

Abstract—Testing is one of the crucial and most

time-consuming phases in the process of software development.
We propose a novel framework for specification-based
automatic generation of test cases. We intend to cover
requirements analysis and design, along with testing, in a
unified manner. Our final goal is to offer a means of support for
the software development process, based on automatic test case
generation.

Index terms—software development, requirements
specifications, test generation

I. INTRODUCTION

During the software development process, several phases
need to be covered [1]. One of the most important, but very
time consuming phases during this process is represented by
the testing phase. In spite of the fact that testing can only
pinpoint the presence of errors, not their absence [2], testing
has a crucial role in the software development process.
During this phase, the tester needs to deal with the elaborate
task of generating test cases, ideally making sure that all
requirements have been individually checked [3]. Our
purpose is to offer a means of support in the software
development process, with a focus on generating such test
cases.

Many different ways of dealing with test generation have
been proposed over the years, like path-oriented [4],
goal-oriented [5] or intelligent approaches [6]. In our work
we would like to concentrate on generating test cases based
on specifications.

Much of the testing process is automated in modern
development environments, but construction of the test cases
(i.e., the specific experiments to be performed) remains a
largely manual process [8]. This paper will describe our
approach for an automatic construction of test cases and will
introduce our DePAT framework.

The remainder of our paper is organized as follows.
Section 2 presents an overview of our proposed approach.
Section 3 focuses on scenarios and sequence diagrams as
they are used for requirements analysis; section 4 discusses
the relationships between scenarios and presents dependency
diagrams. In section 5 we explain the process of generating
test cases. Section 6 contains related work; concluding
remarks and future work are presented in section 7.

Manuscript received December 10, 2014; revised January 23, 2015.
Simona Vasilache is with the University of Tsukuba, Graduate School of

Systems and Information Engineering (e-mail:simona@cs.tsukuba.ac.jp).

II. OVERVIEW OF PROPOSED APPROACH

Our main interest lies in what is called validation testing.
This type of testing is intended to make sure that the final
product, i.e. the software, meets its specified requirements. If
a requirement has been properly implemented, then the test
will be successful [11].

We propose a novel framework for specification-based test
generation. We intend to start from formalization of
requirements as scenarios [12], and use our (previously
introduced) dependency diagrams [10] to show the
relationships among scenarios, and finally build a transition
system allowing the automatic synthesis of test cases.

Manually creating traces to test all requirements (with
normal and exceptional behaviour) is a laborious work. We
want to make this process automatic and we want to rely on
our dependency diagrams.

Our main goal will thus be to define a procedure for
automating the process of test case generation, based on
scenarios and dependency diagrams. One of the main
benefits would be spending less time on test generation and
more time on the requirements specifications.

Our approach will be able to bring the tester one step closer
to the ideal situation, where all possible behaviour is tested.
Moreover, we will be able to cover the requirements
specification, design and testing phases in a unified manner.

First, developing a software application involves a
complex and long process, with several phases. Being able to
cover several of these phases in a unified manner can help the
developers avoid inconsistencies and can offer them a better
overview of the system. In our approach we intend to
integrate a large part of the software development process,
covering requirements specification, design and testing.
Second, while many different ways of dealing with test
generation exist, we intend to generate test cases based on the
specifications. We can do this by relying on the traditional
mechanisms used during requirements specifications (such as
scenario representation) and, more importantly, on our
dependency diagrams (which show how scenarios are related
to each other) [7].

While previous approaches exist that allow automatic test
generation, they focus on small, incremental portions of test
cases. In our approach, we automatically generate test cases
from scenarios and dependency diagrams.One challenge will
mainly arise from having to cover all possible traces of
behaviour. Also, we will need a mechanism that allows us to
differentiate between missed behaviour and unwanted
behaviour. One other challenge is making sure that the
requirements specifications have been completely defined in
the first place.

DePAT: A Framework for Specification-Based
Automatic Test Generation

Simona Vasilache

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

By creating all possible dependency diagrams, we should
be able to express all the required behaviour of the system
and thus we could offer a significant overview of the testing
phase. Fig. 1 illustrates in a schematic manner the main
approach we propose.

Fig. 1 Overview of proposed approach

III. REQUIREMENTS ANALYSIS USING SCENARIOS
AND SEQUENCE DIAGRAMS

When developing an application, the first major step is the

one where requirements are elicited and then defined. This is
the step in which what is required of the system has to be
specified. Before proceeding to the implementation, the
design of the system needs to be completed, i.e. defining how
to do what is required of the system. Analysis (a more general
term including requirements analysis) and design have often
been defined together using the phrase “do the right thing
(analysis) and do the thing right (design)”. It is generally
believed that once professional developers know what they
have to do, they can "do the thing right". The more difficult
task seems to be, though, finding out exactly what we need to
do ("doing the right thing").

When it comes to the requirements analysis, its main task
is to generate specifications that describe the behaviour of a
system unambiguously, consistently and completely [9]. Use
cases are widely used for capturing the requirements in
numerous software processes, particularly the functional
requirements. They are a means of communicating with users
about what the system is intended to do. Use cases capture
who does what with the system, for what purpose, without
dealing with system internals. A complete set of use cases
specifies all the different ways to use the system, and
therefore defines all that is required of the system [10]. Use
cases provide a high-level view of the requirements of the
system.

A scenario is an instance of a use case, and represents a
single path through the use case. Thus, one may construct a
scenario for the main flow through the use case, and other
scenarios for each possible variation of flow through the use
case (e.g., triggered by options, error conditions, security
breaches etc.) [10]. Consequently, for one use case, we will
have several different possible scenarios. The Unified
Modeling Language (UML) provides a graphical means of
representing scenarios using sequence diagrams. One

sequence diagram typically represents a single use case
scenario or flow of events.

Sequence diagrams are often used for both analysis and
design purposes. They typically show a user together with the
objects (s)he makes use of in a use case. The sequence
diagram shows the interactions between objects in the
sequential order that those interactions occur.

The information included in the sequence diagrams can be
very useful for designers, since the interactions between the
objects involved is clearly displayed. By observing the
behaviour of each object, one state machine diagram can be
created for that object, showing all its interactions.

Throughout our paper we will consider the example of a
simple ATM system. Let us focus on one scenario, i.e. one
where a user inserts an ATM card into an ATM machine;
after the card has been authenticated with the bank, a main
menu is displayed. Fig. 2 illustrates the corresponding
sequence diagram for the above scenario.

Fig. 2 Simple sequence diagram for an ATM

IV. DEPENDENCY DIAGRAMS

This section will explain the necessity of the dependency

diagrams and will introduce them briefly.

A. Relationships between scenarios
One scenario represents only one particular “story” of the

use of a system. For the complete description of the
requirements specification, a number of scenarios are
needed. These scenarios are not independent of each other,
but several relationships and dependencies interconnect
them.

If we consider the same example of an ATM system and
two scenarios, one for creating a card with a bank, and
another one for using the card for ATM operations, it is
natural that the scenario of creating the card must precede the
one of performing ATM operations. We cannot use an ATM
card for various transactions unless we actually have a card.

The above two scenarios must follow a strict order; in
other words, there is a strict and clear relationship between
them which cannot be ignored or altered.

Sequence diagrams, as representation of scenarios, show
the objects and the way they communicate with each other.
During the design phase, the behaviour of the object must
appear clear, unambiguous. Different relationships between
the scenarios where the object appears result in different
overall behaviours of the respective object. It is therefore

unified manner

REQUIREMENTS DESIGN TESTING
SPECIFICATION

AUTOMATIC
PROCESS

 REQUIREMENTS
-clearer, better
overview

 TEST CASES
-more accurate
-generated faster

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

essential to know the correct relationship between scenarios,
the one that reflects the requirements of the system.

The relationships can be classified from various points of
view: with respect to their goals, in terms of used resources,
the actors involved etc. However, we are concerned with how
the behaviour of the objects involved is influenced by the
relationships, because we intend to use this behaviour during
the design phase. In a previous paper, we offered a
classification from this point of view [7].

B. Normalization of scenarios
In their original form, as they are constructed from

scenarios (use cases), two or more sequence diagrams can
overlap, i.e. a common sequence of messages can be found in
two (or more) sequence diagrams. In order to be able to
express the relationships between them in an unambiguous
manner, we believe it is essential to maintain the property of
having distinct, individual sequence diagrams. Thus, before
proceeding to expressing their relationships, we are going to
remove the overlapping that might exist between them. We
call this process normalization of the scenarios/sequence
diagrams. Our purpose is to obtain disjoint sequence
diagrams, i.e. individual, distinct sequence diagrams. In our
ATM example, let us consider two scenarios: one for
withdrawing cash and one for depositing cash (Fig. 3).

Fig. 3 Two scenarios for an ATM

We can notice that both scenarios suppose an initial set of
operations where the card is validated with the bank and
consortium of banks. More specifically, both sequence
diagrams contain a series of 9 consecutive common
messages, representing the overlapping that we are going to
eliminate. We will separate the common messages into a new
sequence diagram, appearing in Fig. 4. Consequently, from
the original two sequence diagrams we have obtained three
normalized sequence diagrams (Fig. 4).

Fig. 4 Normalized sequence diagrams

C. Dependency diagrams
In order to represent the relationships existing between

various scenarios, we have introduced a new type of
diagrams called dependency diagrams [7].

We will show an example here, applicable to the ATM
system. In this example, the user approaches the ATM,
inserts the card, the card is validated and the main options
screen is displayed. This is considered the initial scenario, i.e.
Scenario_start. From this point, the user can select any of the
three operations of withdrawing cash, depositing cash or
transferring cash, that is either Scenario_withdraw or
Scenario_deposit or Scenario_transfer respectively.

We also assume that when the user changes his/her
password (Scenario_chg_pass.), the scenario
Scenario_videotape takes place simultaneously, that is, the
user is being videotaped during the operation of changing the
password.

The dependency diagram showing how these scenarios are
related to each other appears in Fig. 5.

This figure exemplifies succession (Scenario_start
precedes the other ones), the disjunction of three scenarios,
Scenario_withdraw, Scenario_deposit and
Scenario_transfer (any of them can be executed after
Scenario_start), as well as the conjunction of two scenarios,
Scenario_chg_ pass. and Scenario_videotape. The above
dependency diagram can be written using the following
“dependency formula” (using our notation in [7]):

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

Scenario_start ;
(Scenario_withdraw ∨ Scenario_deposit ∨
Scenario_transfer) ;
(Scenario_chg_ pass. ∧ Scenario_videotape)
(";" is used to show succession, when one scenario follows
another one, "∨" denotes disjunction, when only one scenario
can occur at a certain moment, and "∧" shows conjunction,
when scenarios occur simultaneously)

Fig. 5 Dependency diagrams involving
six normalized scenarios for an ATM

V. GENERATION OF TEST CASES

 Jacobson, as early as 1992, stated that use cases are well
suited to be used as test cases for integration testing [13]
(without actually defining a method for achieving that). We
are going to make use of the scenarios, as instances of use
cases, to create our test cases.
We propose two phases for generating test cases:
a) from individual scenarios;
b) from dependency diagrams.

As part of our methodology, we are performing the process
of normalizing our scenarios (represented as sequence
diagrams). By traversing various paths through each
individual, normalized scenario, we can obtain a first set of
what we call "primary" test cases. They are called primary
because they refer to one small portion of the behaviour we
need from our final product.

According to the way they were created, normalized
scenarios are disjoint scenarios. Thus, the behaviour
contained in one such normalized scenario will not be found
again, as it is, in a different one. Consequently, once testing
has been performed on this scenario, the same primary test
will not be run again, i.e. the same behaviour will not be
(needlessly) tested again.

Many approaches in test generation from behavioural
models concentrate on test generation from state machine
diagrams. We have also described how to obtain individual

state machine diagrams from a set of given sequence
diagrams [10]. Many methods of path traversal in state
machine diagrams have been proposed and any of them can
be used to obtain the primary test cases [14].

The system we proposed consists of the following main
modules (shown in Fig.6):
- scenario manager
- transformation engine
- transition system

The scenario manager is the module where, from initial
scenarios that describe the requirements, scenario matrices
are created and then normalized. This module also creates a
dependency formula from our dependency diagrams. This
covers the requirements specification part of the software
development process.
The transformation engine is the one that helps in generate a
meta-list of states and transitions, useful in the creation of
state machine diagrams. This covers part of the design phase.

The transition system generates test cases by traversing
various paths in the dependency diagrams. Considering the
way we defined our dependency diagrams, one trace in one
diagram can constitute a test case. With this transition
system, we deal with the testing phase in the software
development process.

Our system is in the process of being implemented. As
such, the transition system’s implementation is not finalized
yet. This transition system is mainly based on the dependency
diagrams. They are the ones including complex behaviour,
making sure that scenarios respect the way they are related
and the way they depend on each other.

By traversing paths in the dependency diagrams, we can
obtain "secondary" test cases. We call secondary the test
cases which arise from more complex behaviour and which
result as a combination of primary test cases.

Returning to our ATM example, we should first create test
cases for verifying the behaviour in each of the normalized
scenarios (and the corresponding state machine diagrams) is
respected. (Three of these normalized scenarios have been
represented in Fig. 4). Each test case corresponding to these
scenarios will be a primary test case. For example, we can
check that, as soon as we insert the card in the ATM, we are
being asked for a password. If the card is verified, the main
menu has to be displayed.

Next, we should obtain the secondary test cases, resulting
from the dependency diagram given in Fig. 5. We can
traverse several paths through this dependency diagram.
During testing, we should check that all required behaviour is
allowed. For instance, we can test whether, after the initial
scenario, the three possibilities arise for the user to interact
with the ATM, specifically withdrawing cash, depositing
cash or checking current balance. We can also check whether
video camera recording occurs at the same time with
changing the password.

Such tests will only find whether behaviour that must be
present is actually allowed. We can go further and start
testing whether restricted behaviour is allowed or not. For
example, we can test whether we can perform transactions
like withdrawing cash (Scenario_withdraw) before
authenticating our ATM card (Scenario_start).

The defining of all allowed and forbidden behaviour and
the way we generate tests accordingly is an intricate and
complex matter that we cannot cover in the space of this
paper. It is essential to emphasize that while traversing paths

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

through individual (normalized) scenarios allows us to obtain
primary tests, traversing various paths in the dependency
diagrams allows us to test more complex behaviour, i.e.
obtain secondary tests.

VI. RELATED WORK
A wide range of proposed approaches for extracting test

cases from model-based specifications exists. It mainly uses a
UML-based notations. Many such approaches base their test
generation on state machines, like Antoniol et al. in [15] and
Hartmann et al. in [15], who considered obtaining test
sequences from UML statecharts by covering selected paths
in a finite state machine.

Regarding the use of scenario-based testing, papers like
that of Graubmann and Rudolph [17] use Message Sequence
Charts, as well as High Level MSC (hMSC), along with
sequence diagrams. The Cow Suite methodology [18]
provides an integrated approach for generating and planning
UML-based test suites for industrial applications.

Some approaches use both state machines and scenarios
for test case generation. UMLAUT (Unified Modelling
Language All pUrposes Transformer) [19] is a tool that
transforms UML diagrams into an intermediate formal
description understandable by the Test Generation and
Verification (TGV) tool. SCENT ("A Method for
SCENario-Based Validation and Test of Software "),
presented in [14], creates scenarios in a structured way,
formalizing them into statecharts. It also annotates the
statecharts with helpful information for the test creation.

In their paper [20], S. Anand et. al classify the techniques
used in test generation in the following categories: symbolic
execution and program structural coverage testing,
model-based test case generation, combinatorial testing,
adaptive random testing as a variant of random testing,
search-based testing. Numerous techniques by various
authors are introduced; however, this survey does not cover
certain techniques, like specification-based testing.

VII. CONCLUSIONS AND FUTURE WORK

We proposed DePAT, a framework for specification-based
test generation. Our framework offers an approach to
software development which treats requirements
specifications, design and testing in a unified manner. This is
an ongoing work and we are currently in the process of
implementing our final system. Once implemented, our
system will be able to bring the tester one step closer to the
testing of as many different behaviours as possible. One of
the main benefits of our approach is allowing the possibility
for the software developers to spend less time on test
generation and more time on the requirements specifications.

Moreover, the requirements specification, design and
testing phases can be covered in a unified manner. This
approach can help the developers avoid inconsistencies and
can offer them a better overview of the system.

Our future work, once the implementation of the system is
concluded, will include conducting extensive testing and user
evaluation.

Fig. 6 Overall structure of the system

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

REFERENCES

[1] Ian Sommerville, "Software Engineering", Addison Wesley, 9th edition,
2011

[2] E. W. Dijkstra, “Notes on structured programming”, T.H. – Report
70-WSK-03, 1970

[3] G. J. Myers, "The Art of Software Testing", Wiley & Sons, USA, 2004
[4] J. Zhang, X. Chen, X. Wang, “Path-oriented test data generation using

symbolic execution and constraint solving techniques”, Proceedings of
the Second International Conference on Software Engineering and
Formal Methods, SEFM, 2004.

[5] B. Korel,, “Dynamic method for software test data generation”,
Software Testing, Verification and Reliability, Vol. 2, Issue.4,
1992, pp. 203–213

[6] K.-H.Chang, J. H. Cross II, W. H. Carlisle, D. B. Brown, "A framework
for intelligent test data generation", Journal of Intelligent and Robotic
Systems, April 1992, Volume 5, Issue 2, pp 147-165

[7] S. Vasilache, "Dynamic Modeling in the Design Phase Using
Dependency Diagrams", PhD Thesis, University of Tsukuba, 2007

[8] J. Rushby, "Automated Test Generation and Verified Software", in
Verified Software: Theories, Tools, Experiments, Bertrand Meyer and
Jim Woodcock (Eds.), Lecture Notes In Computer Science, Vol. 4171.
Springer-Verlag, Berlin, Heidelberg, pp. 161-172

[9] P. Hsia, J. Samuel, J. Gao, D. Kung, Y. Toyoshima, C. Chen, "Formal
approach to scenario analysis”, IEEE Software, 11(2), 1994, pp. 33-41

[10] S. Vasilache, J. Tanaka, "Synthesis of State Machines from Multiple
Interrelated Scenarios Using Dependency Diagrams," Journal of
Systemics, Cybernetics and Informatics, Vol.3, No.3, 2006

[11] S. Freeman, N. Pryce, "Growing Object-Oriented Software, Guided by
Tests", Addison-Wesley, USA, 2011

[12] C. Nebut, F. Fleurey, Y. L. Traon, J.M. Jezequel, "Automatic Test
Generation: A Use Case Driven Approach", IEEE Transactions on
Software Engineering, Vol. 32, No. 3, 2006

[13] I. Jacobson, M. Christerson, P. Jonsson, G. Övergaard, "Object
Oriented Software Engineering: A Use Case Driven Approach",
Amsterdam: Addison-Wesley, 1992

[14] J. Ryser, M. Glinz, "A scenario-based approach to validating and
testing software systems using statecharts", Proc. 12th International
Conference on Software and Systems Engineering and their
Applications, 1999

[15] G. Antoniol, L. C. Briand, M. Di Penta, Y. Labiche, "A Case Study
Using the Round-Trip Strategy for State-Based Class Testing", In Proc.
of ISSRE, 2002

[16] J. Hartman C. Imoberdof, M. Meisenger "UML-Based Integration
Testing", In ACM Proc. ISSTA 2000, Portland, 2000

[17] P. Graubmann, E. Rudolph, "HyperMSCs and Sequence Diagrams for
use case modeling and testing", In Proceedings of UML 2000, volume
LNCS Vol.1939, 2000, pp. 32–46

[18] F. Basanieri, A. Bertolino, E. Marchetti "The Cow Suite Approach to
Planning and Deriving Test Suites in UML Project", In Fifth
International Conference on the Unified Modeling Language - the
Language and its applications(UML 2002), pp. 383–397, 2002

[19] UMLAUT Project, http://www.irisa.fr/UMLAUT/
[20] S. Anand, E. K. Burke, T. Y. Chen et. al. “An orchestrated survey of

methodologies for automated software test case generation”, The
Journal of Systems and Software, No. 86, 2013.

[21] M. Katatara, A. Kervinen, "Making model-based testing more agile: a
use case driven approach", In Proceedings of the Haifa Verification
Conference 2006, No. 4383 in Lecture Notes in Computer Science.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

	I. INTRODUCTION
	II. OVERVIEW OF PROPOSED APPROACH
	III. REQUIREMENTS ANALYSIS USING SCENARIOS AND SEQUENCE DIAGRAMS
	IV. DEPENDENCY DIAGRAMS
	A. Relationships between scenarios
	B. Normalization of scenarios
	C. Dependency diagrams

	V. GENERATION OF TEST CASES
	VI. RELATED WORK
	VII. CONCLUSIONS AND FUTURE WORK
	REFERENCES

