
Suppressing Redundant TCP Retransmissions
in Wireless Mesh Networks

Shuhei Aketa, Eiji Takimoto, Yuto Otsuki, Shoichi Saito, Eric W. Cooper, Koichi Mouri

Abstract—The link quality of wireless mesh networks is
variable, hence dynamic route modifications based on changes
in link quality can improve communication performance. A
drawback of the route modification is the occurrence of order
errors, which triggers retransmission control in TCP com-
munication. However, retransmission is unnecessary for order
errors in route modification as retransmission is redundant.
In this study, we propose a method that discriminates the
causes of order errors on the basis of their TCP sequence
numbers and reception intervals. We also propose a method
that suppresses the redundant retransmissions caused by order
errors. When the determination method infers that an order
error is due to a route modification, the suppression method
retains the acknowledgement (ACK) packet so as not to activate
the retransmission control of the TCP sender. Even if the
determination method makes a misjudgment, its impact is
minimized by limiting the waiting time. The results evaluated in
Linux show a 50% reduction of retransmitted packets in Reno
and CUBIC and a 90% reduction in selective acknowledgement
(SACK) Reno and SACK CUBIC.

Index Terms—Wireless Mesh Networks, TCP, Order Errors,
Retransmission Control

I. INTRODUCTION

W IRELESS mesh networks are built such that each
node is connected by direct radio, consequently

making such networks susceptible to interference. Distance
vector routing protocols (e.g., AODV [1], DSR [2]) construct
routes depending on the network topology without consider-
ing the effect of interference, and do not change a route if
there is no change in the topology. Therefore, these protocols
experience problems when communication performance is
degraded because of network traffic congestion. In contrast,
link state routing (LSR) protocols (e.g., OLSR [3], FSR
[4]) construct routes depending on the link quality between
each node and take into consideration the effect of inter-
ference. OLSRs can follow a change in link quality during
communication and perform route modification, but this link
quality is characterized by coarse granularity. Using a metric
with finer granularity improves communication performance.
Therefore, dynamic metrics for wireless multihop networks
have been proposed. The expected transmission count (ETX)
[5] dynamic metric is based on the number of transmitted
data frames at the MAC layer. The expected transmission
time (ETT) [6] is a metric in which the communication
rate is considered in ETX. These metrics reflect dynamic
communication environments. They can be used to select
a path with good link quality and are expected to improve

This study was supported by the Grant-in-Aid for Challenging Ex-
ploratory Research of the Japan Society for Promotion of Science (JSPS)
under the Contract No. 25730065.

S. Aketa, E. Takimoto, Y. Otsuki, E. W. Cooper and K. Mouri are with
Ritsumeikan University (e-mail: saketa@asl.cs.ritsumei.ac.jp).

S. Saito is with Nagoya Institute of Technology.

communication performance [7]. However, an increased oc-
currence of order errors has been reported when using
dynamic metrics because the route modifications can cause
preceding packets to be overtaken [8]–[10].

LSR protocols with dynamic metrics can also cause order
errors. TCP corrects out-of-order packets, but in TCP with
fast transmit, order errors are sometimes misidentified as
packet loss when there is a delayed arrival of packets, as
required for sequence error detection. When order errors by
route modification occur with a change to a vacant path
from a congested path (Fig. 1), the packets overtaken tend to
increase in width. When the width of the overtaken packets
becomes large, the overtaken packets are retransmitted. When
out-of-order packets due to route change are retransmitted,
this transmission is redundant since there was no packet loss.
However, redundant retransmissions that reduce communi-
cation performance are considered to be a necessary evil in
order to reduce the TCP congestion window and thus reduce
waste in radio resources.

In this study, we propose a method to suppress redundant
TCP retransmissions that are caused by route modifications
in wireless mesh networks. Two TCP features are responsible
for generating redundant retransmissions:

• TCP does not determine the cause of the order error.
• TCP that performs fast retransmit when receiving three

consecutive duplicate ACKs does not relate these to the
cause of the error sequence.

The proposed method determines the route change or packet
loss caused by order errors on the basis of the difference
between the reception interval and the TCP sequence number
during TCP data packet reception. When the order error
is caused by packet loss, the proposed method does noth-
ing. When it is caused by a route change, the proposed
method delays the transmission of the TCP ACK packet
that may duplicate the ACK. Thus, the proposed method
controls redundant retransmissions. We proposed a method
for determining the cause of order errors depending on only
the difference of the sequence number [11]. However, this
method can not handle burst-type packet loss. We improved
the determination method for depending on the difference
between the reception interval and the sequence number. In
this study, we do not take node mobility into account.

The rest of the paper is organized as follows: In section 2,
we explain why redundant retransmission occurs. In section
3, we describe the proposed method. In section 4, we evaluate
the performance of our protocol. In section 5, we explain
related work on suppressing the impact of order errors. In
section 6, we present our conclusions.

II. REDUNDANT RETRANSMISSION SEGMENT
Fig. 1 is a typical example of order errors caused by route

change. A route is selected for the destination node from the

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol II,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-9-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

14

8 7 6 5

13 12

4 11 10 9 3 2 19

8 7 6 5 4 3 2

1

Receiver
Node

Sender
Node

(a) Before Route Modification

Congestion

Vacancy

Order Errors

Sender
Node

Receiver
Node

(b) After Route Modification

Fig. 1. Typical example of order error.

source node in Fig. 1 (a). The queue of the relay node begins
accumulating packets with the start of communication. After
a while, the routing changes to the vacant route below,
because of the reduced link quality of the route in use. In
this case, the arrival time to the destination node is short
because there is no packet waiting in the queue of the relay
node of the new route. The route is changed when a sender
node sends eight packets, as shown in Fig. 1. Packets 9, 10,
and 11 arrive at the destination node before packet 4. As
in this example, packets may be overtaken because of the
difference in the arrival times of packets before and after
path switching.

Fig. 2 illustrates the transition of the TCP sequence
number where the out-of-order packets occurred because of
a route change. We observed these results at the destination
node in a preliminary experiment using the network simulator
QualNet [12]. The blue line represents the sequence number
of the TCP data packet received at the destination node.
The green line represents the sequence number of the TCP
ACK packet sent to the destination node. As shown in Fig.
2 (1), order errors occur for five consecutive packets after
receiving the packet sequence number with a large difference
because of a route change at 344.06 s. The ACK packet for
the arriving packet which has been overtaken, is a duplicate
ACK. The receiver TCP sends duplicate ACKs because of the
arrival of the overtaking packets at 344.1 s (Fig. 2 (2)). The
source node that received the duplicate ACKs performs a fast
retransmit. Therefore, the retransmitted packets arrive at the
destination node at 344.16 s (Fig. 2 (4)). Packets with a fast
retransmit are received with a delay but without loss (Fig. 2
(3)). In other words, this retransmission control is redundant.
In addition, three packets are retransmitted because of the
characteristics of TCP NewReno [13], which assumes that
the loss of multiple packets is due to a single transmission
window size, and then retransmits multiple data packets. This
is also a redundant retransmission of the previously received
packets.

III. PROPOSED METHOD

TCP performs a fast retransmit when it receives three
duplicate ACKs regardless of the cause of the order error.
In this study, we propose a method for determining the
cause of order errors depending on the difference between
the reception interval and the TCP sequence number at the
TCP data packet reception. Moreover, we propose a method
for suppressing retransmission by delaying the transmission
of the duplicate ACK packet when the cause is determined
to be a route change.

(2) DATA that arrived by overtaking
packets are sending duplicate ACK.

15444

15445

15446

15447

15448

15449

15450

15452

15453

T
C

P
 S

eq
ue

nc
e

N
um

be
r

(4) Redundant
retransmitted packet

(1) A large difference
between the seq. number.

 344.04 344.06 344.08 344.1 344.12 344.14 344.16

Simulation Time [s]
 344.18

15451

(3) Overtaken packets are not
duplicate ACKs.

(×1000)

(5) The difference between
the normal is MSS.

DATA-RECV
ACK-SEND

Fig. 2. Transition of TCP sequence number with order errors.

A. Method for Determining Order Errors

The size differences in the TCP sequence number of the
order error tend to differ depending on the cause. Upon
receiving the data packet in the correct arrival order, the
difference between the sequence numbers is equal to the
maximum segment size (MSS). The reason is the Nagle
algorithm [14]. Out-of-order packets due to rerouting occur
by subsequent data packets passing through the new path
and overtaking the preceding data packets. That is, when
rerouting occurs, it increases the difference in the sequence
number. On the other hand, sporadic packet loss has a higher
frequency of occurrence than burst-type packet loss. In other
words, when sporadic packet loss occurs, the difference in the
sequence number decreases. The packet arrival interval tends
to vary depending on the cause. When packet loss occurs, the
arrival interval becomes longer because the original packet
to be received did not arrive, so there will be a time interval
associated with the lost packets. In contrast, route changes do
not tend to cause significant changes in the arrival interval,
and they do not directly affect the arrival interval of the
overtaken packets. We confirmed both these patterns using
QualNet. The proposed method determines the cause of the
out-of-order packet depending on the difference between the
reception interval and the TCP sequence number at the time
of data packet reception. We calculate the difference in the
sequence number of the data packet received immediately
before the sequence number of the TCP header. We then
calculate the difference in the reception interval from the
difference between the arrival time of the previous and
current data packets.

The threshold of the sequence numbers is three times
the MSS value. Three times this size means three packets
because the trigger for fast retransmit is receiving three
duplicate ACKs, which corresponds to the three or more
overtaken packets. The threshold of the reception interval is
the product of the overtaking packet width and the average
arrival interval of the most recent packet of the eight. This
threshold is the expected arrival time of the next packet. This
method can also handle burst-type packet loss. The proposed
method confirms these thresholds at the occurrence of the
order error.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol II,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-9-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

(2) Delay for the
transmission of ACKs.

15444

15445

15446

15447

15448

15449

15450

15452

15453

(5) suppressing these
redundant retransmitted
packets

 344.04 344.06 344.08 344.1 344.12 344.14 344.16

Simulation Time [s]
 344.18

15451

(4) Return to the nomal state
when the opportunity to
recover from the order errors.

(×1000)

(1) To ACK delayed state because
it exceeded the two thresholds.

(3) Sending ACKs that do
not duplicate ACKs.

T
C

P
 S

eq
ue

nc
e

N
um

be
r

DATA-RECV
ACK-SEND

Fig. 3. Behavior of the proposed method.

B. Method for Suppressing Redundant Retransmissions

This suppression method, which delays the transmission of
the ACK packet, determines the occurrence of order errors
by rerouting, as explained in Section III-A. It is possible to
suppress fast retransmission when the source node does not
receive duplicate ACKs after a delayed ACK transmission.
The proposed method suppresses fast retransmit using two
states, i.e., the normal state and the ACK delayed state. In
the normal state, the receiver performs the normal TCP oper-
ation. The ACK delayed state is a state of recovery, waiting
for in-order packets and any out-of-order packets delayed
because of route changes, and suppressing retransmission of
duplicate ACKs in the ACK delayed state.

The procedure of the proposed method is described below:
Step1 When a detected value exceeds the thresholds of

the reception interval and sequence number, the
destination node shifts into the ACK delayed state.

Step2 The ACK packet for the data packet that arrived by
overtaking delayed packets sends a duplicate ACK.

Step3 The ACK packet for an arriving data packet that
was overtaken transmits without waiting for order
errors.

Step4 When all the overtaken data packets have been re-
ceived, the node returns to its normal state because
it has recovered from order errors.

Fig. 3 shows an example of the proposed method. This
figure is the same as Fig. 2 but includes the steps of the
proposed method. Each number below corresponds to those
in Fig. 3.

1) When the difference in the sequence number and
reception interval exceeds the threshold of 344.06 s,
the destination node shifts into the ACK delayed state.

2) The destination node delays the transmission of the
ACK packet for the five arriving data packets by going
into the ACK delayed state (at 344.1 – 344.06 s).

3) Since the ACK received for the overtaken data packet
is not a duplicate ACK, it transmits normally.

4) Recovery from an out-of-order event occurs when the
destination node returns to its normal state at 344.14 s,
and the ACK packets that have been delayed are
discarded.

Following this procedure, the ACK packets in Fig. 3 (2) are
delayed to reduce the number of redundant retransmission
packets in Fig. 3 (5).

If the TCP selective acknowledgement (SACK) option [15]
is used, the source node retransmits the ACKs it receives
with SACK options. When the ACKs with SACK options
are transmitted in the ACK delayed state, the source node
performs a redundant retransmission. Therefore, the proposed
method removes the SACK option of these ACKs.

C. Measures of Misjudgment

The proposed method determines the cause of the out-
of-order packets depending on the difference between the
reception interval and the TCP sequence number at data
packet reception. This involves a transition to the ACK
delayed state, which may be invoked erroneously by at-
tributing delays to out-of-order packets, and may thus inhibit
necessary retransmissions. This may cause the worst case
retransmission timeout (RTO). When the proposed method
makes a wrong decision to transition to the ACK delayed
state and waits for the required ACK packet to be sent, the
source node experiences zero window conditions and cannot
receive ACK packets, thus falling into a non-transmission
state in which it cannot send packets or fast retransmit.
This state continues until RTO occurs at the source node.
When RTO occurs, the window size decreases to the one
assigned by the congestion control, and the throughput is
reduced. Therefore, it is necessary to suppress RTOs due to
misevaluation. To address this problem, the proposed method
sets a timer, called the misevaluation check timer, fora data
packet received in the ACK delayed state.

The determination method errs if it does not recover from
the order error by the expiration of the misevaluation check
time and return to the normal state. When the misevaluation
check time expires, the last three duplicate delayed ACK
packets are transmitted. The source node uses fast retransmit
on receiving the three duplicate ACKs. As a result, the
receiver recovers from order errors by fast retransmit, even
when the cause of the delay was a misevaluation. The
misevaluation check timer sets the product value of the
overtaking width and the average packet arrival interval
according to the eight most recent packets.

IV. EVALUATION

We conducted an experiment to evaluate the effectiveness
of the proposed method using machines operating on a De-
bian 7.5 OS with kernel 3.2.0. We implemented the proposed
method as a kernel module in the Linux OS. We compared
eight patterns, TCP Reno and TCP CUBIC, TCP Reno with
SACK, and TCP CUBIC with SACK, applying the proposed
method to each pattern. The experiment topology was similar
to that in Fig. 4, with six nodes in 9 m × 14 m, indoors.
The source and destination nodes could not communicate
directly, and we minimized the transmission power using a
fabric wall between them. Each node used IEEE 802.11b,
and the channel capacity was 11 Mbps. Each node runs the
OLSRd [16] Linux daemon of the OLSR routing protocol
with the dynamic metrics of the ETX. We conducted an
FTP file transfer from the source to the destination node
over this connection for 51.2 MB (100,000 packets), and the

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol II,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-9-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

Desk

Sender Node

Receiver Node

Relay Node

Fabric Wall

14m
9m

Fig. 4. Evaluation topology.

packet size and MSS were 512 bytes. In each scenario, we
performed 90 experiments, and the results shown are average
values.

A. Results

Fig. 5 shows the total number of retransmitted packets for
each congestion control algorithm. The number of packets
lost, which is calculated from the difference between the total
number of transmitted and received data packets, indicate
the number of packets that must be retransmitted. Thus, the
number of redundant retransmitted packets is the difference
between the total number of retransmitted packets and the
number of packets lost. When the proposed method was
not applied, of the 85 retransmission packets, 60% of the
packets retransmitted by Reno and CUBIC were redundantly
retransmitted. In contrast, when the proposed method was
applied, the number of retransmitted packets was reduced
by 55% in Reno and CUBIC. Of the SACK Reno and
SACK CUBIC retransmitted packets, 90% were redundantly
transmitted. The SACK option erroneously recognizes packet
loss as not all overtaken packets result from order errors
by rerouting, so redundant retransmission occurs. When the
proposed method was applied to the SACK options, the total
number of redundant retransmission packets was reduced by
80% in SACK Reno and 87% in SACK CUBIC.

Fig. 6 shows the goodput and round trip time (RTT)
for each congestion control algorithm. CUBIC and SACK
CUBIC improved their goodput by about 1%, and reduced
their RTTs by 4%. On the other hand, Reno and SACK
Reno improved their goodput by only 0.4%, and showed
no significant change in the RTT. From the above, using
CUBIC, we confirmed the effectiveness of the proposed
method. However, Reno showed reduced effectiveness. The
ineffective results for Reno are because its window size is
smaller than that in CUBIC.

Fig. 7 shows the instantaneous throughput for SACK CU-
BIC. SACK CUBIC with the proposed method is shown with
a solid line, and the regular SACK CUBIC is shown with a
broken line. SACK CUBIC performs redundant retransmis-
sions and congestion control by making route changes. In this
experiment, the rerouting occurred in cycles of roughly 10
s. SACK CUBIC regularly showed a decreased throughput.
Conversely, the proposed method can be used to maintain a

0

50

100

150

200

250

300

350

Reno Reno
with

Proposed Method

CUBIC CUBIC
with

Proposed Method

SACK Reno SACK Reno
with

Proposed Method

SACK CUBIC SACK CUBIC
with

Proposed Method

N
um

be
r o

f R
et

ra
ns

m
itt

ed
Pa

ck
et

s

Packet Loss
Redundant Retransmitted Packets

Fig. 5. Effect of reducing retransmission control.

300

350

400

450

500

960

970

980

990

Reno Reno
with

Proposed Method

CUBIC CUBIC
with

Proposed Method

SACK Reno SACK Reno
with

Proposed Method

SACK CUBIC SACK CUBIC
with

Proposed Method

R
ou

nd
 T

rip
 T

im
e

[m
s]

G
oo

dp
ut

 [k
bp

s]

Avg. Goodput
Avg. RTT

Fig. 6. Throughput and RTT for each congestion control algorithm.

0

20

40

60

80

100

120

140

160

180

0 50 100 150 200 250 300 350 400 450 500

Th
ro

ug
hp

ut
 p

er
 u

nt
il

tim
e

[k
bp

s]

Time [s]

SACK CUBIC
Proposed Method

Fig. 7. Instantaneous throughput with SACK CUBIC and with the proposed
method.

high overall throughput and is less affected by route changes.
It completed the transfer of more early files compared with
SACK CUBIC. The method reduced throughput time by
250–300 s, because the link quality of the originally selected
path had deteriorated. The method can also determine out-of-
order packets due to burst-type packet loss and route changes.
Therefore, the proposed method is unaffected even if the rate

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol II,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-9-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 100 200 300 400 500

O
ut

st
an

di
ng

 D
at

a
[b

yt
es

]

Time [s]

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 100 200 300 400 500

O
ut

st
an

di
ng

 D
at

a
[b

yt
es

]

Time [s]

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 100 200 300 400 500

O
ut

st
an

di
ng

 D
at

a
[b

yt
es

]

Time [s]

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 100 200 300 400 500

O
ut

st
an

di
ng

 D
at

a
[b

yt
es

]

Time [s]

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 100 200 300 400 500

O
ut

st
an

di
ng

 D
at

a
[b

yt
es

]

Time [s]

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 100 200 300 400 500

O
ut

st
an

di
ng

 D
at

a
[b

yt
es

]

Time [s]

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 100 200 300 400 500

O
ut

st
an

di
ng

 D
at

a
[b

yt
es

]

Time [s]

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 100 200 300 400 500

O
ut

st
an

di
ng

 D
at

a
[b

yt
es

]

Time [s]

(a) Reno (b) Reno with Proposed Method (c) SACK Reno (d) SACK Reno with Proposed Method

(e) CUBIC (f) CUBIC with Proposed Method (g) SACK CUBIC (h) SACK CUBIC with Proposed Method

Fig. 8. Instantaneous window size for each congestion control algorithm.

of packet loss has increased. If delays in the ACK packet
are erroneously determined as the cause for order errors,
communication temporarily stops and RTO occurs.

B. Discussion

From the experiment results, we confirmed that the pro-
posed method is effective in reducing the number of redun-
dantly retransmitted packets and improving network through-
put. The proposed method reduced retransmitted packets by
55% in Reno and CUBIC and by 80–87% in SACK Reno
and SACK CUBIC. The reason the SACK option experiences
an increased number of redundant retransmission packets
is because it erroneously recognizes packet loss; not all
overtaken packets are detected as out-of-order by rerouting.
In this evaluation, the average width of the overtaken packets
is 53 in Reno and 64 in CUBIC. The SACK options
mistook overtaken packets as packets lost, increasing its
number of retransmission packets in an attempt to retransmit
them. The SACK CUBIC result is due to the overtaking
width of the redundant retransmission packet being greater
than that in SACK Reno. Furthermore, the throughputs of
Reno and CUBIC were temporarily reduced when they
were receiving duplicate ACKs because of their loss-based
congestion control algorithms. The proposed method can
also suppress redundant congestion control by discarding the
duplicate ACKs at the destination node. The wireless channel
is characterized by the transmission of the frames affecting
neighboring nodes. Thus, the proposed method can also be
used to mitigate the effects of the neighbor nodes and the
intra-flow interference by reducing redundantly transmitted
packets.

Reno can be applied with the proposed method, and its
goodput and RTT do not change as compared with those of
CUBIC, because the window size remains lower than that
of CUBIC. Fig. 8 shows the instantaneous window size for
each congestion control algorithm. We calculated this graph
of outstanding data using the tcptrace [17] from PCAP. Reno
(Fig. 8(a)) and SACK Reno (Fig. 8(c)) maintain a lower
window size, which influences the route change. On the

other hand, with the proposed method (Fig. 8(b), (d)), it
is possible to maintain a higher window size than that in
Reno. A similar trend in shown in CUBIC (Fig. 8(e), (f),
(g), (h)). In other words, in Reno and CUBIC, it is possible
to suppress redundant congestion control. However, Reno’s
window size remained lower than that of CUBIC. Reno
reduces its window size by half when it detects packet loss.
A larger window size cannot be maintained in environments
affected by a high packet loss ratio for wireless link and
route changes. Reno tends to have TCP zero window con-
ditions because of its small window size. When the delayed
ACK packets are sent by the proposed method, the sender
node temporarily stops sending data packets. As a result,
Reno’s stops in transmission can also temporarily suppress
redundant congestion control, and this does not improve
communication performance. CUBIC always attempts to
maintain its window size in areas close to congestion. CUBIC
can also delay ACK packets using the proposed method and
continues to transmit data packets because there is sufficient
window space. From the above results, we conclude that
to improve the communication performance in the proposed
method, it is necessary to increase window size.

In the experiments, it was difficult to observe packet loss
because fewer nodes were involved. The experiments were
also less able to determine the cause of erroneous deter-
mination of out-of-order packets by the proposed method
when bursts in packet loss occurred. When we evaluated the
QualNet experiments for 50 nodes of 1000 m × 1000 m,
we obtained an 89% correct determination rate for order
errors. For the erroneously determined 11%, RTO occurrence
can be minimized using the misevaluation check timer. This
experiment was small, with two hops and four selectable
routes. Accordingly, the influence of the route change was
also small. We can expect further advantages in using the
proposed method by increasing the network size.

V. RELATED WORK

TCP-DOOR [18] focuses on arrival order errors due to
route changes. and is a method for suppressing redundant

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol II,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-9-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

congestion control that occurs during path switching in ad-
hoc communication. The routing protocol is assumed to
be one of reactive routing protocol (e.g., DSR, AODV).
TCP-DOOR detects out-of-order packets on the basis of
the original sequence number, which is the transmission
order (including retransmission packets) of all data packets
and ACK packets. When out-of-order events are detected,
a source node is temporarily disabled either by congestion
control or by recovering the out-of-order packet during
congestion avoidance. TCP-DOOR can be expected to im-
prove performances in environments without packet loss
[19]. However, TCP-DOOR does not assume packet loss,
and, consequently, goodput decreases as the packet loss rate
increases [20]. The wireless environment is influenced by
interference from neighboring nodes with a high packet loss
ratio. The proposed method uses the arrival interval and TCP
sequence number to determine packet loss and route change.
The proposed method does not require additional information
to be present in each packet.

Approaches to delay the processing of the ACK packet
include the Paxson algorithm [21] and TCP-DCR [22]. The
Paxson algorithm uses an additional delay time before a
destination node sends duplicate ACKs. It suppresses redun-
dant retransmission control and congestion control to 20 ms
between the first and second duplicate ACKs. However,
the Paxson algorithm does not provide a mechanism for
determining how to set an optimal delay time, and the
20 ms delay time is based on observation. TCP-DCR is a
method for suppressing redundant congestion control and
retransmission, to delay congestion control by one RTT upon
receiving duplicate ACKs. TCP-DCR assumes an environ-
ment in which wireless and wired connections are mixed,
divides these mixed and wireless connections, and then
performs congestion control and retransmission control in
each. The Paxson algorithm and TCP-DCR do not distinguish
between rerouting and packet loss. Since packet loss delays
the processing of ACK packets, this effect cannot be expected
in a wireless mesh environment. The proposed method can
minimize RTO using the misevaluation check timer, even
if it erroneously determines the cause for an out-of-order
packet. The time of the misevaluation check timer is adjusted
according to the communication environment and the width
of the overtaking packets.

VI. CONCLUSION
In this study, we proposed a method for suppressing

redundant retransmissions due to route changes. When a
combination of the LSR protocol and dynamic metrics is
used, route modification occurs frequently. In this manner,
out-of-order events occur, followed by retransmission. TCP
mistakes the out-of-order event for packet loss and invokes
retransmission control. However, retransmission control for
cases involving no packet loss is redundant. The proposed
method determines the cause of the out-of-order event
depending on the difference between the arrival interval
and the sequence number at the destination node. It then
delays ACK packets as duplicate ACKs, as determined by
route modification. When the source node does not receive
duplicate ACKs, it suppresses redundant retransmissions and
congestion control. The results evaluated in Linux show a
50% reduction in the number of redundantly retransmitted

packets in Reno and CUBIC and 90% reduction in SACK
Reno and SACK CUBIC.

REFERENCES

[1] C. Perkins, E. Belding-Royer, and S. Das, “Ad hoc On-Demand
Distance Vector (AODV) Routing,” RFC3561, 2003.

[2] D. Johnson, Y. Hu, and D. Maltz, “The Dynamic Source Routing
Protocol (DSR) for Mobile Ad Hoc Networks for IPv4,” RFC4728,
2007.

[3] T. Clausen and P. Jacquet, “Optimized Link State Routing Protocol
(OLSR),” RFC3626, 2003.

[4] P. Guangyu, G. Mario, and C. Tsu-Wei, “Fisheye state routing in
mobile ad hoc networks,” in Proc. ICDCS, 2000, pp. 71–78.

[5] D. S. J. De Couto, D. Aguayo, J. Bicket, and R. Morris, “A High-
Throughput Path Metric for Multi-Hop Wireless Routing,” in Proc.
ACM MobiCom ’03, 2003, pp. 134–146.

[6] R. Draves, J. Padhye, and B. Zill, “Routing in Multi-radio, Multi-hop
Wireless Mesh Networks,” in Proc. ACM MobiCom ’04, 2004, pp.
114–128.

[7] X. Ni, K.-c. Lan, and R. Malaney, “On the Performance of Expected
Transmission Count (ETX) for Wireless Mesh Networks,” in Proc.
ICST ValueTools ’08, 2008, pp. 1–10.

[8] E. Gelenbe and M. Gellman, “Can Routing Oscillations Be Good? The
Benefits of Route-switching in Self-aware Networks,” in Proc. IEEE
MASCOTS ’07, 2007, pp. 343–352.

[9] Z. Zaidit, T. Tan, and Y. Cheng, “ETX Could Result in Lower
Throughput,” in Proc. IEEE ICCCN ’09, 2009, pp. 1–6.

[10] K.-C. Leung, V.-K. Li, and D. Yang, “An Overview of Packet Reorder-
ing in Transmission Control Protocol (TCP): Problems, Solutions, and
Challenges,” IEEE Transactions on Parallel and Distributed Systems,
vol. 18, no. 4, pp. 522–535, 2007.

[11] S. Aketa, Y. Otsuki, K. Mouri, and E. Takimoto, “Improving the
Suppression Method of Redundant TCP Retransmission Caused by
Route Modification,” in IEICE Technical Report, ser. MoNA2013-46,
vol. 113, no. 304, 2013, pp. 29–34.

[12] QualNet, http://www.scalable-networks.com/content/qualnet.
[13] S. Floyd and T. Henderson, “The NewReno Modification to TCP’s

Fast Recovery Algorithm,” RFC2582, 1999.
[14] J. Nagle, “Congestion Control in IP/TCP Internetworks,” RFC896,

1984.
[15] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP Selective

Acknowledgment Options,” RFC2018, 1996.
[16] “olsrd — an adhoc wireless mesh routing daemon,” http://www.olsr.

org/.
[17] tcptrace OfficialH̃omepage, http://www.tcptrace.org.
[18] F. Wang and Y. Zhang, “Improving TCP Performance over Mobile Ad-

Hoc Networks with Out-of-Order Detection and Response,” in Proc.
ACM MOBIHOC ’02, 2002, pp. 217–225.

[19] A. Alheid, D. Kaleshi, and A. Doufexi, “An Analysis of the Impact of
Out-of-Order Recovery Algorithms on MPTCP Throughput,” in Proc.
IEEE AINA ’14, 2014, pp. 156–163.

[20] D. Yang, K.-C. Leung, and V. Li, “Simulation-Based Comparisons of
Solutions for TCP Packet Reordering in Wireless Networks,” in Proc.
IEEE WCNC ’07, 2007, pp. 3238–3243.

[21] V. Paxson, “End-to-end Internet Packet Dynamics,” in Proc. ACM
SIGCOMM ’97, 1997, pp. 139–152.

[22] S. Bhandarkar, N. Sadry, A. Reddy, and N. Vaidya, “TCP-DCR:
A Novel Protocol for Tolerating Wireless Channel Errors,” IEEE
Transactions on Mobile Computing, vol. 4, no. 5, pp. 517–529, 2005.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol II,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-9-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

