

Abstract—While software testing concerns the efficient test

case design and test procedure to unveil the software defects,

it is difficult to conduct the testing of the complicated and

concurrent software. The formal verification of the software

source code is considered as the complementary to the

conventional testing. The verification model is expected and it

is possibly extracted from the source code using automated

scheme. Several researches have already provided the

appropriate high level guidelines to translate Java into formal

verification model. In this paper, we propose a development of

an automated translation tool of Java source code into

Proemial. The Java control flows and basic arithmetic and

logical operators are focused due to the specific data types

and control flows in Promela. The ANTLR tool is exploited to

build our Lexer/Parser. We implement the Promela code

generator based on the existing high level Java to Promela

mapping ideas in terms of #define macro statements.

Index Terms—Translation, ANTLR, Promela

I. INTRODUCTION

XTRACTION of verification model from the

programming language source code and subsequently

followed by having it verified, are the complementary to the

software testing. While the software testing concerns the

efficient test case design and conducting the test

procedures, the model checking of the source code would be

possibly another approach to ensure the liveness and

correctness of the complicated and concurrent software [1].

However, the verification model extraction task is still

difficult and the formal methods related backgrounds are

needed.

 Currently, Java programming language is the essential

and powerful in almost categories of the object-oriented

software applications. Although, several researches are

proposed in order to translate Java source code into

verification model written in Promela [2].

In this paper, we propose an alternative scheme of

automated translation of Java control flow into Promela.

The input Java source code is syntactically analyzed and

parsed using ANTLR tool. Then, we develop the translating

tool to deal with the ANTLR’s tokens which representing

Jirapat Lueangviriyayarn is a graduate student of Department of

Computer Engineering, Faculty of Engineering, Chulalongkorn University.

Her research interest is Software Engineering (e-mail:

Jirapat.Le@Student.chula.ac.th).

Wiwat Vatanawood is currently an Associate Professor of Computer

Engineering, Faculty of Engineering, Chulalongkorn University. His research

interests include Formal Specification, Formal Verification, Software

Architecture. (e-mail: wiwat@chula.ac.th).

the structure of the original Java source code. Our

translating tool generates the corresponding Promela using

high level ideas for translating Java to Promela mentioned

in [2].

This paper is organized as follows. Section 1 is the

introduction and the backgrounds are reviewed in section 2.

Our scheme of automated translation of Java control flow

into Promela is described in section 3. Section 4 is our

conclusion.

II. BACKGROUND

A. Promela [3]

Promela is one of the well-known verification modeling

language which is used to represent the properties of a

formal system in SPIN. The SPIN [4] is a verification

system that preferably supports the design and verification

of the concurrent systems. Promela is C-like language so

that it is common to most of the developers. However, the

Promela is still difficult and the backgrounds in

mathematical logic are needed. Typically, a Promela

process is simply written as shown in Fig. 1. A process is

declared by the word “prototype” following with the process

name. The parameter lists would be defined along with the

local variables and the process body.

Fig. 1. A simple Promela process declaration

Promela is good in the definition of process and message

interactions so that its data types are limited to the

primitive ones, such as integer, boolean, bit, byte, unsigned,

etc. While, the primitive operators are concerned on basic

arithmetic operators, logical operators, bit manipulation

operators, conditional comparison operators. Fig. 2. shows

the data types supported by Promela and Fig. 3. shows the

sample of basic control flows in Promela.

Automated Translation of Java Control Flow

into Promela

Jirapat Lueangviriyayarn, Wiwat Vatanawood

E

Parameter Name

Body

proctype Example (chan input; chan output) {

 int count;

 int a;

 do

 :: count = count+1

 if

 :: count == 10 -> skip

 :: else -> a = a+count

 Fi

od

}

Local variable

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

Data Types Values Size (bits)

bit, bool 0, 1, false, true 1

byte 0 ... 255 8

short -32768 ... 32767 16

int -231 ... 231-1 32

unsigned 0 ... 2n-1 ≤32
Fig. 2. The data types supported by Promela [3]

Basic Control Flow Promela Statements

atomic Sequence atomic{

statement_1;

statement_2;

}

if statement if

:: (a != b) -> statement_1;

:: (a == b) -> statement_2

fi

do-loop do

:: count = count +1

:: a = b+2

:: (count == 0) -> break

od

for-loop for(int i=0; i<5; i++){

statements;

}
Fig. 3. A sample of basic control flows in Promela [5]

B. ANTLR [6]

ANTLR (ANother Tool for Language Recognition) is a

parser generator. It is widely used to build a Lexer/Parser of

any language. In this paper, ANTLR needs the Java

grammar rules to build a Lexer/Parser of Java source code.

The Lexer performs the lexical analysis to tokenize the Java

source code into a set of valid tokens. Then, the Parser does

the walkthrough all of these valid Java tokens and

recognizes the valid Java statements. The ANTLR needs

the grammar rules written in the notations defined in [7]. In

this front-end part, we use ANTLR as our tool to build Java

Lexer/Parser and we also modify the parser to capture the

Java tokens and rearrange the sequences of the tokens to

ease our translation scheme in our back-end part.

III. OUR AUTOMATED TRANSLATION SCHEME

In our automated translation scheme, the Java source

code is simply prepared as our input source file and the

programmer would only expect the resulting corresponding

Promela code in return. In this paper, the resulting Promela

code is capable of representing the Object and Class,

Methods, Basic mathematical operators, Methods Call, If

statements and For statements, Thread and Synchronized

methods. Fig. 4. shows the block diagram of our automated

translation scheme.

Fig. 4. Our automated translation scheme

A. Using ANTLR to build Java Lexer/Parser

The ANTLR is known as the universal language compiler

construction tool set. In our approach, it takes the grammar

rules written in EBNF that specify Java language and

generates the Java language Lexer/Parser component. We

can easily add some necessary actions to handle the tokens

of Java to help finally generate the target Promela source

code.

Our grammar rules of Java are defined based on original

Java grammar rules in [8]. We embedded our additional

actions into the Lexer/Parser in order to rearrange each

token found in the input Java source code. The parser rules

define Class, Global variable, Method, Local variable,

Statement, Method invoking, If and For statement

respectively.

B. Lexer/Parser

The Lexer/Parser is built by ANTLR according to the

appropriate Java grammar rules mentioned earlier. The

Lexer/Parser provides us the syntax checking tool to the

input Java source code from the programmer. It is an

efficient, flexible and simple way to deal with the front-end

part of our automated translation tool. We are capable of

supporting Java-like language, such as C# by having

another C# grammar rules instead.

A Sample of the input Java source code is shown in Fig.

5. It would be analyzed by this Lexer/Parser so that the

tokens would be classified and conceptually visualized as a

syntax tree, shown in Fig. 6.

ANTLR

Grammar Rules
ANTLR

Lexer/Parser

(by ANTLR)

Input Java

Source Code

Promela Code

Generator

Promela

Source Code

1

2

3

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

Fig. 5. A sample of the input Java source code

Fig. 6. The syntax tree analyzed by the parser

In our approach, the additional Java-style actions are

embedded and attached to each parser rule in order to

capture the tokens found at the leaves of the syntax tree,

store and pass them to our next component called “Promela

Code Generator.” Fig. 7. shows a sample of our additional

actions embedded in the ANTLR’s grammar rule. The

action stores all of the classes name found into a specific

variable named “className” and all of the inherited classes

are also stored into a variable named “classExtend”. Then,

both of the variables are passed to our further Promela Code

Generator.

Fig. 7. Our sample action embedded in ANTLR’s grammar rule

C. Promela Code Generator

We develop this Promela code generator according to the

high level ideas for translating Java to Promela code, shown

in [2]. The following Java syntaxes are considered: the

Object and Class, Methods, Basic mathematical operators,

Methods Call, If and For statements, Thread and

Synchronized methods. However, the data types and

operators of the Promela are limited to primitive ones, such

as integer, boolean, bit, byte, unsigned, etc. The primitive

operators are basic arithmetic operators, logical operators,

bit manipulation operators, conditional comparison

operators.

This Promela code generator is designed to automatically

generate the final Promela code by mapping the Java

statement into Promela in terms of "#define" macro

statements. The difficult issues are the consistency and

continuity of the resulting Promela code to represent the

object instantiation and object inheritance in Java.

Moreover, the Java multithreading methods using

“Synchronized” and their concurrent objects are

represented as well. The implementation of the guided

mapping table is demonstrated in Fig. 8. and Fig. 9.

Fig. 8. Our sample of Java multithreading source code

Fig. 8. shows two Java threads named “adder1” and

“adder2” and the Fig. 9. shows the resulting Promela code

which correctly performs the concurrent threads of adder1

and adder2.

The instrument tests are conducted to assure the

consistent behaviors between the Java version and Promela

version of the codes. As shown in Fig. 10. and Fig. 11., the

print out of Java code is consistent to the print out of

Promela code.

class Test {

 public int x;

public void add2x (int d) {

 x = x+d;

}

}

classDeclaration

 : 'class' n=IDENT {List className;

 if(memory.containsKey("className")){

 className = memory.get("className");

 className.add($n.text);

 memory.put("className", className);

 }else{

 className = new ArrayList();

 className.add($n.text);

 memory.put("className", className);

 }}

 typeParameters?

 ('extends' t=IDENT {List classExtend;

 if(memory.containsKey("classExtend")){

 classExtend = memory.get("classExtend");

 classExtend.add($t.text);

 memory.put("classExtend", classExtend);

 }else{

 classExtend = new ArrayList();

 classExtend.add($t.text);

 memory.put("classExtend", classExtend);

 }})?

 ('implements' typeList)?

 classBody

 ;

class X {

 public int x;

 public X() { x=0; }

 public void add2x (int d) { x = x+d;

 System.out.println("x = "+x);}

}

class XY extends X {

 public int y;

 public XY() { y = 0; }

 public void add2y (int d) { y=y+d;

 System.out.println("y = "+y);}

 public void add(int dx, int dy) {

 int old_x = x;

 int old_y = y;

 add2x(dx);

 add2y(dy);

 }

}

class Adder extends Thread {

 private XY xy;

 public Adder(XY xy) { this.xy = xy; }

 public void run() { xy.add(4,4); }

}

class Main {

 public static void main(String[] args) {

 XY xy = new XY();

 Adder adder1 = new Adder(xy);

 Adder adder2 = new Adder(xy);

 adder1.start();

 adder2.start();

 }

}

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

Fig. 9. Our resulting Promela code representing the Java threads

Fig. 10. The instrument test of println() in Java source code

Fig. 11. The instrument test of printf() in Promela source code

IV. CONCLUSION

In this paper, we propose a development of an automated

translation tool of Java source code into Promela code. Our

scheme includes the front-end part called "Lexer/Parser"

which is built using ANTLR tool. We modified an original

Java ANTLR’s grammar rules from [8] to capture and

rearrange the Java tokens using our embedded actions

attached to each particular parser rule. Our back-end part

called “Promela Code Generator” which is designed and

developed to generate the resulting Promela according to

the Java to Promela mapping table guided by [2]. We focus

only on the Java basic control flows which means the

primitive data types and operators are only supported.

Moreover, the Java multithreading method is also

supported. The Promela code is generated in terms of

#define macro statements and the object instantiation and

inheritance are also assured. The instrument tests are

conducted to assure the consistent behaviors of both source

codes.

#define ClassName mtype

#define Index byte

#define undefined 0

#define MAX 5

#define null -1

#define this _pid

ClassName = {X,XY,Adder,Main}

typedef ObjRef{ClassName class; Index index};

typedef X_Class{int x; };

X_Class X_Obj[MAX];

Index X_Next = 0;

#define X_get_x(obj)

(obj.class == X -> X_Obj[obj.index].x :

(obj.class == XY -> XY_Obj[obj.index].x : undefined))

#define X_set_x(obj,value)

if :: obj.class == X -> X_Obj[obj.index].x = value

:: obj.class == XY -> XY_Obj[obj.index].x = value fi

#define X_constr(obj)

ObjRef obj; obj.class = X;

atomic{obj.index = X_Next; X_Next++};

X_set_x(obj,0);

#define X_add2x(obj,d)

X_set_x(obj,X_get_x(obj)+d);

typedef XY_Class{int y; int x; };

XY_Class XY_Obj[MAX];

Index XY_Next = 0;

#define XY_get_y(obj)

XY_Obj[obj.index].y

#define XY_set_y(obj,value)

XY_Obj[obj.index].y = value

#define XY_constr(obj)

ObjRef obj; obj.class = XY;

atomic{obj.index = XY_Next; XY_Next++};

X_set_x(obj,0); XY_set_y(obj,0);

#define XY_add2y(obj,d)

XY_set_y(obj,XY_get_y(obj)+d);

#define XY_add(obj,dx,dy)

old_x = X_get_x(obj); old_y = XY_get_y(obj);

X_add2x(obj,dx); XY_add2y(obj,dy);

typedef Adder_Class{ObjRef xy};

Adder_Class Adder_Obj[MAX];

Index Adder_Next = 0;

#define Adder_get_xy(obj)

Adder_Obj[obj.index].xy

#define Adder_set_xy(obj,value)

Adder_Obj[obj.index].xy.class = value.class;

Adder_Obj[obj.index].xy.index = value.index;

#define Adder_constr(obj,xy)

ObjRef obj; obj.class = Adder;

atomic{obj.index = Adder_Next; Adder_Next++};

Adder_set_xy(obj,Adder_get_xy(obj));

proctype Adder_Thread(ObjRef obj){

int old_x; int old_y; XY_add(Adder_get_xy(obj),4,4);

}

init{int old_x; int old_y; XY_constr(xy);

Adder_constr(adder1,xy); Adder_constr(adder2,xy);

run Adder_Thread(adder1); run Adder_Thread(adder2);

}

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

REFERENCES

[1] Christel Baier and Joost-Pieter Katoen, “Principles of Model Checking”,

The MIT Press Cambridge, Massachusetts London, England, 2008.

[2] Klaus Havelund and Thomas Pressburger, “Translating Java to Spin A

Step Towards the JavaProver”, NASA Ames Research Center, Recom

Technologies, Moffett Field, California, USA. 1998.

[3] Gerard J. Holzmann, “Principles of the Spin Model Checker”, Springer-

Verlag London Limited, 2008.

[4] Ke Jiang, “Model Checking C Programs by Translating C to Promela”,

Institutionen för informationsteknologi, Department of Information

Technology. September 2009.

[5] Bernhard Beckert, “Formal Specification and Verification :

PROMELA”, Wolfgang Ahrendt and Reiner H¨ahnle at Chalmers

University, G¨oteborg.

[6] Terrence Parr. “ANTLR” [Online]. Available: http://www.antlr.org/.

[7] Terrence Parr, “The Definitive ANTLR 4 Reference”, The Pragmatic

Programmers, LLC., 2012.

[8] GitHub. (May 28). “antlr/grammars-v4” [Online]. Available:

https://github.com/antlr/grammars-v4/blob/master/java/Java.g4.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

http://www.antlr.org/
https://github.com/antlr/grammars-v4/blob/master/java/Java.g4

