



Abstract—Aircraft software systems are categorized as

safety critical systems. This is due to them being employed in

high-risk tasks that require rigorous development

methodologies to assure their integrity. Designing these

systems require: 1) thorough understanding of their

requirements, 2) precise and unambiguous specifications, and

3) metrics to verify and validate the quality of software

produced. Safety critical aviation systems must adhere to

standards such as the RTCA DO-178C in order to be

acceptable by regulatory agencies. The DO-178C focuses on all

aspects of round trip software engineering. This paper outlines

a software engineering methodology that is model-based and

incorporates formal specification techniques towards being

DO-178C compliant.

Index Terms— Formal specification technique, methodology,

Z notation, UML, DO-178C

I. INTRODUCTION

VONIC software systems are categorized as safety

critical systems. This is due to them being employed in

high-risk tasks that require rigorous development

methodologies to assure its integrity. Failure of safety

critical systems could result in injury, loss of life, data, and

property. Safety critical aviation systems must adhere to

standards such as the RTCA DO-178C [1] in order to be

acceptable by the United States of America (USA) Federal

Aviation Administration (FAA) and other interested parties.

The DO-178C focuses on all aspects of round trip software

engineering and requirements based testing as key elements

of software verification to uncover errors.

Model-based software development (MBD) [2] places

software models as the primary artifacts of development.

Models are abstractions of software implementations and

can be used to show a particular view of a system (e.g., the

communication between system components or real-time

performance aspects). Precise models that abstract out

irrelevant details enable clear documentation, automated

analysis, efficient simulation, testing, and automated code

generation. The complexity of software used on avionic

systems means that key criteria for software success (e.g.,

safety, reliability) cannot be assessed by examining the code

alone. Abstractions of the code are needed to verify

Manuscript received January 21, 2015. This work was supported in part

by the University of North Dakota Faculty Research Seed Money Grant,

May 2014. Emanuel S. Grant, Ph.D. is an associate professor with the

Department of Computer Science, University of North Dakota, North

Dakota, USA phone: 701-777-4133; fax: 701-777-3330; e-mail:

grante@cs.und.edu. Tanaya Datta is a graduate research student with the

Department of Computer Science, University of North Dakota, North

Dakota, USA. tanaya.datta@my.und.edu.

reliability and safety properties that are necessary for

mission success.

The focus of MBD is to transform, refine, and integrate

models into the software development life cycle to support

system design, evolution, and maintenance [3]. They can be

derived through forward or reverse engineering. Forward

engineering is the process of moving from high-level

abstractions and implementation independent designs to the

implementation of a system [4]; while reverse engineering is

the process of recovering design decisions, abstractions, and

rationale from source code [5].

The Unified Modeling Language (UML) [6] is a set of

graphical and textual notations for modeling various views

of software systems, using object-oriented (OO) concepts.

The UML is a standard modeling notation that was

developed in response to the problems arising out of a

proliferation of OO modeling notations, and has been

accepted as the de facto modeling notation for OO software

systems. System validation and verification are fundamental

to assuring quality and reliability of safety critical systems.

In model-driven software development, informal notations

are often used in requirements capture and detail system

design. Informal notations possess advantages, but are

imprecise.

Formal Specification Techniques have been advocated as

a supplementary approach to amend the informality of

graphical software models [7] [8]. They promote the design

of mathematically tractable systems through critical thinking

and scientific reasoning. FSTs use a specification language,

such as Z notation, to describe the components of a system

and their constraints. Unlike graphical models, formal

models can be analyzed directly by proof tools – which

checks for errors and inconsistencies. Detractors of FSTs

claim, they increase the cost of development, require highly

trained experts, and are not used in real systems [9].

However, they have been used in case studies which

unveiled that, FSTs facilitate a greater understanding of the

requirements and their feasibility [10] [11]. Although the

use of FSTs is sometimes controversial, their benefits to

critical systems offset the disadvantages.

On a recently ended (but not concluded) UND UAS Risk

Mitigation Project [10] [12] software development

methodologies that comply with DO-178C objectives were

required. The definition and implementation of such

software development methodologies is a new, important,

and urgent area of research for airborne operation software,

and the broader safety critical software system domain. Key

areas of learning from the UAS project were:

1. An algorithmic process for transforming the semi-

Roadmap to a DO-178C Formal Model-Based

Software Engineering Methodology

Emanuel S. Grant, Member, IAENG, Tanaya Datta

A

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

formal software system representation to a formal for

analysis and correction feedback was defined, i.e. a

repeatable process (see Figure 4). This repeatable

process will be compliant with DO-178C

specification.

2. Automation or semi-automation tool use has to be a

part of FST validation and verification process.

Manual definition of the formal specification would

result in the introduction of errors and the process

must be repeatable.

3. The formal representation of the system will act as

specifications for a health and status monitoring

system (HSMS) for the process control system. A

HSMS acts as an overseer of the process control

system in operation, and report normal and abnormal

changes in the state of the process control system.

This will provide actionable knowledge to the

operators in the event of any system failure.

A. Research Goal

This on-going work addresses continuing research from

the UND UAS project. The continuing research focuses on:

(1) definition of an object-oriented model-based software

development methodology that features formal specification

techniques (FST) for software validation and verification

that comply with DO-178C guidance, (2) development of

tool support for FST representation transformation, and (3)

specification of health and status monitoring system for

safety critical system development. Only (1) is reported on

in this paper.

The following Section 2 outlines the research areas of the

project, while Section 3 presents a UML description of the

DO-178C specification. Section 4 presents the defined

model-based software development methodology and

Section 5 presents the conclusion and future work of the

project.

II. RESEARCH COMPONENTS

A. The UML

Graphical object-oriented modeling languages are a

subset of visual languages and are used for the modeling of

problems and solutions within the software development

field. Modeling languages are intended to be used for not

only specifying models of software systems but to also

facilitate documentation of the systems [6]. Use of modeling

languages in software development is now focused around

the UML (Unified Modeling Language) [6]. The UML as a

language is used to communicate among developers about a

system by means of “…captured knowledge (semantics)

about a subject and expressed knowledge (syntax) regarding

the subject” [1].

The UML as a modeling language focuses on the

understanding of a system (subject) from the specification of

graphical models of the system (subject) and the system’s

(subject’s) related context. In this context the models

contains knowledge about the system (subject). This leads

to an understanding of visual software modeling languages

as being similar to that of visual languages, i.e. comprising a

syntax and semantics, as previously defined, but to be used

to specify and document what is required and to be realized

of a software system.

 Diagrams in UML are categorized as structure, behavior,

or interaction diagrams. Structure diagrams represent the

static composition of the system. Examples of structure

diagrams include class, component, object, deployment, and

package diagrams. Behavior diagrams illustrate the dynamic

features of the system by showing how the system is acted

upon during execution. These diagrams include use case,

activity, and state diagrams. Interaction diagrams are an

extension of behavior diagrams but focuses mainly on the

internal elements of the system. Examples of interaction

diagrams include sequence and collaboration diagrams.

Class diagrams and use case diagrams facilitate

communication between nontechnical stakeholders and

developers. The more complex UML diagrams such as

sequence and state chart diagrams are more technical and

suitable for astute stakeholders such as engineers and

developers.

B. Formal Specification Techniques

Formal specification techniques (FST) involve the use of

a specification language to describe software models with

precision. It uses mathematical concepts and principles to

design models that are sound and tractable. FSTs facilitate

analysis of the syntax and semantics of models using proof

tools. If errors are found, amendments can be made to the

models in an evolutionary manner. The specification

language that is used in this work is the Z notation [13], but

use of other formal notation can be conducted. Z notation is

used to describe software systems based on the mathematical

principles of set theory and predicate logic. It was created

by Jean-Raymond Abrial in 1977.

To transform UML models into Z notation, a Z schema

will be created for each UML model construct in the class

diagram. A schema in Z has two parts: a declaration part

and a predicate part [13]. The declaration part is

synonymous to the list of attributes in a UML class.

However, the fundamental difference between the two is

that, primitive data types are not utilized in Z schemas.

Variable declaration types are expressed as mathematical

notations or user defined types. The predicate part imposes

constraints on the variables and its schema. These

constraints are critical because they prohibit or permit a

schema access to its environs. Figure 3 illustrates the

structure of a Z schema.

Figure 1. Z schema structure

Once the models have been transformed into the Z

notation, they can then be analyzed by tools such as the

Z/EVES [14]. Z/EVES is a proof tool that is used to checks

the syntax and semantics of Z schemata. This is the process

of software validation, by which software models undergo a

series of analysis to check for errors and anomalies. It is

also used to determine whether the quality of the software

produced meets the user requirements and if it performs as

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

expected. It is impractical for testing to detect all types of

errors, and even the most rigorous testing procedure will, as

stated by Edsger Dijkstra, show the presence of bugs but

never their absence [15]. FST does not necessarily eliminate

the need for software model testing, especially if they are

models of a safety critical system.

C. Transforming Models

The level of abstraction provided by models helps

developers and stakeholders visualize different aspects of

the system while avoiding the details of implementation.

This represents two principles of software engineering,

namely the abstraction and separation of concern principles

[16]. For any given system, a large number of models can

exist and it is important to ensure their overall consistency.

Model transformation uses a set of rules called

transformation rules, which accepts one or more models as

input and produce one or more target models as output [17].

Model transformation may be conducted manually or

automatically. Manual transformations are conducted when

transformation rules are not well defined, and lack an

algorithmic description. Automatic transformation applies

well-defined transformation rules through a toolkit. It is

important, however, that the software engineer have a good

understanding of the scope of the project, the syntax, and

semantics of the source and target models irrespective of the

transformation approach taken. This research defines an

automated transformation processes to derive models that

are more formal. In order to automate the aforementioned

approach, a set of transformation rules are defined and

applied to the models. The source models are UML model

diagrams and the target model is their equivalent Z schemas.

Figure 2. Informal to Formal Transformation Paradigm

At the end of each stage of the model development

process, transformation may be conducted to go from an

informal (UML) model to a formal (Z notation)

representation (model). The purpose for this transformation

is to conduct analysis of the formal representation of the

system. Errors discovered during the formal analysis are

then corrected in the formal models and this transformation-

analysis-correction iteration continues until an acceptable

level of safety assurance is achieved in the informal (UML)

models. The UML models will eventually be transformed

into code, once the desired level of detailed in accomplished

at the PSM level of representation. Formal specification

representations are usually not directly transformable to

programming language code. Figure 2 graphically outlines

this iterative transformation process for producing code in a

model-based approach, as is at the heart of this research

effort. Figure 4 captures the duel approaches of forward and

reverse engineering, wherein the solid depicts the forward

engineering path and the broken line depicts the reverse

engineering approach. Eventually, both paths terminate the

iteration with the generation of executable code of the safety

critical system

III. DO178C IMPLEMENTATION

In order to develop a model-based software development

methodology that complies with the DO-178C specification

a series of UML models were developed to represent aspects

of DO-178C. This approach taken is similar to the approach

used in defining the UML specification [6]. Figure 3 depicts

a high-level UML package model of DO-178C, which

illustrates that the Software Planning Process defines the

Software Development Process and the System Integral

Process. The Software Integral Process comprises the

Software Certification Process, the Software Safety Quality

Assessment Process, the Software Verification Process, and

the Software Configuration Management Process. Each

package is then further refined to provide the detail content

of the package.

Figure 3. DO-178C high-level UML package diagram

Each of the packages of Figure 3 is decomposed into its

components and these components are further decomposed

into the low-level constituents of the DO-178C specification.

These constituents are made up of processes, data items, and

constraints. The goal of this approach is to re-orient the

DO178C textual specification into a more understandable

hierarchical graphical model that presents an ontological

map between the DO178C constituents. Numbers appearing

in Figure 3 denotes the section number in the DO-178C

specification [1] for the associated item. Figure 4 captures a

subset of the high-level DO-178C processes that are

necessary in order to be compliant. Similar to the Figure 3,

the numbering in Figure 4 references the relevant section of

the DO-168C specification.

Figure 5 is an elaboration of the Software Planning

Process of Figure 3, which includes the Software System

Planning Objective. Figure 5 illustrates that the Software

System Planning Activity, which has been stereotyped as

<<process>> is of the specialization sup-processes of

Develop Software Standard, Plan Software Development,

Review Plan & Standard, and Plan Software Integral. In

order to accomplish these tasks the data items, which have

been stereotyped as <<data item>>, PSAC (Plan for

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

Software Aspects of Certification), SDP (Software

Development Plan), SVP (Software Verification Plan), SCM

Plan (Software Configuration Management Plan, and SQA

Plan (Software Quality Assessment Plan) are associated

(created, and updated).

Figure 4. DO-178C Use Case Diagram

Figure 6 is an elaboration of the SDP of Figure 3. In

Figure 6 it is shown that the Software Development Plan is

composed of three <<data item>>; namely, Software

Development Standard Plan, Software Life Cycle Plan, and

Software Development Environment Plan. The Software

Development Plan is in turn composed of the Software

Requirement Standard, the Software Design Standard, and

the Software Code Standard. The Software Life Cycle Plan

and Software Development Environment Plan are similarly

illustrated in terms of their components. The decomposition

each component of DO-178C specification continues until

the most detailed description is obtained.

Figure 5. DO-178C Software Planning Process model

Figure7 captures the UML activity diagram description of

the DO-178C Software Requirement Process Activity 5.1.2.

This model illustrates that the Software Requirement Process

consist of four sub-processes, with Acquire Domain

Standard/Guideline, Acquire Requirement Document, and

Conduct Survey/Interview being done concurrently (as

needed) and Conduct Requirement Analysis 5.1.2b being

done after the concurrency phase.

Figure 6. DO-178C Software Development Plan model

Figure 7. Requirement Process Activity Diagram

IV. MODEL-BASED DO-178C SOFTWARE DEVELOPMENT

METHODOLOGY

Once all the UML models of the DO-178C specification

have been completed then the model-based development

methodology may be finalized. Figure 10 illustrates this

methodology as a UML activity diagram.

Figure 8 presents a high-level UML activity diagram of

the research model-based software development

methodology that is compliant with the RCTA DO-178C

specification for airborne software systems. The

methodology incorporates tasks as described by the DO-

178C for software development and incorporates a set of

UML models, which are the bases for the software systems

that are produced. The models are produced through a

series of iterative, refinement, and transformational

processes.

In Figure 8, starting with the input of the Software

Requirement Data (11.9) models of UML use case diagram,

use case specifications, and requirements-level class

diagram, the Conduct High-Level Design sub-activity

transforms these models into a series of UML design level

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

class diagram and activity diagrams, and Z schema models

as output. These outputs then become inputs to the Verity

High Level Design (6.3) sub-activity, where they are

transformed and refined into UML collaboration and

sequence diagrams and state charts, along with refined Z

schema models. The Verify High and Low Level Design

sub-activities involve tool analysis of the Z schema models

to identify errors. Any such error is reported back to the

preceding sub-activity where corrective action is taken.

Once errors are corrected, activity then transition in an

iterative manner. The required Software Verification

Results (11.14) are produced at the end of each sub-activity.

Within each sub-activity of Figure 10, the refinement and

transformation of the models are conducted in an iterative

manner.

Figure 8. UML model-based methodology

A. Model Transformation Process

After the UML models were designed, the attributes,

operations, and relationships of each class are analyzed

separately. This analysis highlighted patterns, which

appeared standard throughout the manual transformation of

the UML models. From these patterns, a set of rules were

defined that should yield representative formal models from

their graphical counterpart – provided the graphical models

are well-formed UML models. The process of

transformation a UML model to its formal Z notation

representation is captured in a set of rules. These ten rules

are:

1. Declaration of Basic Types, Composite Types and

Global Variables

2. Establishing Data Types for the Object Identity of

each Z Schema

3. Define Attribute Schemata

4. Define Class Schemata

5. Define Identity Schema

6. Define Relationship Schemata

7. Define Parameter Schemata

8. Define Operation Schemata

9. Define configuration schema

An example UML class diagram and a subset of its Z

specification are presented in figures 9 and 10 respectively.

Figure 9. UAS Aircraft Class Diagram

 [STRING]

[AIRCRAFT]

[COORDINATE]

MAV: ℙ AIRCRAFT

UAV: ℙ AIRCRAFT

MAV ∪ UAV ⊆ AIRCRAFT

 Aircraft_Attribute

call_sign: STRING

roll: ℙ ℕ

air_speed: ℙ ℕ

heading: ℙ ℕ

∀ air_speed: air_speed ⦁ air_speed ≤ 250

Figure 10. Z Schema

The next phase of this project involves implemented it on

a large-scale industrial size project. It has already being

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

implemented on large research project at the University of

North Dakota. The UND – UAS Risk Mitigation Project

was awarded a contract to develop a proof-of-concept air

truth system, which monitors the operation of UAVs in the

US National Airspace. The project started with minimal

requirements; however, the timeframe for delivery was very

rigid. This resulted in the rapid development of a prototype

to assist in exploring and developing additional

requirements.

The methodology was then applied to the class diagram of

a component from the UAS Risk Mitigation System – i.e.

The UAS Display System. The class diagram for this

component contained 9 classes with a combined total of 455

attributes, 16 associations (including hierarchical

relationships) and their respective multiplicities. There were

a total of 56 operations that were analyzed; as well as the pre

and post conditions of their respective 63 local variables and

28 parameters were evaluated. This derived 206 paragraphs

in Z/EVES, which included the declaration of schemas,

basic types, and axiomatic definitions.

A proposal is currently under review by NASA

Aeronautics Research Mission Directorate for funding to

conduct this approach to aircraft cockpit flight control

systems. With incidents as the Air France, flight 447 crash

in 2009, where software failure was a factor in the

investigation it is crucial that such software be developed to

a standard that is based on rigorous development, analysis,

and verification and validation. A second funding proposal

has been submitted to a major air cargo corporation for the

development of an air cargo flight management system. It is

anticipated that the lessons learned from any of these

projects will contribute to the growing body of knowledge

on model-based software development that incorporates

formal specification techniques for verification and

validation.

V. CONCLUSION

In this paper, a model-based software development

methodology that complies with the RCTA DO-178C

specification was presented. The purpose of this work is to

facilitate software development in the domain of safety

critical systems, specifically avionic software systems. This

research effort is a derivative of work done on a University

of North Dakota UAS project. Other related research areas

include developing automation of some of the

transformation processes defined in this methodology. An

example of this is the transformation of UML class diagram

graphical models to Z notation schema representation [10,

12]. The validation of this work will be demonstrated on the

development of a safety critical system; this is the next phase

of the work.

REFERENCES

[1] RTCA Special Committee 205 (SC-205). “DO-178C - Software

Considerations in Airborne Systems and Equipment Certification,

RTCA, Washington DC, DO-178C, Dec. 2011.

[2] R. B. France, and B. Rumpe. “Model-driven Development of

Complex Software: A Research Roadmap”, Proc. FOSE '07 Future

of Software Engineering, IEEE Computer Society Washington, DC,

p. 37-54, 2007.

[3] T. Mens, and P. Van Gorp, “A Taxonomy of Model Transformation”,

Electronic Notes in Theoretical Computer Science, vol 152, Proc. of

the International Workshop on Graph and Model Transformation

(GraMoT 2005), p. 125-142, March 2005,.

[4] E. J. Chikofskyand J. H. Cross II, “Reverse Engineering and Design

Recovery: A Taxonomy”. IEEE Software. vol. 7, 1, p. 13—17, Jan.

1990.

[5] A. Sutton, and J. I. Maletic. “Recovering UML class models from

C++: A Detailed Explanation”. Information Software Technology.

49, 3, 212—229 2005.

[6] ISO/IEC 19501, Information Technology - Open Distributed

Processing, “Unified Modeling Language (UML)” Version 1.4.2,

2005..

[7] R. B. France, A. Evans, K. Lano, and B. Rumpe. “The UML as a

Formal Modeling Notation”..Computer Standards & Interfaces, vol

19, 7, p. 325—334, Nov. 1998.

[8] A. Hall. “Using Z as a Specification Calculus for Object-Oriented

Systems.” Proc. of the Third International Symposium of VDM

Europe on VDM and Z - Formal Methods in Software Development,

p. 290—318 April 1990.

[9] A. Hall “Seven myths of formal methods.” Software, IEEE, vol.7,

no.5, p. 11—19 Sept. 1990.

[10] S. Clachar, and E. S. Grant. “A Case Study in Formalizing UML

Software Models of Safety Critical Systems.” In Proc. of the Annual

International Conference on Software Engineering. Phuket,

Thailand, Apr. 2010.

[11] R. B. France, J. M. Bruel, M. M. Larrondo-Petrie “An Integrated

Object-Oriented and Formal Modeling Environment”. Proc. of

JOOP. 25—34, Oct. 1997.

[12] E. S. Grant, V. K. Jackson, S. A. Chachar. “Towards a Formal

Approach to Validating and Verifying Functional Design for

Complex Safety Critical Systems”. Proc. 2nd Annual International

Conference on Software Engineering & Applications (SEA 2011),

Hotel Fort Canning, Singapore, Singapore. April 2011.

[13] J. M. Spivey “The Z Notation: a Reference Manual.” Prentice-Hall,

Inc. 1989.

[14] M. Saaltink “The Z/EVES System: The Z Formal Specification

Notation.” Proc. of the 10th International Conference of Z Users,

Reading, UK. April 1997.

[15] O. J. Dahl, E. W. Dijkstra, and C. A. Hoare, Eds. Structured

Programming. Academic Press Ltd. 1972.

[16] C. Ghezzi, M. Jazayeri, and D.Mandrioli. “Fundamentals of Software

Engineering” Prentice Hall, ISBN 0133056996, 2003

[17] S. Sendall, and W. Kozaczynski “Model Transformation: The Heart

and Soul of Model-Driven Software Development.” Software, IEEE,

vol.20, no.5, p. 42-45, Sept.-Oct. 2003.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

