



Abstract—Regenerating codes have been proven a class of

optimal distributed storage codes in the tradeoff between

storage capacity and repair bandwidth. However, existing

regenerating codes rely on expensive computations such as

finite field multiplication. The high coding complexity makes

regenerating codes unsuitable for practical distributed storage

systems. BASIC codes, standing for Binary Addition and Shift

Implementable Convolutional codes, are proposed to reduce the

computational complexity, as well as to keep the benefits of

regenerating codes. In this paper, we implement an exact-repair

BASIC code at the minimum-storage (MSR) point in a practical

distributed storage system and compare it to Cauchy

Reed-Solomon (CRS) code atop a cluster testbed with 20

storage nodes. The results show that minimum-storage BASIC

code outperforms CRS code in terms of computational

complexity and achieves a significant reduction both of repair

bandwidth and disk I/O.

Index Terms—distributed storage system, regenerating codes,

implementation, experimentation

I. INTRODUCTION

O provide high storage reliability, large-scale distributed

storage systems [3], [4], [5] are transforming from

replication to erasure coding techniques, and Reed-Solomon

(RS) code [6] is a typical erasure code. RS code divides

original file into blocks, encodes them into ()

coded blocks, and stores in different storage nodes. Such

that the original file can be reconstructed from any set of

nodes. We term this property as maximum distance

separable (MDS) property. When a block is lost, RS code will

download coded blocks from the surviving nodes,

reconstruct the entire file, and encode again to obtain the lost

block. Term this process as data recovery, the amount of data

read from disks as repair disk I/O and the amount of data

transferred over the network as repair bandwidth. Data

recovery is mainly performed in two cases. One is to repair

from permanent failures (e.g., disk crash, device replacement,

long-term network disruption) where data is permanently lost.

The other is to degradedly read the temporarily unavailable

Manuscript received January 8, 2015; revised January 16, 2015. This

work is supported by National Basic Research Program of China (973

Program, No.2012CB315904), the National Natural Science Foundation of
China (No.NSFC61179028), the Natural Science Foundation of Guangdong

(GDNSF, No.S2013020012822), and the Basic Research of Shenzhen

(No.JCYJ20130331144502026, No.JCYJ20140417144423192).
Yumeng Zhang, Hui Li, Tai Zhou, Jun Chen, Hanxu Hou are with the

Shenzhen Engineering Lab of Converged Networks Technology, Shenzhen

Graduate School, Peking University, Shenzhen, Guangdong, 518055, China
(email: zhangyumeng06@126.com, huilihuge@163.com, zhoutai_1989@

qq.com, chenjun_9003@163.com, houhanxu@163.com).

data during transient failures or before the permanent failures

are restored. The reads are degraded as the unavailable data

needs to be regenerated form the available data of other

surviving nodes. High-performance recovery is necessary in

both cases. The repair bandwidth and repair disk I/O of RS

code in both cases are times size of the lost block, which

results in a waste of I/O operations and network bandwidth.

In large-scale multi-tiered data centers, the background

network traffic due to degraded reads and repairs can become

prohibitive for massive amounts of data stored.

Regenerating codes apply network coding to storage

systems to lower the network bandwidth upon data recovery,

while offer the same properties as erasure codes with respect

to storage and reliability. As explained in [7], regenerating

codes can be parameterized to achieve two extreme points:

the minimum-storage regenerating (MSR) codes and the

minimum-bandwidth regenerating (MBR) codes. However,

existing regenerating codes rely on complex parameters and

expensive coding computational operations, such as finite

field multiplication, which make them difficult to understand,

parameterize, and limit their applications in practical storage

systems [8], [13], [14]. Binary Addition and Shift

Implementable Convolutional (BASIC) codes, introduced in

[1], can achieve all the advantages of regenerating codes with

only addition and shift operations involved in coding process.

The data recovery of BASIC codes performs in the use of

ZigZag decoding algorithm [9]. An constructional instance of

exact- repair BASIC codes at the MSR point is provided in

[10].

In this paper, we provide a practical study of exact

minimum-storage BASIC (MS-BASIC) codes, and compare

it to Cauchy Reed-Solomon (CRS) code [11], which is a class

of optimized RS codes widely used in storage systems. We

theoretically show that MS-BASIC code provides the same

level of reliability and storage overhead as CRS code with

much lower coding calculation, repair bandwidth and disk

I/O. We implemented MS-BASIC code and CRS code in a

practical distributed storage system and experimented on a

cluster testbed with up to 20 storage nodes. Our experiments

take into account several significant metrics, including

computation overhead, repair bandwidth and repair disk I/O.

From the results, we find out that minimizing the data read

(repair disk I/O) and transferred (repair bandwidth) during

data recovery plays a crucial role in improving the overall

recovery performance. Our experiments verify that

MS-BASIC code conforms to our theoretical findings and

outperforms CRS code in terms of computational complexity.

More attractively, it achieves recovery throughput up to 2

times in the case of a single failure compared to the

A Practical Study of Exact-BASIC Codes at the

MSR Point in Distributed Storage Systems

Yumeng Zhang, Hui Li, Tai Zhou, Jun Chen, Hanxu Hou

T

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

traditional recovery paradigms based on erasure codes.

The rest of the paper is structured as follows. Section II

first reviews the background and formulates our code

construction. Section III presents our theoretical and analysis

findings. Section IV describes the detailed implementation of

MS-BASIC code in a practical distributed storage system.

Section V shows our experimental results, and Section VI

concludes this paper.

II. BACKGROUND AND CODE CONSTRUCTION

A. Regenerating Codes

As a generation of erasure-correcting codes, regenerating

codes are proposed in [7] to significantly lower the network

bandwidth and disk I/O upon data recovery. Consider an

() regenerating code that the file is divided into

 slices, which are encoded into coded slices and stored

in storage nodes, where each node stores a group of

slices. As shown in Fig. 1, A data collector (DC) connecting

to any set of nodes should be able to reconstruct the

original file. We refer to this process as reconstruction.

Moreover, regenerating codes rely on an additional parameter

 referred to as repair degree, which is the number of helper

nodes involved in data recovery. When a storage node fails,

to maintain the same level of redundancy, it will be replaced

by a newcomer which downloads slices each from any

surviving nodes. This process is termed as regeneration and

the total repair bandwidth is . It is shown that

regenerating codes lead to an optimal trade-off curve

between the amount of data stored and transferred. As

explained in [7], regenerating codes can be parameterized by

the value and to achieve two extreme points: MSR codes

and MBR codes, where MSR codes are corresponding to the

point with

 . (1)

B. Coding Framework

Unlike traditional RS codes and regenerating codes,

BASIC codes only involve the binary additions and

byte-wise shift operations to generate coded information,

which can reduce the computational complexity by a wide

margin [1]. Thus, we define two novel types of functions:

Shift() and xor().

Suppose we have an original data chunk of size ,

containing source slices, labeled by , each

of which consists of bytes. The structure of can

be represented as:

1 2 '

{ , , , }
i i i iL

d c c c  , 0,1,..., 1,i B  (2)

where is the -th byte of source slice .

1) We define a function as

'

1 2 '

'

}(,) {0,0, ,0, , 0,0, ,0

L r

i i i iL

l r lL

Shift d l c c c





    (3)

which shifts all bytes in data slice to right bytes and

returns a new slightly larger slice, with the size of , of

which the left bytes and the right bytes are padded

with zero and is the maximal degree of the global encoding

coefficients.

2) An function can be written in an

addition form:

1

0 1 0 11 1 0
(, , ,)

k

ik k i
xor d d d d d d d



  
     (4)

which applies the exclusive or operations in a bit-wise

manner among data slices and returns the result in the form of

a parity slice.

C. Construction of MS-BASIC Codes

As shown in [10], an MS-BASIC code is

composed of storage nodes, denoted by ,
satisfying the following two conditions:

 and . (5)

Therefore, by (1), they will also satisfy that and

 Algorithm 1 presents the encoding process

and placement policy of MS-BASIC code.

Algorithm 1 Encoding and Placement

Step1: Fragment a data chunk, with the size of L, into

equal-size data slices labeled by ,with

each size of .

Step2: Construct parity slices by

 , (6)

Step3: Let , then store as a

Source

Node 1Node 1

Node 2Node 2

Node 3Node 3

Node 4Node 4

Xα

α

α

α

New
Node

New
Node

β

β

β

DC

α

α

Encode and spread Regenerate Reconstruct

Fig. 1. An illustration of reconstruction and regeneration with

and . On failure of node 1, data from nodes 2, 3 and 4 is used for
regeneration.

N3

d3

N0

d1+d2+d3

d 0

N1

d1

N2

d2

N4

d4

N5

d5

d2+Shift(d3,1)

+Shift(d4, 2)

d3+Shift(d4,2)

+Shift(d5, 4)

d4+Shift(d5,3)

+Shift(d0, 6)

d5+Shift(d0,4)

+Shift(d1, 8)

d0+Shift(d1,5)

+Shift(d2, 10)

X

Shift(d 4, 2)Shift(d3, 1)

++
d2+Shift(d3,1)

+Shift(d4, 2)d1 Relayer
New Node
or Client

Fig. 2. An illustration of MS-BASIC code with , , and . On

failure of node 1, download 4 slices and from nodes
0, 2, 3 and 4 to regenerate the lost data stored in node 1.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

strip in the node for . Each node stores

 slices.

In Algorithm 1, stands for the number of bytes

shifted to the right of the data slice for the parity slice

 , which is chosen to be a positive integer and satisfies the

increasing difference property, such that the original

object can be reconstructed from any storage nodes by

ZigZag decoding method [9]. The coded slices include

data slices and parity slices. In general, the parity slices

are generated by (6).

When a node fails, the lost data can be regenerated by

the following Algorithm 2 in the use of a relayer model,

which easily fits into practical distributed storage systems,

and has been used in prior studies [3], [4], [5].

Algorithm 2 Regeneration

Step1: The relayer fetches the data slices from the next

nodes in the sequence. Note that the next node of is

 . From these data slices, the parity slices of the failed

node can be calculated.

Step2: The relayer fetches the parity slice from the

previous node in the sequence. Solving an easy system of

equations, the lost data slice can be repaired.

Step3: The relayer sends the regenerated data to a

newcomer for repairs from the permanent failures or to the

client who requests the data for degraded reads.

It is clear that at MS-BASIC code achieves bandwidth

optimality for parameter , by (5) and (6). Both

the repair bandwidth and repair disk I/O are approximately

 times size of the lost data. The failed node have

to be regenerated by a specific subset of nodes,

not any node.

Note that MS-BASIC code optimizes data regeneration

in scenarios when only one storage node is unavailable. If

multiple correlative nodes are unavailable, MS-BASIC

code performs reconstruction in a manner identical to RS

codes. We can check that a DC can reconstruct the original

object by downloading data of any storage nodes. For

any nodes, we can retrieve data slices and parity

slices, each of which is a linear combination of data

slices. The other data slices can be retrieved using the

ZigZag decoding method because of the corresponding

shifting coefficients satisfying the increasing difference

property [9].

D. Example

We present an example of the MS-BASIC code with

 , , and using Fig. 2. In the construction

process, the original object is fragmented into

data slices . Then, obtain parity slices

 using (6).

For (6, 3, 4) MS-BASIC code, we can repair one failure

node by connecting to 4 nodes and downloading one slice

from each helping node. Suppose node is failed. Our goal

is to regenerate its lost data. As shown in Fig. 2, and

 stored in node are

unavailable. A relayer, in which a daemon coordinates the

recovery operation, downloads and

from nodes and respectively, then performs

some simple additions and right-shift operations to recover

the unavailable data. The parity slice
 can be regenerated by adding the data slice ,

one-shift data slice and two-shift data slice . The data

slice can be repaired by the following equation:

 . (7)

In this data recovery, the total amount of data read and

transferred is size of the original object. The helper

nodes need no coding to repair a failure node. The coding

operations is only performed in the relayer. Such kind of code

is called repair-by-transfer code [12].

III. PERFORMANCE ANALYSIS

In this section, we study the recovering performance over

single failure by performing an analysis focusing on four key

metrics: repair computational complexity, repair bandwidth,

repair disk I/O and repair degree. CRS code was proposed in

[11] to simplify the computational complexity of regular

erasure codes, involving only exclusive or operations by

matrix representation of finite fields. Hence, we select CRS

code as a contrast item. The results are shown in Table I.

Suppose that a storage node is failed, the amount of data

stored in which is bytes. Recall that in

MS-BASIC code, each storage node consists of 2 slices, such

that the size of each slice is bytes. An CRS

code have a storage node containing slices, each size of

 bytes. Evaluating the repair computational

overhead, we compute the amount of binary additions during

recovery for a single failure, since the binary addition is the

main expense in the coding framework of CRS code and

BASIC code. In the repairing process of MS-BASIC

code, both the data slice and the parity slice can be

regenerated by summing slices. Such that, the repairing

process needs additions of bytes. The repair

computational complexity is O(). Likewise with the

conventional recovery of erasure codes, () CRS code

have to first compute the inverse matrix of the encoding

TABLE I
COMPARISON SUMMARY OF CRS CODE AND MS-BASIC CODE

Scheme Repair computational complexity Repair bandwidth Repair disk I/O Repair degree

(n, k)

CRS code

(n, k, d) MS-BASIC code

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

matrix, then multiply the inverse matrix by surviving coded

strips to decode the integrated original object [11]. Compared

to the time of adding large amounts of data, the time of

computing the inverse matrix is too small to be considerable.

The multiplication of the inverse matrix and coded strips

takes additions of bytes. So, the repair

computational overhead of CRS code is O().

Both the repair bandwidth and repair disk I/O of

MS-BASIC code are approximately times size of

the lost data, namely bytes. Moreover, the

repair degree is . For () CRS code, both the

repair bandwidth and repair disk reads are at least times of

 bytes, and the repair degree .

To sum up, MS-BASIC code cuts down the repair

computational complexity by several orders of magnitude

and provides reasonable overheads, . The

theoretical analysis as well as shows that MS-BASIC code

makes a reduction of approximately 2 on both repair

bandwidth and repair disk I/O compared to CRS code.

IV. IMPLEMENTATION

We complement our theoretical analysis with prototype

implementation. As a proof of concept, we implemented

MS-BASIC code atop of the Hadoop Distributed File System

(HDFS) [2]. We modified the source code of HDFS and

augmented several new modules. The relevant modules and

the communication flows for relevant operations are depicted

in Fig. 3.

A. Integration into HDFS

HDFS stores each file by dividing it into blocks of a certain

size. By default, the size of each block is 64MB, and this is

also the value that is typically used in practice. In HDFS, 3

replicas of each block are stored in the system by default to

achieve data reliability. There are a single NameNode and

multiple DataNodes in the cluster. The NameNode manages

the metadata for HDFS blocks, while the DataNodes actually

store HDFS blocks. To integrate our model of MS-BASIC

code into HDFS, we augmented several new modules,

including the RelayerNode, BlockFixer, CodedFS and

CodeLibrary. We deploys a relayer daemon in RelayerNode

and client node for failure recovery and degraded reads,

respectively.

On top of HDFS, we adds a new node named RelayerNode,

which mainly handles data recovery operation, if needed,

recovers the corrupted blocks in order to ensure the reliability

of the system. It periodically asks NameNode to check any

lost blocks and keeps a list of blocks that are missing and

needed to be recovered. The RelayerNode delegates the

recovery task to the BlockFixer, which periodically goes

through the corrupted blocks list and regenerates the blocks

with locally recovery process in small scale or via

MapReduce jobs in large scale.

CodedFS, in short of Coded File System, runs above HDFS

as a wrapper and handles all read/write requests for coded

data stored in HDFS. It creates CodedOutputStreams for

writing requests and CodedInputStreams for reading requests.

When writing a file to HDFS, CodedFS first performs

encoding of the file locally, then spreads the coded data

across the cluster by means of CodedOutputStreams. If a

corrupted block is requested, then CodedFS opens

CodedInputStreams, performs degraded read operations via a

locally running decoding process and responds to the read

request. Both RelayerNode and CodedFS rely on an

underlying component: CodeLibrary, which implements the

encoding and decoding functionalities, referred as Encoder

and Decoder.

B. Writing

Once the client sends a write request of a file to HDFS,

CodedFS launches the Encoder (Step 1). The Encoder

initially fragments the file into several data chunks, each

size of . Depended on the file size, the last chunk, which

is smaller than , is considered as "zero-padded"

full-chunk as far as the parity calculation is concerned.

The Encoder iteratively loads a chunk, divides it into

data slices, then encodes them into coded slices and

constructs slices into strips based on the specific

encoding algorithms (see Section II). During each iteration,

the Encoder writes strips into local temporary files

(Step 2). When the size of each file achieves the block size,

namely 64MB, CodedFS uses CodedOutputStreams to

upload the local data to HDFS across different nodes

(Step 3).

C. Recovery

The RelayerNode periodically asks NameNode to check

any lost blocks and keeps a list of blocks that are missing and

needed to be recovered. Once a single failure needs to be

recovered, the RelayerNode requests relevant metadata from

NameNode and delegates the recovery task to the BlockFixer

(Step 1-2). BlockFixer fetches data from helping nodes

(Step 3-4) and regenerates the lost block with locally

recovery process in small scale or via MapReduce jobs in

large scale according to the specific regenerating algorithms

(see Section II). Finally, RelayerNode sends the repaired data

to a newcomer to ensure the redundancy of the system (Step

5).

1

Client Node

NameNode

DataNode DataNode DataNode

3

CodedFS

…

RelayerNode

BlockFixer

CodedOutput
Stream

CodedInput
Stream

2

…

3
4

2
3

4 7

5 6

Client

Legend

Writing
Recovery

Degraded read

In HDFS

2
1

5

1

Fig. 3. An overview of our practical storage system. The communication

flows for writing, degraded read and recovery operations are shown.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

D. Degraded Read

Once a corrupted block is requested, CodedFS calls

Decoder to perform degraded read operation (Step 1). The

Decoder inquires the NameNode to get the coding

information and the locations of recovering related blocks

(Step 2-3), and then opens several CodedInputStreams to

read the data required for recovery from HDFS (Step 4-5).

Similarly to recovery operation, the block is reconstructed

locally based on the specific regenerating algorithm (see

Section II), and then responded to the read request (Step 6).

V. EVALUATION

In this section, we provide details on our experiments to

evaluate the performance of MS-BASIC code and compare it

with CRS code in a cluster of one NameNode and 20

DataNodes. Each node runs on a quad-core PC quipped with

4GB RAM, 3.6GHz CPU and 1Gb/s Ethernet card. All nodes

are interconnected over a 1Gb/s Ethernet switch and run

Linux CentOS5.6. For all evaluations, we consider the

encoding parameter , , a buffer size of 1MB,

and a system block size of 64MB, which is default value used

in storage systems. Since hadoop is implemented in Java, we

newly implement CRS code and MS-BASIC code directly in

Java, avoiding the fragile of JNI.

In a system perspective, we consider two levels of failures,

block failures and node failures, since block is the basic unit

of storage function in practical system and node is the basic

unit of physical devices. Both of them may influence the

performance of recovery in a practical system. We measure

the degraded read throughput, defined as the amount of data

being requested divided by the response time. All of our

results are averaged over 5 runs.

To evaluate the computational performance of data

recovery of CRS code and MS-BASIC code, we measured

the time taken for computations during degraded reads and

repairs. Fig. 4(a) presents the computation time for

regenerating one block failure and one node failure.

MS-BASIC code performs much faster regeneration than

CRS code. Fig. 4(b) depicts the repair bandwidth during

recovering a block and a node respectively. MS-BASIC code

significantly reduces the repair bandwidth, the averaged gain

is about 2 times compared to CRS code. In fact, the repair

disk I/O of MS-BASIC code during a single failure recovery

is the same as the repair bandwidth, since the code is

repair-by-transfer regenerating code with the minimal I/O

cost.

Recall form Section II that a recovery operation can be

decomposed into three steps. We evaluate the expected

performance of each recovery step to identify the bottleneck.

Table II illustrates the experiment results of time cost by

different recovery steps. We can see that the download step

uses the most time among all operations. This justifies the

need of minimizing the repair bandwidth to optimize the data

recovery performance in distributed storage systems. Fig. 4(c)

shows the results of degraded read throughput. Due to the big

reduction of download step, MS-BASIC code accelerates the

degraded read performance, the rate of which is close to the

twice of CRS code.

VI. CONCLUSION

In this paper, we focus on exploring the feasibility of

deploying regenerating codes in a practical distributed

storage system. We studied an exact minimum-storage

BASIC code, implemented it in a practical distributed storage

system and compared it to CRS code atop a cluster testbed

with 20 storage nodes. The results demonstrate that

MS-BASIC code outperforms CRS code in repairing cost and

coding cost and achieves an approximately 2 times reduction

both of repair bandwidth and disk I/O. In addition, we find

out that minimizing the data transferred (repair bandwidth)

during data recovery plays a crucial role in improving the

overall recovery performance. Owing to the reduction of

repair bandwidth, the degraded read throughput of

MS-BASIC code is boosted notably.

(a) Computation time (b) Repair bandwidth (c) Degraded read throughput

 Fig. 4. Measurements from HDFS cluster during a single failure: (a) computation time for regeneration, (b) repair bandwidth, and (c) degraded read

throughput.

0
100
200
300
400
500
600
700
800
900

1000
1100
1200

1 lost block 1 lost node

C
o

m
p

u
ta

ti
o

n
 t

im
e

(m
s)

CRS MS-BASIC

0

100

200

300

400

500

600

700

800

900

1000

1100

1 lost block 1 lost node

R
ep

a
ir

 b
a

n
d

w
id

th
 (

M
B

)

CRS MS-BASIC

0

2

4

6

8

10

12

14

16

1 lost block 1 lost node

D
eg

ra
d

ed
 r

e
a

d
 t

h
p

t
(M

B
/s

)

CRS MS-BASIC

TABLE II

TIME COMPARISONS FOR DIFFERENT RECOVERY STEPS IN THE TWO SCHEMES

Time (s) Download Regenerate Upload

CRS code 13.084 0.82 1.147

MS-BASIC code 7.021 0.784 1.404

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

REFERENCES

[1] H. Hou, et al, "BASIC Regenerating Code: Binary Addition and Shift

for Exact Repair," in Proc. IEEE ISIT, 2013.

[2] K. S., et al, "The Hadoop Distributed File System," in MSST ' 10, 2010.

[3] HDFS-RAID wiki. http://wiki.apache.org/hadoop/HDFS-RAID.

[4] C. Huang, H. Simitci, Y. Xu, et al, "Erasure Coding in Windows Azure
Storage," in Proc. of USENIX ATC, Jun. 2012.

[5] R. Bhagwan, et al, "Total recall: System support for automated

availability management," in Symp. Networked Systems Design and
Implementation (NSDI), 2004.

[6] Reed and Solomon, "Polynomial codes over certain finite fields," in

Journal of the Society for Industrial and Applied Mathematics, 1960.
[7] A. Dimakis, et al, "Network Coding for Distributed Storage Systems,"

in IEEE Trans. on Information Theory, 56(9):4539–4551, Sep. 2010.

[8] Jiekak, et al, "Regenerating codes: A system perspective," in ACM
SIGOPS, 2013.

[9] C. W. Sung and X. Gong, “A Zigzag-Decodable Code with the MDS

Property for Distributed Storage Systems,” in Proc. IEEE Int. Symp.
Inf. Theory, Istanbul, July 2013, pp. 341–345

[10] H. Hou, et al, "Construction of Exact BASIC codes for Distributed

Storage System at the MSR point," in IEEE Bigdata Workshop, 2013.

[11] J. S. Plank, “Optimizing Cauchy Reed-Solomon codes for

fault-tolerant storage applications,” in Technical Report CS-05-569,

University of Tennessee, 2005.
[12] N. B. Shah, et al, “Distributed storage codes with repair-by-transfer

and non-achievability of interior points on the storage-bandwidth

tradeoff,” in IEEE Trans. on Information Theory, vol. 58, no. 3, pp.
1837–1852, Mar. 2012.

[13] Y. Hu, Henry C. H. Chen, et al. NCCloud: Applying Network Coding

for the Storage Repair in a Cloud-of-Clouds. In FAST '12, 2012.
[14] Y. Hu, et al, "NCFS: On the Practicality and Extensibility of a

Network-Coding-Based Distributed File System," in Proc. of NetCod,

2011.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

