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Abstract—This paper investigates solution behaviors under
the strong shock interaction for moving mesh schemes based
on the one-dimensional HLL-type Riemann solvers. Numeri-
cal experiments show that some schemes which updates the
flow parameters directly on the moving mesh without using
interpolation, may suffer from severe instability such as grid
distortion. But the HLL solver can be free from such failings. It
is well known that the numerical schemes on a fixed grid that
can capture contact discontinuity accurately usually suffer from
some disastrous carbuncle phenomenon, while others, such as
the HLL scheme, are free from this kind of shock instability.
Due to such high similarity, a research to combine the grid
deformation and the numerical shock instability is developed.
Furthermore, in order to unveil the cause of producing these
failings, a HLL-type solver (denoted as the HLLS) with shear
wave is constructed for inviscid, compressible gas flows and
implemented into the arbitrary Lagrangian Eulerian (ALE)
method. With the vorticity viscosity vanishing, the ALE HLLS
scheme produce some numerical instability phenomena. This
result indicates that viscosity associated to the shear wave
may be unique reason to cause the instability or nonphysical
deformation.

Index Terms—Riemann solver, HLL, ALE, instability.

I. INTRODUCTION

IN many computational fluid dynamics (CFD) application-
s, boundaries of the physical domain of the flow might

move in time. When moving boundaries experience large
displacements, or when they undergo large deformations,
the Lagrangian or the arbitrary Lagrangian Eulerian method
(ALE) are useful tools to solve the flow problems on a
moving and possibly deforming grid.

However, some Lagrangian and ALE methods may lead to
collapse of a calculation under the interaction of the strong
shock [1] [5] [7] [10]. In [10], we found that the nonphysical
solution behavior depends on the shock strength and the
grid aspect ratio, which is very similar to numerical shock
instability (carbuncle) phenomenon in Eulerian methods [9].

The numerical shock instability was first reported in 1988
by Peery and Imlay [8] as they computed the supersonic
flow field around a blunt body using Roe’s scheme. Since the
instability mechanism may ruin all efforts to compute grid-
aligned shock waves using low-dissipative upwind schemes,
from then on, several attempts have been made to understand
and cure the phenomenon.

Manuscript received December 29, 2014. This project was supported
by the National Natural Science Foundation of China (11471048), the
Foundation of CAEP (2014A0202010), the Foundation of National Key
Laboratory of Science and Technology Computation Physics.

Z. J. Shen and W. Yan are with the National Key Laboratory of Science
and Technology on Computational Physics, Institute of Applied Physics and
Computational Mathematics, P. O. Box 8009-26, Beijing 100088, China. The
emails are shen zhijun@iapcm.ac.cn, wyanmath01@sina.com.

Quirk [9] noticed that some schemes possessing the prop-
erty of the good capturing of contact discontinuity show
carbuncle phenomena while others free from carbuncle phe-
nomena cannot capture contact discontinuity accurately, such
as the HLL scheme [3]. Liou [4] observed that all the tested
numerical functions that suffer from the shock instability
have a term depending on pressure difference in the numer-
ical mass flux while those free from the shock instability
are independent of pressure difference in the numerical
mass flux. Based on the numerical analysis and experiment,
he considers that “the root of the multidimensional shock
instability, which is manifested by the odd-even decoupling
and carbuncle phenomena, is the existence of a pressure
term in the mass flux”. Xu and Li’s analysis in [14] is in
a qualitative agreement with Liou’s conjecture in the sense
that the pressure term in the numerical mass flux triggers
the shock instability. One work of ours in [11] regarded that
only the eigenvalue associated to the vorticity mode which
is responsible for the instability. The conclusion is consistent
with [6] but includes more elaborate analysis. However, since
the stability analysis is linear, we can not conform whether
it truly reflects nonlinear solution behavior.

This paper focuses on numerical method of moving grid
and its stability. We construct a HLL-type Riemann solver by
just restoring shear wave of the classical HLL approximate
solver and denote it as HLLS. In order to restore the shear
wave, we have to calculate the flow velocity in the star region
of the HLL solver and split the HLL solver as a convective
term and a work term. Such splitting formulation is rather
interesting and to our knowledge is given here for the first
time. The mass flux of the HLLS scheme is the same as the
HLL one, therefore they do not depend on the pressure term
for any Mach number. But the numerical performance on
the shock instability is different from the HLL scheme. By
comparing the numerical solutions using the HLLS solver
and HLL solver, we draw some conclusions as follows: 1.
the HLL approximate Riemann solver does not induce any
instability whereas the HLLS triggers an instability. 2. Lious
conjecture in [4] may be not correct, since the HLLS solver
provides a counterexample. 2. The consequent in [11] should
also apply to nonlinear situation. That means the dissipation
diminishing on shear wave might be the unique reason to
cause instability.

The outline of this paper is as follows. In section 2 the gov-
erning equations in the context of an ALE formulation and
their space discretization are described. The one-dimensional
HLL and HLLC approximate Riemann solvers are presented
in section 3. The corresponding numerical results on both
fixed and moving meshes are shown in section 4 to provide a
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Fig. 1. Notations on a generic polygonal grid.

clear evidence of the robustness of this new scheme. Finally,
the conclusions are summarized in section 5.

II. GOVERNING EQUATIONS AND SPACE DISCRETIZATION

The governing equations for inviscid flow in two-
dimensions are as follows:

∂U

∂t
+

∂F(U)

∂x
+

∂G(U)

∂y
= 0, (1)

where the state vector and flux vectors are

U =


ρ
ρu
ρv
ρE

 , F(U) =


ρu

ρu2 + p
ρuv

ρEu+ pu

 ,

G(U) =


ρv
ρuv

ρv2 + p
ρEv + pv

 ,

where ρ, p, E are the fluid density, pressure and total energy
respectively, and u = (u, v) is the fluid velocity. The
equation of state is in the form

p = (γ − 1)ρe = (γ − 1)ρ(E − 1

2
(u2 + v2)),

where γ is the specific heat ratio.
It is convenient, for the subsequent discretization, to recast

the system of equations in the following moving control
volume formulation [2]:
d

dt

∫
Ω

Udxdy +

∫
∂Ω

[(F,G) ·N− (w ·N)U]dl = 0 (2)

where w is the moving velocity of the control volume Ω, and
N is the unit outward normal direction on the boundary of Ω.
If w = u, the system reduces to a Lagrangian formulation,
and if w = 0, it has Eulerian form.

Let’s consider a generic grid at the discrete level. Each
cell Vc of the mesh is assigned a unique index c. We use the
index f to denote a generic neighboring cell Vf which has
a common edge denoted as k with cell Vc, refer to Fig.1.
The physical quantities such as the density ρc, pressure pc,
velocity uc, energy Ec, ec are defined in the cell center of
Vc. The moving velocity wq of the grid is defined on the
node q. In Fig. 1, Nk = ((nx)k, (ny)k) is the unit normal
vector of the edge k. According to the normal direction of
an edge between two neighboring cells, sometimes we use
denotation L and R to express the left state and right state
of the edge.

The above equations (2) are discretized by utilizing the
idea of the Godunov’s scheme,

Un+1
c =

|V n
c |Un

c

|V n+1
c |

− ∆t

|V n+1
c |

∑
k

Lk((Fk,Gk) ·Nk − wkUk)

where the state vector with the superscript n indicates it is
at the time tn. |V n

c | and |V n+1
c | denote the volume of cell

Vc at time tn and tn+1 respectively, and ∆t = tn+1 − tn.
wk is the normal moving velocity of the cell edge k, which
is defined at the center of the cell edge,

wk = 0.5(wq +wq+) ·Nk.

Lk is the length of the edge k. In this paper, all quantities
appearing in flux functions Uk,Fk,Gk are set at time tn for
simplicity.

According to the rotation invariance of the Eulerian equa-
tions, there is

(Fk,Gk) ·Nk = (Tk)−1F(TkUk), (3)

where the Tk is the rotation matrix and (Tk)−1 is its inverse,
namely

Tk =


1 0 0 0
0 (nx)k (ny)k 0
0 −(ny)k (nx)k 0
0 0 0 1

 . (4)

In this transformation, the above numerical scheme can be
written as

Un+1
c =

|V n
c

|V n+1
c |

|Un
c − ∆t

|V n+1
c |

∑
k

Lk(Tk)−1Fk, (5)

where Fk = F(TkUk)−wkTkUk. The update of the grid is

xn+1
q = xn

q +∆twq, (6)

where xq is the nodal coordinate. wq is provided by a specific
grid strategy.

III. THE ONE DIMENSIONAL APPROXIMATE RIEMANN
SOLVER

The numerical flux Fk between the cell Vc and Vf can be
obtained from many methods. The most popular way is to
solve a one-dimensional Riemann problem along the normal
direction of the edge k:

Ut + Fx = 0, (7)

IV S : U(x, 0) =

{
UL = TkUn

c , x < 0,
UR = TkUn

f , x > 0,

and the numerical flux can be expressed by

Fk(w,UL,UR) = Fw − wUw, (8)

where w = 0.5(wq + wq+) · Nk is the normal projection
of the moving velocity defined on the cell edge k, and Uw

and Fw are state and flux functions along the grid velocity
x/t = w respectively.

It is well known that a wide variety of Riemann solvers
have been devised to solve the above Riemann problem. In
this paper we will consider the classical HLL solver and its
modified scheme: the HLLS solver.
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Fig. 2. Structures of the approximate solutions of the HLL-type Riemann
problem for the x-split two dimensional Euler equations. (a) HLL solver,
(b) HLLS solver.

A. The HLL approximate solver

Harten, Lax and van Leer put forward the following
approximate Riemann solver [3]. The wave structure is
illustrated in Fig. 2(a). The solution in the star region consists
of a single state U∗ separated from data states by two waves
of speeds SL and SR. The state vector is

UHLL(w,UL,UR) =

 UL, if w ≤ SL,
U∗, if SL < w ≤ SR,
UR, if w > SR,

(9)

where term U∗ represents the average intermediate state
between two waves, which propagates with speeds SL and
SR. w = x/t is the position to calculate the flux. The
corresponding flux is defined as

FHLL(w,UL,UR) =

FL, if w ≤ SL,
F∗, if SL < w ≤ SR,
FR, if w > SR.

(10)

The average intermediate state U∗ and flux F∗ can be
found from the Rankine- Hugoniot jump conditions across
each wave.

F∗ − FL = SL(U∗ −UL), (11)
F∗ − FR = SR(U∗ −UR). (12)

One seldom concerns about the concrete physical quanti-
ties in the star region of the HLL solver. Different from the
exact Riemann solver and HLLC solver, the flow velocity S∗
in the HLL solver has distinct value with the state velocity
u∗. In fact, the numerical flux can be split as a convective
term and a pressure term,

U∗ =


ρ∗,
ρ∗u∗,
ρ∗v∗,
ρ∗E∗,

F∗ =


ρ∗S∗,
ρ∗u∗S∗ + p∗,
ρ∗v∗S∗ + 0∗,
ρ∗E∗S∗ + (pS)∗.

(13)

where the physical quantities ρ∗, u∗, v∗, E∗ represent the
flow states in the star region, and S∗, p∗, (pS)∗ are the
transport velocity, pressure and work term. 0∗ is viscosity
of the shear wave. The HLL formulation in (13) is quite
interesting and to the authors knowledge it has not been
given in the literature elsewhere. After some simple algebra,

we have

ρ∗ =
αR − αL

SR − SL
,

u∗ =
αRuR − αLuL + pL − pR

αR − αL
,

v∗ =
αRvR − αLvL

αR − αL
,

E∗ =
αRER − αLEL + pLuL − pRuR

αR − αL
.

S∗ =
αRSL − αLSR

αR − αL
,

p∗ =
αRpL − αLpR − αLαR(uL − uR)

αR − αL
,

0∗ =
−αLαR(vL − vR)

αR − αL
,

(pS)∗ =
αR(pu)L − αL(pu)R − αLαR(EL − ER)

αR − αL
,

where αL = ρL(SL − uL), αR = ρR(SR − uR).
The numerical interface flux is

Fk
HLL =

FL − wUL, if w ≤ SL,
F∗ − wU∗, if SL < w ≤ SR,
FR − wUR, if w > SR.

When w = 0, we denote the classical HLL flux Fk
HLL as

the Eulerian HLL solver, when w ̸= 0, we call it the ALE
HLL solver for the sake of distinction.

B. The HLL approximate solver with shear wave

A shortcoming of the HLL scheme is exposed by contact
discontinuities, shear waves and material interfaces. These
waves are associated with the multiple eigenvalue λ2 =
λ3 = S∗. Note that all that matters is the average across the
wave structure, without regard for the spatial variations of the
solution of the Riemann problem in the star region. The work
of restoring the missing waves has done by Toro, Spruce and
Speares [13], which all of the missing middle waves are put
back into the structure of the approximate Riemann solver.
However, it is a well-known fact that the modified solver,
the HLLC approximate Riemann solver, has to suffer from
the carbuncle phenomenon.

Now we only restore a shear wave in the star region of
the HLL solver. The wave structure is illustrated in Fig. 2(b),
in which the velocities in the tangent direction will remain
invariance between the shear wave. The state vector is

UL,∗ =


ρ∗,
ρ∗u∗,
ρ∗vL,
ρ∗E∗,

UR,∗ =


ρ∗,
ρ∗u∗,
ρ∗vR,
ρ∗E∗,

(14)

The corresponding fluxes are

FL,∗ =


ρ∗S∗,
ρ∗u∗S∗ + p∗,
ρ∗vLS∗,
ρ∗E∗S∗ + (pS)∗,

FR,∗ =


ρ∗S∗,
ρ∗u∗S∗ + p∗,
ρ∗vRS∗,
ρ∗E∗S∗ + (pS)∗.

(15)
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Notice that the flow states in the star region and numerical
fluxes satisfy the Rankine-Hugoniot jump conditions across
each wave. That is

FL,∗ − FL = SL(UL,∗ −UL), (16)
FR,∗ − FL,∗ = S∗(UR,∗ −UL,∗), (17)
FR − FR,∗ = SR(UR −UR,∗). (18)

The resulting numerical interface flux is

Fk
HLLS =


FL − wUL, if w ≤ SL,
FL,∗ − wUL,∗, if SL < w ≤ S∗,
FR,∗ − wUR,∗, if S∗ < w ≤ SR,
FR − wUR, if w > SR.

We denote the approximate Riemann solver as HLLS,
where S stands for shear wave. Corresponding to whether
w is identical zero or not, the HLLS method is categorized
as the Eulerian HLLS or ALE HLLS one.

In order to complete the HLLS Riemann solver, SR and
SL must be estimated appropriately. There are many choices
to obtain them [12]. Here we use the simplest waves-speed
estimation,

SL = min(uL − cL, uR − cR),

SR = max(uL + cL, uR + cR), (19)

where cL and cR are the sound speeds of the left and the
right states.

Due to the satisfaction of the jump condition, the scheme
is capable of capture shock rather well. When the flow is
in an one dimensional case, the HLLS solver degenerates to
the HLL one. Therefore some good properties of the HLL
solver are preserved by the HLLS solver, such as be free of
low frequency fluctuations in case of slowly moving shock,
and others.

C. A discussion to the shock instability
The unique difference between the HLL scheme and HLLS

scheme is in the shear wave. One has viscosity on the shear
wave and the other does not. The mass fluxes of two schemes
are same, which can be rewritten as follows in Eulerian
framework:

F (ρ,k) = ρ∗S∗

=
1

2
[(ρu)L + (ρu)R −D(ρ)∆ρ+D(u)∆u+D(p)∆p],

where dissipation term is expanded in terms of primitive
variables, ∆ = (·)R − (·)L.

Both ρ∗ and S∗ do not contain the pressure term, thus we
have D(p) = 0. That means that the HLLS scheme has no
pressure contribution to the numerical mass flux. We know
that the HLL scheme is in agreement with Liou’s conjecture
that ‘the condition, D(p) = 0 for ∀M , is sufficient for a
scheme to prevent the shock instability from occurring’.

Unfortunately the Eulerian HLLS method and ALE HLLS
method are unstable under the interaction of the strong shock.

IV. NUMERICAL EXPERIMENTS

We will present two shock examples to compare the
solutions between the schemes using the HLLS and HLL
solvers respectively. One is the famous bow shock in the
blunt body problem on a fixed grid [8], the second is the
stern Saltzmann problem on a moving mesh [1].
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Fig. 3. The density contours for a hypersonic flow over a cylinder. Thirty
equally spaced contour lines from ρ = 1.2 to ρ = 6, left: HLLS, right:
HLL.

A. Mach 20 hypersonic flow over a cylinder
This is a well-known test to examine the catastrophic

carbuncle failings of upwind schemes. We need to simulate
a inviscid flow with Mach number Ma = 20 around a
circular cylinder. In this test problem, the specific heat ratio
of the gas is γ = 1.4, and the initial inflow has states
(ρ, u, v, p) = (1,Ma

√
γ, 0, 1). The computing domain is

displayed in Fig. 3 and 20 × 400 structure grids and the
first order accurate scheme are used. The density contours at
t = 2 by the HLLS and HLL solvers are illustrated in Fig.3.
The carbuncle phenomenon appears when using the HLLS
scheme and disappears when using the HLL scheme.

B. Saltzmann problem
The Saltzmann test problem [1] is usually used to verify

the robustness of a numerical scheme when the mesh is not
aligned with the fluid flow. The initial mesh is generated by
following formulae

xi,j = (i− 1)hx + [0.1− (j − 1)hy] sin(π(i− 1)hx),

yi,j = (j − 1)hy,

where hx = hy = 0.01, 1 ≤ i ≤ 101, 1 ≤ j ≤ 11.
The initial state is (ρ0, p0, u0, v0, γ) = (1, 0, 0, 0, 5/3).

The left boundary condition at x = 0 is a pistol with velocity
u = 1. On all the other boundary, we set up wall conditions.

To move the grid in an approxiamte Lagrangian manner,
we adopt a grid moving strategy in CAVEAT code [1]. This
algorithm requires that the projection of velocity at a vertex
into the normal direction of an edge (sharing the vertex)
should be equal to the contact velocity of a one-dimensional
Riemann solution on that edge. Refer to Fig. 4. Due to the
fact that the problem is often overdetermined at a vertex,
the vertex velocity wq can be obtained by minimizing the
following quadratic functional for each vertex q

Func(wq) =
∑

k∈K(q)

Lk(wq ·Nk − Sk,∗)
2, (20)

where Nk is the unit normal direction of edge k, and Sk,∗ is
the contact velocity S∗ along the norm direction of k. K(q)
is the number of the edges sharing a vertex q.
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Fig. 4. Velocities associated with a cell vertex.
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Fig. 5. The grids of the Saltzmann problem at t = 0.7 using the HLLS
and HLL approximate Riemann solvers, top: HLLS, bottom: HLL.

After given the nodal velocity wq to move the grid, the
ALE calculation can be performed. The exact solution is a
planar shock wave that moves at speed 4/3 from left to right.
The propagation of the shock wave at t = 0.7 is displayed
in Fig. 5. The ALE HLL preserves one-dimensional solution
very well, whereas the ALE HLLS produces severe grid
distortion.

V. CONCLUSION

When there exists strong shock, the instability mechanism
appearing in the ALE calculation on a moving mesh has
close relation with numerical shock instability in the Eulerian
method.

In this paper, we pay attention to what is the factor most
likely to lead to the occurrence of unstable phenomenon. We
construct a HLLS scheme, which is a HLL-type Riemann
solver with a shear wave, and compare its solution behavior
with the classical HLL solver. The HLL method is stable
while the HLLS scheme is unstable although it has same
mass flux with the HLL one. The concrete performance is
that the HLLS solver produces the carbuncle phenomenon
in the Eulerian calculation and leads to a severe grid de-
formation in the ALE computation. The result indicates
that Liou’s conjecture for the root of the multidimensional
shock instability may not be correct in a general case. The
unique factor to cause instability may be viscosity vanishing
associated to the shear wave.
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