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Abstract—In this paper, we consider the generalized saddle
point linear system of equations which is obtained from dis-
cretizing the Euler Lagrange equations associated with image
debulrring problem. This system is ill-conditioned and is of huge
size. Moreover, the (2,2) block of the coefficient matrix of this
system contains summation of two terms. One of these terms is
a product of a Toepelitz matrix with Toepelitz blocks (BTTB)
and its transpose. This structure needs a prconditioner to speed
up the iterative method such us the minimal residual (MINRES)
method. Hence, we devolve three block diagonal preconditioners
which are of Murphy, Golub and Wathen [MGW] type for
this saddle point system. The first preconditioner is based
on approximating the product of the (BTTB) matrix and its
transpose by a symmetric BTTB matrix while in the second
one, we approximate the BTTB matrix by the Strang circulant.
In the the third preconditioner, we approximate the BTTB
matrix by the optimal circulant. We investigate the efficiency of
these three preconditioners by several numerical computations
in term of CPU time, iteration numbers and the quality of the
reconstruction images.

Index Terms—Preconditioning technique, saddle-point prob-
lems, Image deblurring, Krylov subspace method, Strang cir-
culant, optimal circulant.

I. INTRODUCTION

IN this paper, we consider the following generalized saddle
point system[

αD −αB
−αB∗ −K∗K

]
︸ ︷︷ ︸

C

[
V
U

]
=

[
0

−K∗Z

]
, (1)

resulted from discretizing the Euler Lagrange equations
associated with image debulrring problem. Here Z is a given
data, [V U ]T is the solution vector. In the coefficient matrix,
C, of the above system (1), the matrices K, B and D are
of sizes n × n, m × n and m × m, respectively. Here
n = n2

x and m = 2nx(nx − 1)) where nx denotes the
number of equispaced partitions in the x or y directions and
the parameter α > 0 is small number which is called the
regularities parameter. Both K∗K and L = B∗D−1B are
symmetric positive semi definite matrices [21]. The matrix
K and its transpose have the block Toeplitz with Toeplitz
block (BTTB) structures but K∗K need not be BTTB. It
is know that image debulrring problem requires solving a
large, dense, ill-conditioned linear system of equations. For
example an image with 256×256 resolution requires solving
system of size 2564. Hence the only choice of linear solver
to the above system is the iterative method such as Krylov
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subspace method. Unfortunately, Krylov subspace method
as conjugate gradient (CG) method or minimal residual
(MINRES) method are very slow with ill-conditioned lin-
ear system of equations. One technique to overcome this
slowness properties is using an appropriate preconditioner.
A good preconditioner which accelerates the convergence
needs to be easy to construct and cheap to invert. Moreover,
the preconditioned matrix should have eigenvalues clustering
behavior. Many preconditions in [2] are developed for a
spital linear system such as a saddle point problem. In this
research work, we convert the linear system resulted from
image debulrring problem into a saddle point problem and
then we develop three block preconditioners for this saddle
point problem. These preconditioners are of Murphy, Golub
and Wathen [MGW] type [15] and they involve a Schur
complement matrix which contains a product of a Toeplitz
matrix with Toeplitz blocks (BTTB) and its transpose. The
first preconditioner is based on approximating this product,
this product may not be a BTTB, by a symmetric BTTB
matrix [17] while the second is based on approximating a
Toepelitz matrix by Strang circulant (see [20], [7]). In the
third preconditioner, we use the optimal circulant approxima-
tion for a Toeplitz matrix [8]. In this paper, we investigate
the efficient of these preconditioners by several numerical
computations in term of CPU time, iteration numbers and the
quality of the reconstruction image. This paper is organized
as follows: In section II, we introduce the problem and
invert it into a saddle point problem. In section III, we
devolve a block diagonal preconditioner that involves a Schur
complement matrix which contains a product of a Toeplitz
matrix with Toeplitz blocks (BTTB) and its transpose. In
sections IV, we give some numerical examples and show the
algorithm performance. Finally, in section V, we give some
conclusions.

II. PROBLEM SETUP

To debulr an image, we need a mathematical model of
how it was blurred. Bulrring and noise affect the quality of
the received image. The recorded image z and the original
image u are related by the equation

z = Ku+ ε (2)

where K denotes the blurring operator and ε denotes the
noise function. K is typically a Fredholm first kind integral
operator,

(Ku)(x) =

∫
Ω

k(x, x′)u(x′)dx′, x ∈ Ω (3)

with translation invariance, the kernel k(x, x′) = k(x−x′) is
known as the point spread function (PSF). The operator K is
compact, so problem (2) is ill-posed [1], [21]. Ω will denote
a square in R2 on which the image intensity function u is

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I, 
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015



defined. x = (x, y) denotes location in Ω; | x |=
√
x2 + y2

denotes Euclidean norm, and ∥ · ∥ denotes the norm in
L2(Ω). To stabilize problem (2) the total variation (TV)
regularization functional, which was introduced in [18] by
Rudin, Osher, and Fatemi, is often used. The problem is then
to find a u which minimizes the functional

T (u) =
1

2
∥ Ku− z ∥2 +αJ(u), (4)

with positive parameter α and the total variational functional
is given by

J(u) =

∫
Ω

| ▽u | . (5)

However, the derivative of integrand in equation (5) does not
exist at zero. One remedy of this issue [1], [21] is to add a
constant β as follows

Jβ(u) =

∫
Ω

√
| ▽u |2 +β2. (6)

Then the functional to be minimized is

T (u) =
1

2
∥ Ku− z ∥2 +α

∫
Ω

√
| ▽u |2 +β2, (7)

with α, β > 0. The well-posedness of this minimization is
established in [1]. The Euler-Lagrange equations associated
with the above minimization problem are

K∗(Ku− z) + αL(u)u = 0 x ∈ Ω, (8)
∂u

∂n
= 0 x ∈ ∂Ω (9)

where K∗ is the adjoint operator of the integral operator K.
The deferential operator L(u) is given by

L(u)w = −▽.( 1√
| ▽u |2 +β2

▽w). (10)

Note that (8) is a nonlinear integro-differential equation of
elliptic type. It can be expressed as a nonlinear first order
system [9]

K∗Ku− α▽.v⃗ = K∗z (11)

−▽u+
√
| ▽u |2 +β2v⃗ = 0⃗, (12)

with the dual, or flux, variable

v⃗ =
▽u√

| ▽u |2 +β2
(13)

Applying Galerkin’s method to (11-12) together with mid-
point quadrature for the integral term and cell center finite
difference method (CCFD) for the derivative part [11], one
obtain the following dual-system

K∗
hKhU + αB∗

hV = K∗
hZ, (14)

αBhU − αDhV = 0 (15)

For the simplicity we eliminate the subscript h equipped with
the matrices in (14-15) and then one can re-write them after
rearrangement the unknowns as[

αD −αB
−αB∗ −K∗K

]
︸ ︷︷ ︸

C

[
V
U

]
=

[
0

−K∗Z

]
, (16)

Here Z is the given data, [V U ]T is the solution vector.
The matrix K is a dense matrix and has the BTTB structure

while the matrix K∗K may not be BTTB. The matrix D is
a diagonal with positive diagonal entries

D =

[
Dx 0
0 Dy

]
,

where Dx is an (nx − 1) × nx and Dy an nx × (nx −
1) matrices with diagonal entries obtained by discretize the
expression

√
| ▽u |2 +β2. The matrix B is given by

B =
1

h

[
B1

B2

]
,

where h = 1
nx

and the matrices B1 (nx(nx − 1) × n) and
B2 (nx(nx − 1)× n) have the following structures

B1 =


−I I 0 0 0
0 −I I 0 0

0 0
. . . . . . 0

0 0 0 −I I

 ,

where I is the identity matrix of size nx by nx.

B2 =


E 0 0 0 0
0 E 0 0 0

0 0
. . . 0 0

0 0 0 0 E

 ,

where E ((nx − 1)× nx) is given by

E =


−1 1 0 0 0
0 −1 1 0 0

0 0
. . . . . . 0

0 0 0 −1 1


Since the coefficient matrix C is symmetric but not positive
definite, the suitable Krylov subspace method for this system
is MINRES method [16] but the convergence of this method
well be slow. This slowness is resulted from the huge size of
C. To over come this problem the preconditioning technique
is needed. In our paper, we provide three block digonal
preconditioners for the generalized saddle point problem
given in (16).

Note that one can eliminate V from (14,15) to get the
following primal system

(K∗K + αL)U = K∗Z, (17)

where K∗K is full matrix and L = B∗D−1B is sparse
matrix . In (17), the matrix H = K∗K + αL is symmetric
positive definite (SPD) but it is extremely large. Since H is
(SPD), then on can use the CG method but the convergence
of this method well be slow. This slowness is resulted from
the huge size of H . Hence, preconditioning technique is
needed. In [21], Vogel et al. introduced product precondi-
tioner for the system (17) with approximating the BTTB
matrix by block circulant with circulant block (BCCB). Chan
et al. [5] introduced cosine-transform based preconditioners
for the system (17).

III. THE BLOCK DIAGONAL PRECONDITIONERS

At the beginning, we introduce the following symmetric
positive definite preconditioner

P =

[
αD 0
0 S

]
, (18)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I, 
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015



where S = (K∗K + αL) is the Schur complement of the
matrix C. Hence, the appropriate iterative method is pre-
conditioned MINRES which minimizes the residual over the
shifted Krylov subspace. For more detail in preconditioning
technique we refer to [2] and [3].

The following theorem [12] gives upper and lower bounds
for the positive and negative eigenvalues of the precondi-
tioned matrix P−1C.

Theorem 3.1: The m+ n (µ−n ≤ µ−n+1 ≤ ... ≤ µ−1 <
0 < µ1 ≤ µ2 ≤ ... ≤ µm) eigenvalues of the generalized
eigenvalue problem,[

αD −αB
−αB∗ −K∗K

] [
x
y

]
= λ

[
αD 0
0 S

] [
x
y

]
(19)

satisfy the following:

µi ∈
[
1,

1 +
√
1 + 4ασm

2

]
i = 1, ...,m, (20)

µ−j ∈
[
−1,

−1

1 + ατ

]
j = 1, ..., n, (21)

where σm is the maximum eigenvalue of (S−1/2LS−1/2)
and τ = ρ(S−1/2LS−1/2), the spectral radius.
The above cluster of the preconditioned matrix P−1C gives
grantees of the convergence of the PMINRES method. It
is known in each PMINRES iteration we need to solve a
linear system of the form Px = y. Since, the (2,2) block
of P contains a full matrix K∗K, then we lock for some
circulant approximations to K∗K to ease the computations
and to reduce the storages. The mean contribution of our
paper is that we introduce three circulant approximations to
the product K∗K in the preconditioner given in (18). The
advantage of these approximations is to apply the fast Fourier
transformation (FFT) and the Convolution Theorem.

A. Approximating K∗K

An n × n matrix M is Toeplitz if the entries along each
diagonal are the same. A circulant matrix is a Toeplitz matrix
for which each column is a circular shift of the elements in
the preceding column (so that the last entry becomes the
first entry). In our problem, K is BTTB matrix and it has
the block form

K =


T0 T−1 · · · T1−n

T1 T0 T−1 · · ·
...

. . . . . . T−1

Tn−1 · · · T1 T0

 (22)

where each block Tj is a Toeplitz matrix. The first row and
the first column are uniquely define a Toeplitz matrix. Circu-
lant preconditioning for Toeplitz systems was introduced by
Strang [20] and extended by others to block Toeplitz systems
[10]. Many researchers use a Toeplitz preconditioners and
block Toeplitz preconditioners for Toeplitz systems see for
instance [6] and [13]. Band Toeplitz preconditioner and band
BTTB preconditioner are proposed in Chan [4] and Serra
Capizzano [19]. In [14], BTTB preconditioners for BTTB
systems are discussed. In our preconditioner given in (18),
note that K is a BTTB matrix but K∗K may not a BTTB.
So, the first approach that we follow is to approximate K∗K
given in the preconditioner matrix P by a symmetric BTTB
matrix T (see [17]) because symmetric BTTB matrices can

always be extended to form symmetric BCCB matrices.
The benefit of this approximation is that the matrix-vector
products that involve n × n matrices can be computed in
O (n log n) operations instead of O (n2). This reduction is
due to the FFT and the Convolution Theorem. Moreover,
all that is needed for computation is the first column of the
matrix, which decreases the amount of required storage. The
second approach that we follow is that we approximate the n
by n Toeplitz matrix K given in the preconditioner matrix P
by the well known Strang circulant matrix S with diagonals
sk by copying the central diagonals of K and circulate them
around to complete the circulant (see [7] page 17–18). More
precisely, if n = 2m+1 the diagonals sk of S are given by

sk =

 kk, 0 ≤ k ≤ m,
kk−n, m < k < n− 1,
s̄−k, 0 < −k < n− 1,

(23)

where ki is the ith diagonal of the matrix K. If n = 2m,
we get the Strang matrix S as above. In this case, we
define sm = 0 or sm = km+k−m

2 . In the last approach,
we also approximate the Toeplitz matrix K given in the
preconditioner matrix P by an optimal circulant matrix C.

If Cn denote the set of n × n circulant matrices. The
optimal circulant approximation to K ∈ Cn×n in the
Frobenius norm is given by C = arg min

B∈Cn

∥ B −K ∥Fro.

In this case, the value of the entries ck of the matrix C
is obtained by averaging the corresponding diagonal of K
(extended to length n by a wraparound [8]). Then the matrix
C, whose entries are given by ck =

kT−(n−k)+(n−k)Tk

n , k =
−(n−1), ..., 0, ..., (n−1). So our preconditioner is being in
the forms

PT =

[
αD 0
0 T + αL

]
, PS =

[
αD 0
0 S∗S + αL

]
,

PC =

[
αD 0
0 C∗C + αL

]
,

(24)

IV. NUMERICAL EXPERIMENT

The aim of this section is to investigate the efficiency of
the three preconditioners described above for several blurry
images. Two images are considered the first one is a retinal
image of a diabetic patient (see Fig. 2(a) ) and the second
one is goldhill image (see Fig. 3(a)). We start by blurred
the two images by a certain kernel given in Figs. 2(f) or in
Figs. 3(f) and then we deblurred the images back and solving
the linear system by preconditioned MINRES method using
these three preconditioners and we use the well known fixed
point iteration method to linearized the non-linear term. We
watch the cpu time and the number of MINRES iterations.
It is known that in each PMINRES iteration, we solve a
linear system of the form Px = y. To solve this system, we
use the conjugate gradient method (CG) for the (2,2) block.
All numerical computations were obtained using MATLAB 7
installed on HP-laptop with intel Core 2 Duo CPU processer
and with RAM of 4 GB.

Example 1: In this example, we calculate the iterations
number of PMINRES by using the preconditioners PT , PS

and PC . We fix the maximum iteration to be 100, the
tolerance 1e − 2, beta = 0.01, alpha = 0.00008, and we
use the retinal image (blurred image) given in Fig. 1(b) as a
data with PSNR = 20.5548.
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TABLE I: The Preconditioner PT

Fixed Point nx dof PMINRES PSNR
Iteration Number Iteration

1 128 48896 > 100 40.6813
2 128 48896 > 100 42.2709
3 128 48896 14 42.5842
4 128 48896 3 42.5841
5 128 48896 1 42.5841

TABLE II: The Preconditioner PS

Fixed Point nx dof PMINRES PSNR
Iteration Number Iteration

1 128 48896 > 100 40.6510
2 128 48896 78 42.6645
3 128 48896 6 42.6688
4 128 48896 1 42.6688
5 128 48896 1 42.6688

TABLE III: The Preconditioner PC

Fixed Point nx dof PMINRES PSNR
Iteration Number Iteration

1 128 48896 > 100 40.6493
2 128 48896 81 42.6535
3 128 48896 6 42.6577
4 128 48896 1 42.6577
5 128 48896 1 42.6577

TABLE IV: Comparison between PT , PS and PC

nx dof CPU Time CPU Time CPU Time
of PT of PS of PC

128 48896 74.706 39.243 42.653

Firstly, we start by using the preconditioner PT . Table I
shows the degree of freedom (dof), the PMINRES iterations
and the PSNR in each iteration of the fixed point method.

Secondly, we use preconditioner PS with the same blurred
image and the same parameters given above. Table II shows
the degree of freedom (dof), the PMINRES iterations and
the PSNR in each iteration of the fixed point method.

Finally, we use preconditioner PC with the same bulurred
image and the same parameters given above. Table III show
the degree of freedom (dof), the PMINRES iterations and
the PSNR in each iteration of the fixed point method. For
the qualities of the reconstruction images using these three
preconditioners, see Fig. 2(c-e). In this example, the second
computations carried out for the second data (blurred image)
given in Fig. 3(b) which is blurred by the same kernel given
in Fig. 3(f). The qualities of the reconstruction images are
shown in Fig. 3(c-e).

Example 2: In this example we compare the CPU-time of
the three PMINRES preconditioned. In Table (IV), we list
the CPU-time of the PMINRES spends to do 5 fixed point
iterations.

Example 3: In this example, we compare the iteration
numbers of the three PMINRES preconditioners with the
same bulurred image and the same parameters given in the
above examples. Fig. 1 shows the convergence of the meth-

20 40 60 80
−5

−4

−3

−2
P

C

P
S

P
T

Fig. 1: Iterations Number v.s. the Residual

ods. From Fig. 1, it can be seen that the preconditioner PS is
the fastest one followed by PC and then PT . It is clear that
PS needs 78 iterations to reach the tol = 1e− 2, PC needs
81 while PT needs more than 100 iterations to reach the
same tolerance. Note that we take the PMINRES iterations
for these three preconditioners at the second iteration of the
fixed point iteration method.

Example 4: In this example, we use the true image given
in Fig. 3(a) and the blurred images given in Fig. 3(b), (it is
blurred by using the kernel given in Fig. 3(f)), and we fix
the preconditioner to be PT . We watch the quality of the
deblurred images in each fixed point iteration. Fig. 4(a-d)
show the deblurred images for iteration 1, 5, 10 and 13. The
second computations carried out for different values of the
regularization parameters α. Fig. 5(a-d) show the deblurred
images for α = 8e− 2, 8e− 4, 8e− 7, 8e− 8.

V. CONCLUSION

Three different preconditioners for the generalized saddle
point system resulted from discretizing the Euler Lagrange
equations associated with image debulrring problem are
presented. In these preconditioners, three approximations
for the product of the BTTB matrix and its transpose are
considered. From the computations, we observe that the PS

preconditioner is the most effective one followed by PC and
then by PT .
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(a) True Image (b) Blurred Image

(c) Deblured Image PT (d) Deblured Image PS

(e) Deblured Image PC (f) Kernel

Fig. 2: Retinal Image of a Diabetic Patient

(a) True Image 2 (b) Blurred Image

(c) Deblured Image PT (d) Deblured Image PS

(e) Deblured Image PC (f) Kernel

Fig. 3: Goldhill Image
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(a) 1st Fixed Point Iteration (b) 5th Fixed Point Iteration

(c) 10th Fixed Point Iteration (d) 13th Fixed Point Iteration

Fig. 4: Fixed Point Iteration

(a) α = 8.0e− 2 (b) α = 8.0e− 4

(c) α = 8.0e− 7 (d) α = 8.0e− 8

Fig. 5: Regularization Parameter
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