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Abstract—Many studies on modeling of fuzzy inference
systems have been made. The issue of these studies is to
construct automatically fuzzy systems with interpretability and
accuracy from learning data based on meta-heuristic methods.
Since accuracy and interpretability are contradicting issues,
there are some disadvantages for self-tuning method. Obvious
drawbacks of the method are lack of interpretability and getting
stuck in a shallow local minimum. Therefore, the conventional
learning methods with multi-objective fuzzy modeling and fuzzy
modeling with constrained parameters of the ranges have
become popular. However, there are little studies on effective
learning methods of fuzzy inference systems dealing with
interpretability and accuracy. In this paper, we will propose
a fuzzy inference system with interpretability. Firstly, it is
proved that the proposed model is an universal approximator
of continuous functions. Further, the capability of the proposed
model learned by the steepest descend method is compared
with the conventional models using function approximation
problems. Lastly, the proposed model is applied to obstacle
avoidance and the capability of interpretability is shown.

Index Terms—fuzzy set, fuzzy inference, interpretability,
universal approximator, obstacle avoidance.

I. INTRODUCTION

FUZZY inference systems are widely used in system
modeling for the fields of classification, regression,

decision support system and control [1], [2]. Therefore, many
studies on modeling of fuzzy inference systems have been
made. The issue of these studies is to construct automatically
fuzzy systems with interpretability and accuracy from learn-
ing data based on meta-heuristic methods [4], [5], [9], [12],
[14]. Since accuracy and interpretability are contradicting
issues, there are some disadvantages for self-tuning method.
Obvious drawbacks of the method are lack of interpretability
and getting stuck in a shallow local minimum [6]. As the
meta-heuristic methods, some novel methods have been de-
veloped which 1) use GA and PSO to determine the structure
of the fuzzy model [6], [7], 2) use generalized objective
functions [8], 3) use fuzzy inference systems composed
of small number of input rule modules, such as SIRMs
and DIRMs methods [10], [11], 4) use a self-organization
or a vector quantization technique to determine the initial
assignment and 5) use combined methods of them [5], [14].
Since accuracy and interpretability are conflicting goals, the
conventional learning methods with multi-objective fuzzy
modeling and fuzzy modeling with constrained parameters
of the ranges have become popular. However, there are little
studies on effective learning methods of fuzzy inference
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Fig. 1. The Gaussian membership function

systems dealing with interpretability and accuracy. On the
other hand, fuzzy modeling with preserving interpretability
is proposed by Shi [15]. However, there are no studies on
the detailed capability of this type of model.

In this paper, we will propose a fuzzy inference system
with interpretability. Firstly, it is proved that the proposed
model is a universal approximator of continuous functions.
Further, the capability of the proposed model learned by the
steepest descend method is compared with the conventional
models using function approximation problems. Lastly, the
proposed model is applied to obstacle avoidance and the
capability of interpretability is shown.

II. PRELIMINARIES

A. The conventional fuzzy inference model

The conventional fuzzy inference model is described [1].
Let Zj = {1, · · · , j} for the positive integer j. Let R be the
set of real numbers. Let x = (x1, · · · , xm) and yr be input
and output data, respectively, where xj∈R for j ∈ Zm and
yr∈R. Then the rule of fuzzy inference model is expressed
as

Ri : if x1 is Mi1 and · · · and xm is Mim

then y is fi(x1, · · ·, xm) (1)

, where i ∈ Zn is a rule number, j ∈ Zm is a variable
number, Mij is a membership function of the antecedent
part, and fi(x1, · · ·, xm) is the function of the consequent
part.

A membership value of the antecedent part µj for input
x is expressed as

µi =

m∏
j=1

Mij(xj). (2)

If Gaussian membership function is used, then Mij is
expressed as follow (See Fig.1):

Mij = aij exp

(
−1

2

(
xj − cij

bij

)2
)
. (3)
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, where aij , cij and bij are the amplitude, the center and the
width values of Mij , respectively.

The output y∗ of fuzzy inference is calculated by the
following equation:

y∗ =

∑n
i=1 µi · fi∑n

i=1 µi
. (4)

Specifically, simplified fuzzy inference model is known as
one with fi(x1, · · ·, xm) = wi for i∈Zn, where wi∈R is a
real number. The simplified fuzzy inference model is called
Model 1.

B. Learning algorithm for the conventional model

In order to construct the effective model, the conven-
tional learning method is introduced. The objective function
E is defined to evaluate the inference error between the
desirable output yr and the inference output y∗. In this
section, we describe the conventional learning algorithm. Let
D = {(xp

1, · · · , xp
m, yrp)|p ∈ ZP } be the set of learning data.

The objective of learning is to minimize the following mean
square error(MSE):

E =
1

P

P∑
p=1

(y∗p − yrp)
2. (5)

In order to minimize the objective function E, the param-
eters α ∈ {aij , cij , bij , wi} are updated based on the descent
method as follows [1]:

α(t+ 1) = α(t)−Kα
∂E

∂α
(6)

where t is iteration time and Kα is a constant. When
Gaussian membership function with aij = 1 for i∈Zn and
j∈Zm are used, the following relation holds [6].

∂E

∂cij
=

µj∑n
i=1 µi

· (y∗ − yr) · (wi − y∗) · xj − cij
b2ij

(7)

∂E

∂bij
=

µi∑n
i=1 µi

· (y∗ − yr) · (wi − y∗) · (xj − cij)
2

b3ij
(8)

∂E

∂wi
=

µi∑n
i=1 µi

· (y∗ − yr) (9)

Then, the conventional learning algorithm is shown as
below [1], [2], [6].

Learning Algorithm A
Step A1 : The threshold θ of inference error and the
maximum number of learning time Tmax are given. The
initial assignment of fuzzy rules is to equally intervals. Let
n be the number of rules and n = dm for an integer d. Let
t = 1.
Step A2 : The parameters bij , cij and wi are set to the
initial values.
Step A3 : Let p = 1.
Step A4 : A data (xp

1, · · ·, xp
m, yrp)∈D is given.

Step A5 : From Eqs.(2) and (4), µi and y∗ are computed.
Step A6 : Parameters cij , bij and wi are updated by Eqs.(7),
(8) and (9).
Step A7: If p = P then go to Step A8 and if p < P then
go to Step A3 with p←p+ 1.

Step A8: Let E(t) be inference error at step t calculated
by Eq.(5). If E(t) > θ and t < Tmax then go to Step A2
with t←t+1 else if E(t)≤θ and t≤Tmax then the algorithm
terminates.
Step A9: If t > Tmax and E(t) > θ then go to Step A3
with n = dm as d←d+ 1 and t = 1.

C. The proposed model

It is known that Model 1 is effective, because all the
parameters are adjusted by learning. On the other hand, all
the parameters move freely, so interpretability capability is
low. Therefore, we propose the following model.

Ri1···im : if x1 is Mi11 and · · · and xm is Mimm

then y is fi1···im(x1, · · ·, xm) (10)

, where 1≤ij≤lj , j∈Zm.

µi1···im =
m∏
j=1

Mijj(xj) = Mi11(x1)·· · ··Mimm(xm) (11)

y =

∑
i1
· · ·
∑

im
µi1···imfi1···im(x1, · · ·, xm)∑

i1
· · ·
∑

im
µi1···im

(12)

In this case, the model with fi1,···,im(x1· · ·, xm) =
wi1,···,im and triangular membership function has already
proposed in the Ref. [15].

We will consider a model with fi1,···,im(x1, · · ·, xm) =
wi1,···,im and Gaussian membership functions. The model is
called Model 2(See Fig.2). Remark that Model 2 is one that
the parameters of membership function for each variable are
adjusted by learning.

Learning equation for Model 2 is obtained as follows:

∂E

∂Mijj
=
∑
i1

· · ·
∑
ij−1

∑
ij+1

· · ·
∑
im

µi1···im∑
i1
· · ·
∑

im
µi1···im

· (y∗ − yr) · (y∗ − wi1···im)

(13)

∂E

∂wi1···im
=

µi1···im∑
i1
· · ·
∑

im
µi1···im

· (y∗ − yr) (14)

When Eq.(15) is used as a membership function, the
following equations for aijj , cijj and bijj are obtained;

Mijj(xj) = aijj exp

−1

2

m∑
j=1

(xj − cijj)
2

b2ijj

 (15)

∂Mijj

∂aijj
= exp

−1

2

m∑
j=1

(xj − cijj)
2

b2ijj

 (16)

∂Mijj

∂cijj
=

(xj − cijj)

b2ijj
exp

−1

2

m∑
j=1

(xj − cijj)
2

b2ijj

 (17)

∂Mijj

∂bijj
=

(xj − cijj)
2

b3ijj
exp

−1

2

m∑
j=1

(xj − cijj)
2

b2ijj

 (18)
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(b)After learning.

Fig. 2. The figure to explain Model 2 with m = 2 and i1 = i2 = 2. The
assignment (a) of fuzzy rules for Model 2 is transformed into the assignment
(b) after learning.

Mamdani type model is special case of Model 2 [7]. It
is the model with the fixed parameters of antecedent part
of fuzzy rule and membership function assigned to equally
intervals [12], [14]. The model is called Model 3. It has
good interpretable capability , but the accuracy capability
is law. Therefore, TSK model with the weight of linear
function fi(x1, · · ·, xm) is introduced as a generalized model
of Model 3 [3]. The model is called Model 4.

III. FUZZY INFERENCE SYSTEM AS UNIVERSAL
APPROXIMATOR

In this section, the universal approximation capabilities
of Model 1, 2, 3 and 4 are discussed using the well-
known Stone-Weierstrass Theorem. See Ref. [2] about the
mathematical terms.
[Stone-Weierstrass Theorem] [2]
Let S be a compact set with m dimensions, and C(S) be
a set of all continuous real-valued functions on S. Let Ω
be the set of continuous real-valued functions satisfying the
conditions:
(i) Identity function : The constant function f(x) = 1 is in
Ω.
(ii) Separability : For any two points x1,x2∈S and x1 ̸=x2,
there exists a f∈Ω such that f(x1)̸=f(x2).
(iii) Algebraic closure : For any f, g∈Ω and α, β∈R, the
function f ·g and αf + βg are in Ω.

Then, Ω is dense in C(S). In other words, for any ε > 0
and any function g∈C(S) , there is a function f∈Ω such
that

|g(x)− f(x)| < ε

for all x∈S.□
It means that the set Ω satisfying the above conditions can

approximate any continuous function with any accuracy.
Since the sets of RBF and Model 1 are satisfied with
the conditions of Stone-Weierstrass Theorem, they hold for
universal approximation capabilities [2], [16]. Further, we
can show the result about Model 2 in the following.
[Theorem]
Let Φ be the set of all functions that can be computed by
Model 2 on a compact set S∈Rm as follows:
Let

Φl1···lm = { f(x) =

∑
i1
· · ·
∑

im

∏
j Mijj(xj)wi1···im∑

i1
· · ·
∑

im
Mijj(xj)

, wi1···wm , aijj , cijj , bijj∈R,x∈S}

for Mijj(xj) = aijj exp

(
−1

2

(
xj−cijj

bijj

)2)
and

Φ =

∞∪
l1=1

· · ·
∞∪

lm=1

Φl1···lm (19)

Then Φ is dense in C(S).
[Outline of Proof]
Let f and g be two functions in Φ and be represented as

f(x) =

∑
i1
· · ·
∑

im

∏
j M

f
ijj

(xj)w
f
i1···im∑

i1
· · ·
∑

im

∏
j M

f
ijj

(xj)
(20)

g(x) =

∑
l1
· · ·
∑

lm

∏
j M

g
ljj

(xj)w
g
l1···lm∑

l1
· · ·
∑

lm

∏
j M

g
ljj

(xj)
(21)

for

Mf
ijj

(xj) = afijj exp

−1

2

(
xj − cfijj

bfijj

)2
 (22)

Mg
ljj

(xj) = agljj exp

−1

2

(
xj − cgljj

bgljj

)2
 (23)

Then, we will show only αf + βg∈Φ and f ·g∈Φ.
We define

Mfg
ij ljj

(xj) = Mf
ijj

(xj)·Mg
lj
(xj)

= afgij ljj exp

−1

2

(
xj − cfgij ljj

bfgij ljj

)2
(24)

wfg1
i1···iml1···lm = wf

i1···im + wg
l1···lm (25)

wfg2
i1···iml1···lm = wf

i1···im ·w
g
l1·lm (26)

, where afgij ljj , c
fg
ij ljj

, bfgij ljj , w
fg1
i1···wim l1···lm , wfg2

i1···iml1···lm∈R.
By using these values,

αf + βg

=

∑
i1
· · ·
∑

im

∑
l1
· · ·
∑

lm

∏
j M

fg
ij ljj

(xj)w
fg1
i1···iml1···lm∑

i1
· · ·
∑

im

∑
l1
· · ·
∑

lm

∏
j M

fg
ij ljj

(xj)
(27)

f ·g

=

∑
i1
· · ·
∑

im

∑
l1
· · ·
∑

lm

∏
j M

fg
ij ljj

(xj)w
fg2
i1···iml1···lm∑

i1
· · ·
∑

im

∑
l1
· · ·
∑

lm

∏
j M

fg
ij ljj

(xj)
(28)
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TABLE I
INITIAL CONDITION FOR SIMULATION OF FUNCTION APPROXIMATION.

Model 1 Model 2 Model 3 Model 4
Tmax 50000 50000 50000 50000
Kc 0.01 0.01 0.0 0.0
Kb 0.01 0.01 0.0 0.0
Kw 0.1
d 3 7 4 6

Initial cij equal intervals
Initial bij 1

2(d−1)
×(the domain of input)

Initial wij random on [0, 1]

Further, Eqs.(27) and (28) have the same form as Model 2.
Therefore, (αf + βg) and f ·g∈Φ hold.□

[Remarks]
Remark that the results using Stone-Weierstrass Theorem
hold only for Model 1 and 2 with fi(x1· · ·xm) = wi and
Gaussian membership function. On the other hand, Stone-
Weierstrass Theorem does not always hold for Model 3, 4
and the models with triangular membership function, because
the multiplicative condition fails. Further, it is an existence
theorem and there is another problem whether we can get
the system with high accuracy. Therefore, we need effective
learning algorithm. Learning Algorithm A is a learning
algorithm based on the steepest descend method.

IV. NUMERICAL SIMULATIONS

In this section, two kinds of simulations are performed to
compare with the capabilities of models for learning method
based on steepest descend method. In the simulations, let
aij = 1 and aijj = 1 for i∈Zn and j∈Zm.

A. Function approximation

This simulation uses four systems specified by the follow-
ing functions with [0, 1]×[0, 1].

y = sin(πx3
1)·x2 (29)

y =
sin(2πx3

1)· cos(πx2) + 1

2
(30)

y =
1.9(1.35 + ex1 sin(13(x1 − 0.6)2)·e−x2 sin(7x2))

7
(31)

y =
sin(10(x1 − 0.5)2 + 10(x2 − 0.5)2) + 1.0

2
(32)

The condition of the simulation is shown in Table I. The
value θ is 1.0×10−5 and the numbers of learning and test
data selected randomly are 200 and 2500, respectively. Table
II shows the results on comparison among four models. In
Table II, Mean Square Error(MSE) of learning(×10−4) and
MSE of test(×10−4) are shown. The result of simulation is
the average value from ten trials. Table II shows that Model
1 and 2 have almost the same capability in this simulation,
where ♯parameter means the number of parameters.

B. Obstacle avoidance and arriving at designated point

In order to show interpretability, let us perform simulation
of control problem for Model 1 and Model 2 [11]. As shown
in Fig.3, the distance r1 and the angle θ1 between mobile
object and obstacle and the distance r2 and the angle θ2

TABLE II
RESULTS FOR SIMULATION OF FUNCTION APPROXIMATION.

Eq.(29) Eq.(30) Eq.(31) Eq.(32)
Model 1 learning 0.10 0.44 2.25 0.30

test 0.30 2.16 3.84 0.88
♯parameter 45 45 45 45

Model 2 learning 0.10 1.47 0.10 0.42
test 0.93 5.46 0.39 2.03

♯parameter 48 48 48 48
Model 3 learning 1.10 13.33 1.32 4.83

test 4.50 50.29 4.40 29.23
♯parameter 49 49 49 49

Model 4 learning 0.21 2.52 0.71 2.87
test 0.98 9.68 1.95 10.97

♯parameter 48 48 48 48

Fig. 3. Simulation on obstacle avoidance and arriving at the designated
point.

between mobile object and the designated place are selected
as input variables, where θ1 and θ2 are normalized.

The problem is to construct fuzzy inference system that
mobile object avoids obstacle and arrives at the designated
point. From (operation) data, fuzzy inference rules for Model
1 and Model 2 are constructed from learning for data of 400
points shown in Fig. 4. An obstacle is placed at (0.5, 0.5)
and a designated point is placed at (1.0, 0.5). The number
of rules for each model is 81 and the number of attributes is
3. Then, the numbers of parameters for Model 1 and 2 are
729 and 93, respectively. The mobile object moves with the
vector A at each step, where Ax of A is constant and Ay of
A is output variable. Learning for two models are successful
and the following tests are performed.
(1)Test 1 is simulation for obstacle avoidance and ar-
riving at the designated place when the mobile object
stars from various places (See Fig.5). Fig.5 shows the
results of moves of mobile object for starting places
at (0.1, 0), (0.2, 0), · · ·, (0.8, 0), (0.9, 0) after learning. As
shown in Fig.5, the test simulations are successful for both

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Learning data

Learning data

Obstacle

designated
point

Fig. 4. Learning data to avoid obstacle and arrive at the designated point
(1.0, 0.5).

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I, 
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015



TABLE III
INITIAL CONDITION FOR SIMULATION OF OBSTACLE AVOIDANCE.

Model 1 Model 2
Tmax 50000 50000
Kc 0.001 0.001
Kb 0.001 0.001
Kw 0.01
d 3 3

Initial cij equal intervals
Initial bij 1

2(d−1)
×(the domain of input)

Initial wij 0.0

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

(a)Model 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

(b)Model 2

Fig. 5. Simulation for obstacle avoidance and arriving at the designated
place starting from various places after learning.

models.
(2)Test 2 is simulation for the case where the mobile object
avoids obstacle placed at different place and arrives at the
different designated place. Simulations with obstacle placed
at the place (0.4, 0.4) and arriving at the designated place
(1, 0.6) are performed for two models. The results are
successful as shown in Fig.6.
(3)Test 3 is simulation for the case where obstacle moves
with the fixed speed. Simulations with obstacle moving with
the speed (0.01, 0.02) from the place (0.3, 1.0) to the place
(0.8, 0.0) and arriving at the place (1, 0.6) are performed.
The results are successful as shown in Fig.7.
(4)Test 4 is simulation for the case where obstacle moves
randomly as shown in Fig.8, where |B| is constant, and the
angle θb is determined randomly at each step. Simulations
with obstacle moving from the point (0.5, 1.0) are perfurmed
for two models. The results are successful as shown in Fig.9.

Lastly, let us consider interpretability for the proposed
model. From fuzzy rules constructed for Model 2 by learning,
we can find interpretable rules. Assume that three attributes

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

(a)Model 1

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

(b)Model 2

Fig. 6. Simulation for obstacle placed at the different position (0.4, 0.4)
and arriving at the different place (1.0, 0.6).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1

(a)Model 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1

(b)Model 2

Fig. 7. Simulation for moving obstacle avoidance with fixed speed and the
different designated place (1.0, 0.6).
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Fig. 8. The obstacle moves with the vector B, where |B| is constant and
θb is selected randomly.

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1

(a)Model 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1

(b)Model 2

Fig. 9. Simulation for moving obstacle randomly and the different
designated place (1.0, 0.6).

are short, middle and long for d1 and d2, minus, central and
plus for θ1 and θ2 and left, center and right for the direction
of Ay , respectively. Then, the principal fuzzy rules for Model
2 are constructed as shown in TableIV. They are similar to
human activity to solve the problem. On the other hand, fuzzy
rules for Model 1 are not so clear.

TABLE IV
THE PRINCIPAL FUZZY RULES FOR MODEL 2.

d1 d2 θ1 θ2 Ay

Rule 1 short long plus center right
Rule 2 minus left
Rule 3 middle middle right
Rule 4 plus plus left
Rule 5 middle left
Rule 6 minus minus right

V. CONCLUSION

In this paper, a theoretical result and some numerical
simulations including obstacle avoidance are presented in
order to compare the proposed model with the conventional
models. It is shown that Model 1 and Model 2 with Gaussian
membership function and fi(x1, · · ·, xm) = wi are satisfied
with the conditions of Stone-Weierstrass Theorem, so both
models are universal approximators of continuous functions.
Further, in order to compare the capability of learning algo-
rithms for models, numerical simulation of function approx-
imation is performed. Lastly, some simulations on obstacle
avoidance are performed. In the simulations, it is shown that
both models are successful in all trials. Specifically it is
shown that Model 2 with the small number of parameters
and interpretability is constructed.

In future work, we will find an effective learning method
for Model 2.
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