0, i = 1, 2, · · · , J1 − 1,

zn
kj ≤ 0, j = 1, 2, · · · , J2 − 1, j 6= l.

Then notice (13), we can directly know by the maximum
principle that

zn
ij ≤ 0, at interior points. (20)

For M = 3, suppose the conclusion holds up to level 2m−
2 (where m ≥ 1), then by a similar reasoning procedure, and
notice (12), we have

−r1(z2m
i+1,j + z2m

i−1,j) + (1 + 2r1 + 2r2)z2m
ij

−r2(z2m
i,j+1 + z2m

i,j−1)

= r1(z2m−2
i+1,j + z2m−2

i−1,j ) + (1− 2r1 − 2r2)z2m−2
ij

+r2(z2m−2
i,j+1 + z2m−2

i,j−1 ) ≤ 0,

as before, we see (13) stands for n = 2m, which completes
the proof of Lemma 1. ¶

Now we use a constructive reasoning procedure to prove
the accuracy property of our domain decomposition discrete
scheme.

Proof of Theorem 1:
Denote en

ij = un
ij − Un

ij . First, we know from (4) and
(5)-(9) that

en
ij = 0, BPs;

L1e
n
kj = Kkjτ(τ + h2

2 + H2
1 ), IFPs (xk, yj , t

n), j 6= l;

L2e
n
il = Kilτ(τ + h2

1 + H2
2 ), IFPs (xi, yl, t

n), i 6= k;
L1e

n
kl = Kklτ(τ + h2

2 + H2
1 ), or

L2e
n
kl = Kklτ(τ + h2

1 + H2
2 );

S1e
n
ij = Kijτ(τ + h2

1 + h2
2), IPs,

SMen
ij = Kijτ(τ2 + h2

1 + h2
2), IPs, M = 2, 3; (21)

where |Kn
ij | ≤ C, for i = 1, 2, · · · , J1 − 1 and j =

1, 2, · · · , J2 − 1.
Then we introduce some additive functions to deal with

the normal step length discretizations. Denote

wi =
1
2
xi(1− xi), i = 0, 1, · · · , J1;

κj =
1
2
yj(1− yj), y = 0, 1, · · · , J2; (22)

then we have

L1wi = L2wi = τ, i = 1, 2, · · · , J1 − 1;
L1κj = L2κj = τ, j = 1, 2, · · · , J2 − 1;
S1wi = S2wi = τ, S3wi = 2τ, i = 1, 2, · · · , J1 − 1;
S1κj = S2κj = τ, S3κj = 2τ, j = 1, 2, · · · , J2 − 1;

0 ≤ wi ≤ 1
4
, i = 0, 1, · · · , J1;

0 ≤ κj ≤ 1
4
, j = 0, 1, · · · , J2.

Now let

θij = wi + κj , (23)
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then we have

L1θij = L2θij = 2τ,

S1θij = S2θij = 2τ, S3θij = 4τ,

i = 1, 2, · · · , J1 − 1; j = 1, 2, · · · , J2 − 1.

0 ≤ θij ≤ 1
2
, i = 0, 1, · · · , J1; j = 0, 1, · · · , J2.

Next we introduce some additional functions to treat the
large spatial step length terms. Define

δi = { H1(1− xk)xi, i ≤ k.
H1xk(1− xi), i ≥ k.

σj = { H2(1− yl)yj , j ≤ l.
H2yl(1− yj), j ≥ l.

(24)

By a thorough calculation, we have

L1δk = L2σl = τ, L1σl = q2τ, L2δk = q1τ.

L2δi = 0, i = 1, 2, · · · , J1 − 1; i 6= k.

L1σj = 0, j = 1, 2, · · · , J2 − 1; j 6= l.

SMδi = 0, i = 1, 2, · · · , J1 − 1; i 6= k; M = 1, 2, 3.

SMσj = 0, j = 1, 2, · · · , J2 − 1; j 6= l; M = 1, 2, 3.

0 ≤ δi ≤ 1
2
H1, i = 0, 1, · · · , J1.

0 ≤ σj ≤ 1
2
H2, j = 0, 1, · · · , J2.

Let

γij = δi + σj , (25)

then we derive

L1γkj = τ, j = 1, 2, · · · , J2 − 1; j 6= l.

L2γil = τ, i = 1, 2, · · · , J1 − 1; i 6= k.

L1γkl = (1 + q2)τ, L2γkl = (1 + q1)τ.
SMγij = 0, i = 1, 2, · · · , J1 − 1; j = 1, 2, · · · , J2 − 1;

i 6= k; j 6= l; M = 1, 2, 3.

0 ≤ γij ≤ 1
2
H1 +

1
2
H2,

i = 0, 1, · · · , J1; j = 0, 1, · · · , J2.

We first show that for M = 2, 3, the conclusion of
Theorem 1 is valid. Let

ξij = Cθij(τ2 + h2
1 + h2

2)
+Cγij(τ + h2

1 + h2
2 + H2

1 + H2
2 ), (26)

then we have

L1ξkj = 2Cτ(τ2 + h2
1 + h2

2)
+Cτ(τ + h2

1 + h2
2 + H2

1 + H2
2 ),

j = 1, 2, · · · , J2 − 1; j 6= l.

L2ξil = 2Cτ(τ2 + h2
1 + h2

2)
+Cτ(τ + h2

1 + h2
2 + H2

1 + H2
2 ),

i = 1, 2, · · · , J1 − 1; i 6= k.

L1ξkl = 2Cτ(τ2 + h2
1 + h2

2)
+C(1 + q2)τ(τ + h2

1 + h2
2 + H2

1 + H2
2 ),

or L2ξkl = 2Cτ(τ2 + h2
1 + h2

2)
+C(1 + q1)τ(τ + h2

1 + h2
2 + H2

1 + H2
2 ).

S2ξij = 2Cτ(τ2 + h2
1 + h2

2),
S3ξij = 4Cτ(τ2 + h2

1 + h2
2),

i 6= k; j 6= l. (27)

Hence

−ξij ≤ en
ij ≤ ξij , BPs;

−L1ξkj ≤ L1e
n
kj ≤ L1ξkj , IFPs (xk, yj , t

n), j 6= l;
−L2ξil ≤ L2e

n
il ≤ L2ξil, IFPs (xi, yl, t

n), i 6= k;
−L1ξkl ≤ L1e

n
kl ≤ L1ξkl, or

−L2ξkl ≤ L2e
n
kl ≤ L2ξkl;

−SMξij ≤ SMen
ij ≤ SMξij , IPs. (28)

Let zij = en
ij − ξij and use Lemma 1, we deduce zn

ij ≤ 0,
which means en

ij ≤ ξij ; then let zij = −en
ij − ξij and still

use Lemma 1, we have −en
ij ≤ ξij ; thus |en

ij | ≤ ξij . Notice
that ξij ≤ C(τ2 + h2

1 + h2
2 + H1τ + H2τ + H3

1 + H3
2 +

H2
1H2 + H1H

2
2 ), we have |en

ij | ≤ C(τ2 + h2
1 + h2

2 + H1τ +
H2τ + H3

1 + H3
2 + H2

1H2 + H1H
2
2 ).

For M = 1, let

ξij = Cθij(τ + h2
1 + h2

2)
+Cγij(τ + h2

1 + h2
2 + H2

1 + H2
2 ); (29)

similarly as before, we can know |en
ij | ≤ C(τ + h2

1 + h2
2 +

H1τ + H2τ + H3
1 + H3

2 + H2
1H2 + H1H

2
2 ).

Thus we accomplish the proof of Theorem 1. ¶

V. NUMERICAL TESTS

Numerical tests are given with model problem to verify
the results of theoretical analysis and examine the accuracy
and stability of the algorithms. In the tests, take Ω = (0, 1)×
(0, 1), the initial condition and the exact solution as

u0(x, y) = sin(πx)sin(πy),
u(x, y) = exp(−2π2t)sin(πx)sin(πy).

Calculations are carried out on different meshes and vari-
ous CPUs. To focus on the test of properties of the discrete
schemes, there is no special consideration on solutions of
algebraic systems, and conjugate gradient iteration method
is adopted. In fact, computation can be accelerated much
faster if the discrete schemes are combined with advanced
algebraic system solution techniques.

Table I gives the approximation of the numerical solu-
tions of the domain decomposition algorithm to the exact
solution of the problem with different temporal and spatial
step lengths and various q1 and q2. Herein T = 0.1, the
interior computation is carried out with implicit scheme. The
algorithm still converges when the mesh ratio r rises over
q2
1/2 = q2

2/2. It shows the algorithm has good accuracy and
stability property.

Table II shows the parallel efficiency of the algorithm
with T = 0.1 and τ = 0.001 on various spatial meshes
with different CPU numbers. Herein “Time-s” and “Time-p”
respectively represent the time needed for serial and parallel
computations, “Speedup” and “Eff” respectively denote the
speedup ratio and the parallel efficiency of the algorithms. It
shows the domain decomposition algorithm has nice expan-
sibility with super-linear speedup ratio and parallel efficiency
more than 100%.
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TABLE I
ACCURACY AND STABILITY

h τ q1, q2 Error-maximum Error-average

1/30

0.001
0.005
0.008
0.01

3
3
3
3

2.4575e-3
7.9024e-3
1.2545e-2
1.4895e-2

8.3418e-4
3.2947e-3
5.2528e-3
6.2385e-3

1/60

0.001
0.005
0.008
0.01

3
6
6
6

2.2209e-3
7.7529e-3
1.2468e-2
1.4828e-2

8.3323e-4
3.1415e-3
5.0301e-3
5.9843e-3

TABLE II
PARALLEL EFFICIENCY

Mesh Time-s CPUs Time-p Speedup Eff

60× 60 1.4558
4
9

16

0.3719
0.1542
0.1054

3.91
9.44

13.81

0.98
1.05
0.86

120× 120 14.0195
4
9

16

4.0800
1.5325
0.6822

3.43
9.14

20.56

0.86
1.02
1.29

180× 180 52.7525
4
9

16

15.4773
5.9044
2.7726

3.41
8.93

19.03

0.85
0.99
1.19

240× 240 203.8975

4
9

16
36
64

38.0000
16.2264
6.9288
2.2928
1.0166

5.37
12.57
29.43
88.93

200.57

1.31
1.40
1.84
2.47
3.13

300× 300 504.8729

4
9

25
36

77.7609
36.0100
8.5481
4.6647

6.49
14.02
59.06

108.23

1.62
1.56
2.36
3.01

360× 360 898.8346

4
16
25
36
64

204.8047
37.1268
20.4300
12.0107
4.7277

4.39
24.21
44.00
74.84

190.12

1.10
1.51
1.76
2.08
3.00

VI. CONCLUSION

In this paper, some simple and efficient domain decompo-
sition algorithms for 2-dimensional heat equation are studied.
The values at the interface points are calculated by using
large step lengths discrete approximation for spatial partial
derivatives in two directions alternatively. Three algorithms
are considered for sub-domain calculation. The stability and
accuracy properties of the new algorithms are analyzed.
When the values at the interior points are calculated by
implicit scheme, if larger spatial discrete method is used,
then the stability conditions can be reduced by 2Q2 times
(Q stands for the smaller ratio by the larger and usual
step increments in the two spatial directions). As to interior
evaluations, if implicit scheme is adopted, then weak stability
condition and much calculation are needed, and second order
spatial and first order temporal convergence properties can
be obtained; CN scheme is similar to the former, but has
second order accuracy in time step; EI scheme has second
order accuracy in both time and space increments at even
steps, and needs less computational work, but stricter stability
condition. Numerical experiments verify the theoretical con-
clusions and demonstrate the high efficiency and scalability
of the algorithms.

The algorithms above are described on block decompo-
sition of four sub-domains for example. In fact the do-
main can be divided into several parts in each direction.
Generally, it can be divided in to I1I2 sub-domains by
using x = xk(k = ks1, s1 = 1, 2, · · · , I1 − 1) and
y = yl(l = ls2, s2 = 1, 2, · · · , I2−1) as interfacial lines. And
corresponding parallel schemes can be designed similarly

with large step length interface discretizations and similar
conclusion can be obtained.

The methods here can be extended to three-dimensional
problems. Also they can be adopted to study parallel schemes
for diffusion problems with variant coefficients. The tech-
niques in this paper can be combined with the idea of
fractional steps to gain more looser stability conditions, see
[11] for example with a brief deduction.
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