
 

 
Abstract—This article proposes the analytical model for 

studying behaviors of injection locked relaxation oscillator 
(ILRO). The proposed model enhanced from N. Soltani’s 
model can be used to demonstrate behaviors of the ILRO in 
case the input frequency is higher than the natural frequency, 
namely, necessarily physical conditions for locking, locked 
ranges, detuning behaviors and frequency division. The 
proposed model is verified by simulation results of the ILRO 
based on 0.35um-CMOS technology of TSMC. 
 

Index Terms— Injection locked relaxation oscillator (ILRO), 
Locking condition, Locked range, Detuning. 
 

I. INTRODUCTION 

ASED on interesting behaviors of an injection locked 
oscillator, many mathematical models were proposed 

which are divided into 2 main groups, namely, the manual 
analytical models and the analytical models using numerical 
methods to determine the solutions. With the pattern of 
analysis of the first group [1-3], profound understanding to 
the influence of the parameters appearing in the system on 
the detuning and locking processes is possible. However, 
these models are limited to the harmonic oscillator. For the 
other group [4-6], the method can be employed to determine 
the accurate solutions of both the harmonic and non-
harmonic oscillators which are fed by an input signal but it 
is not yet a suitable tool for deeply understand the detuning 
and locking process.  

In 2010, the manual analytical model for ILRO was 
proposed by N. Sotani et al. [7]. But only the input 
frequency around the natural frequency was considered and 
the explanation of the detuning process is quite difficult to 
relate with the practical results. However, in this paper, the 
model in [7] is enhanced in order to explain the detuning 
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and locking processes when the input frequency is higher 
than the natural frequency.  

An organization of this article begins with the 
fundamental relaxation oscillator in section 2. Studying 
behaviors of ILRO is discussed in section 3. Section 4 is to 
demonstrate comparisons between simulation results and 
calculation results. Finally, section 5 is for conclusion of 
this article. 

II. RELAXATION OSCILLATOR 

In general, a structure of a relaxation oscillator [8, 9] is 
composed of 3 parts as shown in Fig. 1 (where a current 

source  ini t  is neglected). The first part is a capacitor ( C ) 

where the second part is a charge-pump circuit which 
supplies constant currents ( CPI ). The third part is a 

Schmitt trigger circuit where ,th LV  and ,th HV  are two 

threshold voltages. The natural period of the oscillating 
signal, consisting of charge time ( H ) and discharge time 

( L ), is 2 /nat th CPT C V I   where , ,th th H th LV V V   . 

III. RELAXATION OSCILLATOR  
INJECTED BY AN INPUT SIGNAL 

In this article, studying behaviors of ILRO is considered 
in case of an input signal is sinusoidal signal. Let the input 
function be    sinin in ini t I t  where

 inI  and in  are 

amplitude and frequency, respectively. 

Physical behavior and locking condition of ILRO 

The signal-generating process of the relaxation oscillator 
comprises of charging and discharging of the capacitor. For 
generating the suitable output signal, it is necessary that the 
charge time ( H ) must be equal to the discharge time ( L ). 
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Fig. 1. A structure of the relaxation oscillator which is fed by an input 
signal 
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 In other words, the current magnitude ( CPI ) of the charge 

pump circuit which is delivered to the capacitor is equal to 
the current magnitude ( CPI ) of the charge pump circuit 

which is derived from the capacitor. Therefore, to adjust the 
output period to correspond to the input period, average 
amplitude of the input amplitude in the charge time has to 
be equal to average amplitude of the input signal in the 
discharge time but opposite sign. With this physical 
behavior of the ILRO, the shape and, especially, the period 
of the input signal have an influence on the ILRO. 
However, the influence of the shape is less than that of the 
period, therefore, only the influence of the input period is 
considered to determine the locking condition. 

 

When the oscillator locks to the input signal where 
/inT T n , n  is the integer number and T  is the detuned 

period of the output signal.   The equation employed to 
determine the charge time of ILRO can be written as 
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 
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v t t
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dv t I I t t dt
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 

        (1) 

 

where dt  is the delay time. Define 1 0t  , 

1 1/2 1, / 2Ht T   ,  1 ,C th Lv t V  and  1 1/2 ,C th Hv t V  . 

After solving (1), it yields 
 

       2 2 cos 1 cos .th CP in in dV I T C I T n C t n          (2) 

 

It is found that voltage of the capacitor changed from 

,th LV  to 
,th H

V  consists of two parts. The first part is 

/ 2CPI T C  due to the charge-pump circuit. The other part is  

     / 2 1 cos cosin in dI T Cn n t      which stems from the 

input signal. In case the input period is / OddT n  where 

1,3,..Oddn  . The voltage changing of the capacitor from 

,th LV  to ,th HV  is 

 

     / 2 / costh CP in Odd in dV I T C I T n C t      (3) 

 

From the relationship that 2nat th CPT C V I   and 

 1 cos 1dt   , (3) will become 

 

   / 1 2 / 1 2nat Odd nat OddT n T T n         (4) 

 

where /in CPI I  .  This equation points out that the output 

period can be detuned from the natural period ( natT ) to 

  / 1 2 /nat OddT n  . In case the input period is / EvenT n  

where 2,4,6,...Evenn  , the voltage changing of the 

capacitor from ,th LV  to 
,th H

V  is 

 

/ 2th CPV I T C    (5) 
 

From (5), it is found that the voltage due to the input 

signal is absent. After rearranging this equation, it can be 
rewritten as 

 

nat Even inT T n T    (6) 
 

This equation points out that the oscillator will lock the 
input signal when the input period is 1/ Evenn  times of the 

natural period and the output period cannot be detuned like 
the Oddn  case. From Fig. 2, (6) is used to be boundaries of 

odd-harmonic locked ranges, and (4) is odd-harmonic 
locked ranges whose width is directly proportion to  . 

IV. BEHAVIORS OF ILRO  
WHEN THE INPUT FREQUENCY IS IN THE Odd natn f  RANGE 

A. The relationship between the input signal and the 
output signal 

Because of the signal-generating process of relaxation 
oscillator and the input signal being a function of time, 
behaviors of the ILRO will be considered cycle-by-cycle. In 
other words, the variation of the charge and discharge times 
due to the input signal will be considered from the cycle- 

thm variation to the cycle-  1
th

m variation as shown in Fig. 

3. When the input frequency is in the Odd natn f  range, the 

oscillator will try to adjust the output period ( mT ) of each 

cycle to Odd inn T . With this adjusting process, a relationship 

between the input signal and output signal is determined by 
using delay times, ,d mt  and , 1/ 2d mt  . 
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Fig. 2. Boundaries and locked ranges of each harmonic of the ILRO 
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Fig. 3. The relationship between the input signal and the output signal  

when the input frequency is in the 3 inf   range 
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The delay time, ,d mt , is an amount of time between the 

input-signal zero-crossing time at
 

 , 0 2in m d mt t or    

and the time where the capacitor starts to charge ( mt ) as 

shown in Fig. 3. Similarly, , 1/ 2d mt   is the delay time which is 

an amount of time between the input-signal zero-crossing 

time at
 

 1/ 2 , 1/ 2in m d mt t     and the time where the 

capacitor starts discharging ( 1/ 2mt  ). Moreover, from Fig. 3, 

the relationship between ,d mt  and , 1d mt   is 

   , 1 , 2 /d m m d m int T t n        (7) 

 

This equation points out that the delay time depends on 
the period ( mT ), hence, the procedure for determining mT  

will be followed. The equation used for determining the 
charge time can be written as 

 

 
 

 

  
1/2 1/2

,

1
sin
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where   ,C m th Lv t V  and  1/2 ,C m th Hv t V  . After solving 

this integral equation, the charge time equation is 
 

    , , , ,cos cos
2
nat

m H in m H d m in d m
in

T
t t

   


        (9) 

 

where in CPI I  ,  0mt   and 1/ 2 ,m m Ht   . The integral 

equation used to determine the discharge time is 
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where
 

 1 ,C m th Lv t V  . After solving   (10), the discharge 

time is 

  
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  (11) 

 

where 1 , ,m m H m Lt     . From   (9) and   (11), the period at 

the cycle- thm  is  
 

    
     

, ,

,

2 / cos

2 cos 2 cos 2

m nat in in m H d m
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Substituting (9) and (11) for ,m H  and ,m L , respectively, 

then using Taylor’s series and neglecting the higher order 
terms of  , the output period is 

 

   2 0 ,cos 2m nat in in d mT T k k t      (13) 

 

Where  0 2in Odd nat nat Oddk n T n     , 1 natk T  , 

 2
2 4 cos 4natk T    and in Odd natn     . Note that 

(13) is valid, if inI  is much less than CPI . By substituting 

(13) into (7), it thus yields 
 

     , 1 2 0 ,/ cos 2d m in in in d mt k k k t        (14) 

 

To gain insight into the behaviors of ILRO, ,d mt  will be 

considered as the continuous variable and (14) can be 
rewritten as 

 

        1 2 0/ cos / 2d in in in ddt m dm k k k t m       (15) 

and 
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K k t 
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where 2 1K k k . By solving this integral equation, the 

continuous delay time thus is 
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where 
 2

1 0
01

tan tan
1 4 2

in d
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tK k
C

K


  
       

. From (17), 

 dt m  has the periodic variation which depends on K . 

Because K  is dependent on amplitude and frequency of 

the input signal, the variations of K  which are due to these 

factors can be shown in Fig. 4. It is noted that the 
discontinuous position of graph means that the values 
converge to infinity. It is seen that the more the input 
frequency moves close to 3 natf , the more K  get increases. 

Moreover, increasing of the input amplitude will accelerate 

an increasing of K . When considering both K  and 

21 K , K  can be divided into two parts, 1K   and 

1K   which will be discussed in the next subsection. 

 

 
Fig. 4.  A variation of K  due to amplitude and frequency of the input 

signal whose natf  and CPI  of the relaxation oscillator are 5.42MHz and 

25uA, respectively and the input frequency is in the 3 natf  range. 
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B.  The output period detuning process ( 1K  ) 

For considering  dt m  in practical, it may be impossible 

because this parameter is small and varies all the time. 
Therefore, the output period will be used to study the 
oscillator behaviors instead of  dt m . By substituting 

 dt m  of (17) into   T m  which is considered to be the 

continuous variable, the output period can be rewritten as 
 

    
  

2
1

2 21
1

1

/ 1 1

2
1 cos 1 2

nat in

p
t

pin

T m T k K

k
K r p k K m C









   

   
 (18) 

 

where  21 1r K K   . This equation shows that the 

output period composes of two terms. The first term is a 
constant value. The second term is a periodic function of m  
whose period is 

 

 2
12 1M k K   (19) 

 

The second term reaches its maximum and minimum 
values if 2 2 0, 2 , 4 ,...tm M C     and 

2 2 ,3 ,5 ,...tm M C     , respectively. The pattern of 

variation of this term is very interesting when the value of 
M changes. For small M ,  T m  will quickly change from 

the maximum value to the minimum value. It is also found 
that if the input frequency ( inf ) moves close to Odd natn f ,  

M  will increase  and the rate of the variation of  T m  will 

decrease. The slower variation of  T m  implies that the 

output period is adjusting to the period of the input signal. 
This behavior of deviation of the output period is 
demonstrated in Fig. 5. Moreover, the relationship between 
the m -domain and the time-domain of the output signal is 
also illustrated. For convenience of considering the 
influence of amplitude and frequency of the input signal, 
average of the output period is also employed to study the 
oscillator behavior active in a pulling state. 
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Fig 5. The relationship between the time-domain output signal  

and the  m  -domain output period. 

From (20) and 2 1/K k k , it is found that when the input 

frequency moves close to the locked range,  T m  will also 

move close to the period of the input period.  

C. Locking State ( 1K  ) 

For 1K  ,   (17) becomes 

 

 

    
0

2
11

2

,

2

/ 2 112
tan tan

1

d in

in
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t m k

jk m Kj K

K jC
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


 

    
      

 (21) 

 

where ,t lockedC  is a constant value which is derived from 

solving the integral equation. By using the trigonometric 
identity    tanh tanj j   , (21) will be 

 

  10

2

2 1
tan

2 1
d

in in

k K
t m

K 
  

    
 

 (22) 

By substituting  dt m  of (22) into  T m   and using a 

trigonometric identity, the output period can be rewritten as 
 

  .Odd inT m n T  (23) 

 

From (23), it is found that for 1K  , the oscillator 

behavior will move to the locked state and the output period 
will be Oddn  times of the input period. Based on this 

behavior of the ILRO, the locked range determined by using 
the relationship of 1K   can be written as 

 24 cos 4 1nat natT T     . When the oscillator is in 

the locked state,  2cos 4 1natT  . Hence, 

 

 4 in nat CPI T I   (24) 

 

From this equation, the input-frequency range which the 
oscillator will lock, therefore is 

 

   Odd nat i Odd natn n           (25) 

 

Because in Odd natn     , the locked range of each 

Odd natn f  range is equal. Moreover,   (25) is similar to (4) 

which determines the locking condition. With this behavior 
of the oscillator and equal locked range for all Odd natn f , the 

relaxation oscillator is therefore easy to be applied for the 
synchronization oscillator in case 1Oddn   and the 

frequency divider in case 3,5,...Oddn  . 

V. SIMULATION AND CALCULATION RESULTS 

In this paper, the basic relaxation oscillator is used to 
study the behaviors of the ILRO as shown in Fig. 6. This 
oscillator is designed by 0.35um-CMOS technology of 
TSMC and the dimension of each MOS is showed in Table  
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1. The Schmitt trigger circuit has 2 threshold voltages, 
which are 0.65V and 2.75V. The charge-pump circuit is 
designed to deliver 25uA. The capacitor has a capacitance 
of 1pF. The supply voltage is 3.3V. The simulation output 
of the oscillator without the input signal is shown in Fig. 7. 
These signals illustrate that the charge time and the 
discharge time are equal because there is no any 
disturbance. The output period is 0.1845uS or the output 
frequency is 5.42MHz. 

A. The output period of each cycle ( mT ) 

Fig. 8 is an example of the oscillator behavior when the 
input frequency is in the 3 natf  range. It is found that the 

output signal deviates from the natural period (0.1845uS) 
and this deviation moves close to 3 inT . The more the input 

frequency moves close to the locked range, the more the 
output period moves close to

 
3 inT . Not only the output 

period moves close to 3 inT  but also the variation from the 

maximum value to the minimum value gets slower than and 
the M  period gets wider. Moreover, the calculation results 
of (18) are also similar to the simulation results. 

B. Average output period (  T m ) 

Fig. 9 shows comparison between the simulation results 
and the calculation result from (20) of the average output 
periods of 1 natf , 3 natf  and 5 natf  ranges. It is found that the 

output period will deviate from the natural period, 
0.1845uS, and moves close to Odd inn T . Moreover, when the 

input frequency moves to the locked range, the output 
period will equal to Odd inn T . 

C. The periodic variation ( M ) of the cycle-mth of the 
output period 

From the simulation results in Fig.8, it is seen that when 
the input frequency moves close to the locked range, the 
variation of the output period will be slower, in other words, 
the period of M  gets increase. This behavior appears in 
every Odd natn f  range as the simulation results depicted in 

Fig.10. Moreover, the cycle variation of the simulation 
results and the calculation results are similar. 
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Fig. 6. The structure of relaxation oscillator. 

 
TABLE 1.  

DIMENSION OF TRANSISTORS 
Device names W(um)/L(um) 

M1, 2, 7, 8, 11, 13, 14 4.2/0.7 
M3 25/0.7 

M4, 5, 9, 10, 12, 15 14/0.7 
M6 70/0.7 

  

 
Fig. 7. The simulation outputs of the relaxation oscillator without the input 

signal where (a) is  Cv t  and (b) is  Schv t . 

 

 
Fig. 8. The variation of each cycle when the input signal has amplitude of 
3uA and frequency is in the 3 natf   range where (-o-) is simulation results 

and (--) is calculation results. 
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Fig, 9. The simulation result and the calculation result of the average 

output-signal period when the input amplitude is 3uA. 

 

D. Locking behavior of the oscillator( 1K   ) 

When the input frequency is in the 1 natf  range, the 

oscillator shows the synchronizing behavior that is the 
oscillator generates the output signal whose rhythm is 
similar to the input signal (see Fig.11). When the input 
signal is in the 3 natf  range, the results are given in Fig 12. 

Not only the output signal synchronizes the input signal, but 
also the output signal is a dividing result of the input signal 
at ratio 1/3. Fig. 13 is the simulation result when the  
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Fig.10. The simulation results and the calculation results of the M  period 
when the input signal has amplitude of 3uA where (  ) is simulation results 
and (  ) is calculation results 
 

 
Fig. 11. The simulation result when the oscillator is in locked state and in 

the 1 natf  range where (a) is the input signal whose amplitude is 3uA and 

frequency is 5.4MHz and (b) is the output signal. 
 

 
Fig. 12. The simulation result when the oscillator is in locked state and in 

the 3 natf  range where (a) is the input signal whose amplitude is 3uA and 

frequency is 16.2MHz and (b) is the output signal. 
 

 
Fig. 13. The simulation result when the oscillator is in locked state and in 

the 5 natf  range where (a) is the input signal whose amplitude is 3uA and 

frequency is 27MHz and (b) is the output signal. 
 

input signal is in the 5 natf  range. The oscillator shows 

behavior similar to that of the 3 natf case but the dividing 

ratio is 1/5. Fig. 14 is the locked-range comparison between 
the simulation result and the calculation result of each range 
(1 natf , 3 natf  and 5 natf ). From this figure, the V-shape 

characteristic of the locked range implies that the locked  
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Fig. 14. The simulation results and calculation results of the locked ranges 
of the ILRO where (  ) is simulation results and (  ) is calculation results 
 

range directly depends on the input amplitude. Moreover, 
the locked range of each frequency range is equal. 

VI. CONCLUSIONS 

 In this article, the enhanced mathematical model is 
proposed to study behaviors of the ILRO. The proposed 
technique considers the time variations of the output signal 
cycle-by-cycle due to the input signal which occurs during 
in the charge time and the discharge time. Moreover, the 
simulation results show that the proposed model can be 
clearly explained behaviors of the ILRO. 
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