



Abstract—This investigation deals with a markovian analysis

for software reliability model using errors generations and

imperfect debugging. Three types of errors are taken into

consideration for developing a software reliability model. The

debugging is done in a manner without distinguishing between

the three types of errors. Moreover, Runge-Kutta (RK) method

of fourth order is applied for analyzing the software reliability

of different configurations under transient condition. Various

characteristics of software reliability assessment are suggested.

The effect of different parameters on system performance

indices are demonstrated graphically.

Keywords—Software reliability, error generation, imperfect

debugging, markov model, R-K method .

I. INTRODUCTION

OFTAWRE reliability is probably the most important

feature distressing the software quality. Software quality

is measured by counting the number of faults in the program

or software. Software reliability helps to the software

developers and users for increasing the system efficiency.

To identify and eliminate errors in software development

process and also to improve software reliability, the

software reliability analysis is highly recommended [1].

Several reliability models have been used for Markov chain-

based testing [2]. Software reliability plays an important

role in assuring the quality of software [3]. Software

reliability testing is concerned with the quantitative

relationship between software testing and software

reliability [4]. To estimate the reliability and software

failures through mathematical expression, software

reliability growth model has been used [5].

 Software reliability is a major troubled state of mind in

various organization. After release of software, software

shows some minor or major bugs. In real practice of

software development, the number of failure removed

during development phase need not to be same as the

number of faults observed. A system is said to have a

failure if the service it deliver to the user deviates from

compliance with the system specification for a specified

period of time. Reason for failure may be software or

hardware failure. A software failure is the departure of the

external results of program operation from requirements [5-

 M. Kaushik is with the department of computer science & engineering,

JECRC University, Jaipur-303905 India (email:

manju.kaushik@jecre.edu.in)
G. Kumar is with the department of computer science & engineering, JK

Lakshmipat University, Jaipur-302026, India (phone:141-710-7581: email:

gireesh8@gmail.com)

6]. Consider it with example as a user requests an operation

at program start-up. It does not display. In general, software

reliability is directly allied with software error, defects and

failure. In our investigation, the software may fail due to

simple error, complex error and critical error.

 Due to the complexity in software systems, testing

engineer may not able to remove all faults perfectly, and the

original fault may remain exist which termed as imperfect

debugging (ID). In the case of ID, if new bugs are

introduced during debugging or the bug that caused the

failure is not successfully removed; [7] while in the case of

error generation, the fault content increases as the testing

progresses. New faults [8] may introduce by removal of

observed faults. A Markov model was suggested to explore

the quantitative relationships between software testing and

software reliability in the presence of imperfect debugging

[9]. Moreover, the debugging process is usually far from

perfect and actually many faults encountered by customers

are those introduced during debugging [10].

 In this paper, a framework is proposed to develop a

markovian software reliability model with three types of

errors and imperfect debugging. The rest of this paper is

organized as follows. In section II, the assumptions and

notations are given to develop the mathematical model. In

section III, governing equations are derived based on

different assumptions of fault introduction and the

correction effort. In section IV, several performance

measures are given. In section V, numerical results are

presented. Conclusion has been given in section VI.

II. MATHEMATICAL MODEL

 In this section, we develop the Markov model for the

software having three types of errors. For formulating the

model, we define a random variable representing the

cumulative number of errors successfully covered upto a

certain level of time. Every software shows some bugs

called errors after being released. The software may fail

either due to simple error, complex error and critical error.

The maximum number of errors of all types in the software

are never exceeds upto a finite limit say ‘N’. When a failure

occurs, an instantaneous repair effort start. The repairman is

always available for removing the errors. Debugging is

imperfect in the software. The life times and repair times of

errors are exponentially distributed with constant rates.

Notations:

Markovian Reliability Analysis for Software

using Error Generation and Imperfect

Debugging

1
M. Kaushik, and

2
G. Kumar

S

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

 N Maximum number of faults contain in the

software

 ( ,) Failure rate of a software due to simple error,

complex error and critical error

 ( ,) Repair rate of a software when it fails due to

simple error, complex error and critical error

p2 Probability that the simple error occurs in the

software

p0 Probability that the simple error removed from

the software

q2 Probability that the complex error occurs in the

software

q0 Probability that the complex error removed from

the software

r2 Probability that the critical error occurs in the

software

r0 Probability that the critical error removed from

the software

),,(kji Triplet denoting the number of errors due to

simple error, complex error and critical error

respectively

)()0,0,0(tP Probability that there is no error in the software

at time

)(),,(tP kji Probability that there are i (0 iN), j(0 jN)

and k(0 kN) errors at time t in the software

due to SE, CE and CRE, respectively

III. GOVERNING EQUATIONS

 In this section, we construct the differential difference

equations governing the Markov model of software having

three types of errors and imperfect debugging which are

given as:

𝑑

𝑑𝑡
𝑃0,0,0(𝑡) = 𝛼′𝑝0𝑃1,0,0(𝑡) + 𝛽′𝑞0𝑃0,1,0(𝑡) + 𝛾′𝑟0𝑃0,0,1(𝑡)

 (1)
𝑑

𝑑𝑡
𝑃𝑖,0,0(𝑡) = −(𝑖𝛼𝑝2 + 𝑖𝛼′𝑝0)𝑃𝑖,0,0(𝑡) + 𝛽′𝑞0𝑃𝑖,1,0(𝑡) +

𝛾′𝑟0𝑃𝑖,0,1(𝑡) + (𝑖 + 1)𝛼′𝑝0𝑃𝑖+1,0,0(𝑡) +

(𝑖 − 1)𝛼𝑝2𝑃𝑖−1,0,0(𝑡), 1 ≤ 𝑖 ≤ 𝑁 − 1 (2)
𝑑

𝑑𝑡
𝑃𝑁,0,0(𝑡) = −𝑁𝛼′𝑝0𝑃𝑁,0,0(𝑡) + (𝑁 − 1)𝛼𝑝2𝑃𝑁−1,0,0(𝑡)

 (3)
𝑑

𝑑𝑡
𝑃0,𝑗,0(𝑡) = −(𝑗𝛽𝑞2 + 𝑗𝛽′𝑞0)𝑃0,𝑗,0(𝑡) + 𝛼′𝑝0𝑃1,𝑗,0(𝑡) +

𝛾′𝑟0𝑃0,𝑗,1(𝑡) + (𝑗 + 1)𝛽′𝑞0𝑃0,𝑗+1,0(𝑡) +

(𝑗 − 1)𝛽𝑞2𝑃0,𝑗−1,0(𝑡), 1 ≤ 𝑗 ≤ 𝑁 − 1 (4)

𝑑

𝑑𝑡
𝑃0,𝑁,0(𝑡) = 𝑁𝛽′𝑞0𝑃0,𝑁,0(𝑡) + (𝑁 − 1)𝛽𝑞2𝑃0,𝑁−1,0(𝑡) (5)

𝑑

𝑑𝑡
𝑃0,0,𝑘(𝑡) = −(𝑘𝛾𝑟2 + 𝑘𝛾′𝑟0)𝑃0,0,𝑘(𝑡) + 𝛼′𝑝0𝑃1,0,𝑘(𝑡)

+ 𝛽′𝑞0𝑃0,1,𝑘(𝑡) + (𝑘 + 1)𝛾′𝑟0

 𝑃0,0,𝑘+1(𝑡) + 𝛾𝑟2𝑃0,0,𝑘−1(𝑡), 1 ≤ 𝑘 ≤ 𝑁 − 1

 (6)

𝑑

𝑑𝑡
𝑃0,0,𝑁(𝑡) = −𝑁𝛾′𝑟0𝑃0,0,𝑁(𝑡) + (𝑁 − 1)𝛾𝑟2𝑃0,0,𝑁−1(𝑡)

 (7)

𝑑

𝑑𝑡
𝑃𝑖,𝑗,0(𝑡) = −(𝑖𝛼𝑝2 + 𝑖𝛼′𝑝0 + 𝑗𝛽𝑞2 + 𝑗𝛽′𝑞0)𝑃𝑖,𝑗,0(𝑡)

+ (𝑖 − 1)𝛼𝑝2𝑃𝑖−1,𝑗,0(𝑡)

+ (𝑗 − 1)𝛽𝑞2𝑃𝑖,𝑗−1,0(𝑡)

+ (𝑖 + 1)𝛼′𝑝0𝑃𝑖+1,𝑗,0(𝑡) + (𝑗 + 1)𝛽′𝑞0

 𝑃𝑖,𝑗+1,0(𝑡), 𝑖, 𝑗 ≠ 0, 2 ≤ 𝑖 + 𝑗 ≤ 𝑁 − 1

 (8)
𝑑

𝑑𝑡
𝑃𝑖,𝑗,0(𝑡) = −(𝑖𝛼′𝑝0 + 𝑗𝛽′𝑞0)𝑃𝑖,𝑗,0(𝑡)

+ (𝑖 − 1)𝛼𝑝2𝑃𝑖−1,𝑗,0(𝑡)

+ (𝑗 − 1)𝛽𝑞2𝑃𝑖,𝑗−1,0(𝑡)

 𝑖, 𝑗 ≠ 0, 𝑖 + 𝑗 = 𝑁

 (9)
𝑑

𝑑𝑡
𝑃0,𝑗,𝑘(𝑡) = −(𝑗𝛽𝑞2 + 𝑗𝛽′𝑞0 + 𝑘𝛾𝑟2 + 𝑘𝛾′𝑟0)𝑃0,𝑗,𝑘(𝑡)

+ (𝑗 − 1)𝛽𝑞2𝑃0,𝑗−1,𝑘(𝑡)

 +(𝑘 − 1)𝛾𝑟2𝑃0,𝑗,𝑘−1(𝑡) + (𝑗

+ 1)𝛽′𝑞0𝑃0,𝑗+1,𝑘(𝑡) + (𝑘 + 1)𝛾′𝑟0

 𝑃0,𝑗,𝑘+1(𝑡), 𝑗, 𝑘 ≠ 0, 2 ≤ 𝑗 + 𝑘 ≤ 𝑁 − 1

 (10)
𝑑

𝑑𝑡
𝑃0,𝑗,𝑘(𝑡) = −(𝑗𝛽′𝑞0 + 𝑘𝛾′𝑟0)𝑃0,𝑗,𝑘(𝑡)

+ (𝑘 − 1)𝛾𝑟2𝑃0,𝑗,𝑘−1(𝑡)

+ (𝑗 − 1)𝛽𝑞2𝑃0,𝑗−1,𝑘(𝑡)

 𝑗, 𝑘 ≠ 0, 𝑗 + 𝑘 = 𝑁

 (11)
𝑑

𝑑𝑡
𝑃𝑖,0,𝑘(𝑡) = −(𝑖𝛼𝑝2 + 𝑖𝛼′𝑝0 + 𝑘𝛾𝑟2 + 𝑘𝛾′𝑟0)𝑃𝑖,0,𝑘(𝑡)

+ (𝑖 − 1)𝛼𝑝2𝑃𝑖−1,0,𝑘(𝑡)

 +(𝑘 − 1)𝛾𝑟2𝑃𝑖,0,𝑘−1(𝑡)

+ (𝑖 + 1)𝛼′𝑝0𝑃𝑖+1,0,𝑘(𝑡) + (𝑘

+ 1)𝛾′𝑟0

 𝑃𝑖,0,𝑘+1(𝑡), 𝑖, 𝑘 ≠ 0, 2 ≤ 𝑖 + 𝑘 ≤ 𝑁 − 1

 (12)
𝑑

𝑑𝑡
𝑃𝑖,0,𝑘(𝑡) = −(𝑖𝛼′𝑝0 + 𝑘𝛾′𝑟0)𝑃𝑖,0,𝑘(𝑡)

+ (𝑖 − 1)𝛼𝑝2𝑃𝑖−1,0,𝑘(𝑡)

+ (𝑘 − 1)𝛾𝑟2𝑃𝑖,0,𝑘−1(𝑡)

 𝑖, 𝑘 ≠ 0, 𝑖 + 𝑘 = 𝑁 (13)
𝑑

𝑑𝑡
𝑃𝑖,𝑗,𝑘(𝑡) = −(𝑖𝛼𝑝2 + 𝑖𝛼′𝑝0 + 𝑗𝛽𝑞2 + 𝑗𝛽′𝑞0 + 𝑘𝛾𝑟2

+ 𝑘𝛾′𝑟0)𝑃𝑖,𝑗,𝑘(𝑡) + (𝑖 − 1)𝛼𝑝2𝑃𝑖−1,𝑗,𝑘(𝑡)

+ (𝑗 − 1)𝛽𝑞2𝑃𝑖,𝑗−1,𝑘(𝑡)

+ (𝑘 − 1)𝛾𝑟2𝑃𝑖,𝑗,𝑘−1(𝑡)

 +(𝑖 + 1)𝛼′𝑝0𝑃𝑖+1,𝑗,𝑘(𝑡)

+ (𝑗 + 1)𝛽′𝑞0𝑃𝑖,𝑗+1,𝑘(𝑡)

+ (𝑘 + 1)𝛾′𝑟0𝑃𝑖,𝑗,𝑘+1(𝑡),

 𝑖, 𝑗, 𝑘 ≠ 0, 2 ≤ 𝑖 + 𝑗 + 𝑘 ≤ 𝑁 − 1 (14)
𝑑

𝑑𝑡
𝑃𝑖,𝑗,𝑘(𝑡) = −(𝑖𝛼′𝑝0 + 𝑗𝛽′𝑞0 + 𝑘𝛾′𝑟0)𝑃𝑖,𝑗,𝑘(𝑡)

+ (𝑖 − 1)𝛼𝑝2𝑃𝑖−1,𝑗,𝑘(𝑡)

+ (𝑗 − 1)𝛽𝑞2𝑃𝑖,𝑗−1,𝑘(𝑡)

+ (𝑘 − 1)𝛾𝑟2𝑃𝑖,0,𝑘−1(𝑡) , 𝑖, 𝑗, 𝑘

≠ 0, 𝑖 + 𝑗 + 𝑘 = 𝑁

 (15)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

IV. PERFORMANCE MEASURE

 In this section, we establish various performance indices

in terms of transient probabilities. For finding these

probabilities, the transient equations (1)-(15) are solved

using Runge-Kutta (R-K) method for the software having

total four errors of each type. R-K technique is implemented

by developing program in MATLAB software. After

obtaining transient probabilities, some performance indices

are calculated as:

 The probability of perfect program at testing time

‘t’ is calculated as

 𝑃(𝑇) = 𝑃0,0,0(𝑡) (16)

 The expected number of faults remaining in the

software at testing time ‘t’ is given as

𝐹(𝑇) = ∑ 𝑖 ∑ ∑ 𝑃𝑖,𝑗,𝑘(𝑡)𝑁−𝑖−𝑗
𝑘=0

𝑁−𝑖
𝑗=0

𝑁
𝑖=1 +

∑ 𝑗 ∑ ∑ 𝑃𝑖,𝑗,𝑘(𝑡)𝑁−𝑗−𝑘
𝑖=0

𝑁−𝑗
𝑘=0

𝑁
𝑗=1 +

 ∑ 𝑘 ∑ ∑ 𝑃𝑖,𝑗,𝑘(𝑡)𝑁−𝑘−𝑖
𝑗=0

𝑁−𝑘
𝑖=0

𝑁
𝑘=1 (17)

 The software reliability of the system is

𝑃(𝑇) = ∑ 𝑃𝑖,𝑗,𝑘
𝑁−1
𝑖+𝑗+𝑘=1 (𝑡) (18)

V. NUMERICAL RESULTS

 In this section, we are interested in sensitivity analysis

by taking the numerical illustrations. For this purpose,

software ‘MATLAB’ is used to develop a computational

program and to analyze the system performance

numerically. For illustration purpose, we obtain the results

for transient reliability for the system having three types of

error. The classical R-K method of forth order is

implemented by using the “ode45” function. In transient

case, the numerical computations based on empirical values

of failure and repair parameters have been carried out by

taking the time span [0, 5] with equal intervals of 1 units.

The results are summarized in figures 1-4. The default

parameters are chosen as 𝛼 = 0.01, 𝛼′ = 0.1, 𝛽 = 0.2, 𝛽′ =

0.2, 𝛾 = 0.03, 𝛾′ = 0.3, 𝑝0 = 0.1, 𝑝2 = 0.6, 𝑞0 = 0.2, 𝑞2 =
0.6, 𝑟0 = 0.4 𝑎𝑛𝑑 𝑟2 = 0.6 .
 From figs 1-2, it is observed that the reliability of

software increases sharply as the values of testing time

attains the higher values. Figs. 1-2 depict that the system

reliability shows the decreasing trend with the increasing

values of failure rates.

Fig. 1. Reliability vs time by varying .

Fig. 2. Reliability vs time by varying .

 From figs 3-4, it is concluded that the mean number of

faults decreases as time increases but increase for all

increasing values of failure rates.

Fig. 3. F(T) vs time by varying .

Fig. 4. F(T) vs time by varying .

 Finally, from the above tables and figs, it can be

predicted that the software reliability could be increased up

to certain time by increasing the repair rates.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4 5 6

R
(T

)

TESTING TIME

=.01 =.05 =.09

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5 6

R
(T

)

TESTING TIME

=.1 =.4 =.7

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 1 2 3 4 5 6

F(
T)

TESTING TIME

=.01 =.05 =.09

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 1 2 3 4 5 6

F(
T)

TESTING TIME

=.1 =.4 =.7

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

VI. CONCLUSION

 In this paper, we have developed a markovian software

reliability model with three types of errors and imperfect

debugging. The suggested model is suitable and helpful in

area of reliability engineering. The transient availability and

other performance indices obtained may be helpful to

improve the software reliability. We have derived the

expressions for the system reliability and availability under

different configurations.

REFERENCES

[1] Jelinski Z. and Moranda P. B., “Software reliability research”,

Statistical Computer Performance Evaluation, W. Freiberger Ed.,

Academic Press, New York, 465 (1972).

[2] Prowell S. J. and P o o r e , J. H., “Computing system reliability

using markov chain usage models”, The journal of Systems and

Software, 73, 219-225, (2004).

[3] Jain M. and Priya K., “Software reliability issues under operational

and testing constraints”, Asia Pacific Journal of Operations

Research., 22(1), 33-49, (2005).

[4] Cai K.-Y., Cao P., Dong Z. and Liu K. , “Mathematical modeling

of software reliability testing with imperfect debugging”,

Computers & Mathematics with Applications, 59(10), 3245-3285,

(2010).

[5] Mane M., Joshi M., Kadam A. and Joshi S.D., “Software reliability

and quality analyser with quality metric Analysis Along with

software reliability growth model”, International Journal of

Computer Science and Information Technologies, 5 (3), 3803-

3806, (2014).

[6] Munson J.C., “Software faults, software failures and software

reliability modeling”, Information and Software Technology,

38(11), 687-699, (1996).

[7] Jain M., Agrawal S.C. and Agarwal P., “Markovian software

reliability model for two types of failures with imperfect

debugging rate and generation of errors”, IJE Transactions A:

Basics, 25(2), 177-188, (2012).

[8] Yamada S., Tokuno, K. and Osaki, S., “Software reliability

measurement in imperfect debugging environment and its

application”, Reliability Engineering and System Safety, 40, 139-

147, (1993).

[9] Yamada S., “Software reliability growth models incorporating

imperfect debugging with introduced faults”, Electronics and

Communications in Japan (Part III: Fundamental Electronic

Science), 81(4), 33-41, (1998).

[10] Cao P., Dong Z., Liu K. and Cai K-Y, “Quantitative effects of

software testing on reliability improvement in the presence of

imperfect debugging”, Information Sciences, 218(1), 119-132,

(2013).

[11] Peng R., Li Y. F., Zhang, Wenjuan and Hu, Q. P., “Testing effort

dependent software reliability model for imperfect debugging

process considering both detection and correction”, Reliability

Engineering & System Safety, 126, 37-43, (2014).

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

http://www.sciencedirect.com/science/article/pii/S0020025512004562
http://www.sciencedirect.com/science/article/pii/S0020025512004562
http://www.sciencedirect.com/science/article/pii/S0020025512004562

