
 

  
Abstract—In this paper, two compact architectures for 

hardware implementation of Advanced Encryption Standard 
S-box are presented based on a polynomial basis and a normal 
basis, respectively. Composite Field Arithmetic is employed in 
these architectures to reduce the area consumption and shorten 
the critical path. Furthermore, a novel Multi-Variable Patterns 
Common Subexpression Elimination algorithm is proposed to 
further optimize the S-box, which efficiently reduces the 
redundant resources of multiplicative inversion in GF(24) 
module and isomorphism mapping functions. It is shown that 
both optimized S-boxes have good area-delay performances, 
and that the normal basis S-box uses 20.4% less XOR and a 
shorter critical path compared with the polynomial basis S-box. 
In 0.18µm COMS technology, the normal basis S-box has the 
smallest area-delay product, which is 10.32% and 19.64% 
smaller than that of the smallest area S-box and the shortest 
critical path S-box, respectively. 
 

Index Terms—AES, S-box, Composite Field Arithmetic 
(CFA), Multi-Variable Patterns Common Subexpression 
Elimination (MVP-CSE) algorithm, polynomial basis, normal 
basis. 
 

I. INTRODUCTION 
Advanced Encryption Standard (AES) encryption 

algorithm is established by the National Institute of Standards 
and Technology (NIST) to replace the original DES 
encryption algorithm in 2001 [1]. It is one of the most 
important symmetric block ciphers. The block length of the 
AES algorithm is 128 bits with the key lengths of 128, 192 or 
256 bits. Full computation of the AES encryption requires 10, 
12 or 14 iterations, each containing four transformations: 
SubBytes, ShiftRows, MixColumns and AddRoundKey. The 
SubBytes transformation, commonly known as S-box, is a 
nonlinear substitution that guarantees a better security of the 
AES encryption. It takes the most resource and consumes the 
most power in the implementation. Hence, the hardware 
implementation efficiency of the AES encryption in terms of 
area, speed, security and power consumption mainly depends 
on the implementation of S-box [2]. 

In general, the AES encryption is applied in 
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resource-limited systems, where the area optimization of the 
AES hardware implementation is highly desirable. Several 
small-area S-box designs using CFA constructions are 
proposed in [2]-[10], and they usually base on polynomial 
basis and normal basis. Summarizing from the previous 
works [2]-[10], Canright [3] presented the smallest S-box 
based on normal basis. However, the critical path was long in 
Canright’s work. On the other hand, Zhang [8] proposed an 
AES S-box based on polynomial basis with the shortest 
critical path to date [5]. However, their work requires a large 
area. 

In this paper, both area and critical path of S-box 
implementation are taken into account, with the focus on 
approaches to implement a very compact S-box efficiently. 
To reduce the hardware resource requirement of the S-box, 
we use pure combinational-logic through exploitation of 
Composite Field Arithmetic (CFA) in GF(((22)2)2). A new 
MVP-CSE algorithm is proposed for subexpressions sharing. 
In Section II, two S-box circuit structures are derived, one 
based on the polynomial basis, and the other, the normal basis. 
In Section III, the squarer module and the constant multiplier 
module in GF(24) are merged into a single one by using CFA, 
to reduce the gate counts significantly, while the critical path 
is shortened greatly. To optimize the multiplicative inversion 
circuit in GF(24) and isomorphism mapping function circuit 
of the S-boxes, a new Multi-Variable Patterns Common 
Subexpression Elimination (MVP-CSE) algorithm is 
proposed in Section IV. In Section V, the evaluation of the 
resulting S-boxes and the comparison with previous works 
are discussed. Conclusions are given in Section VI. 

II. COMPOSITE FIELD IMPLEMENTATION OF S-BOX 
The AES S-box is defined as the multiplicative inversion 

module in the finite field GF(28) followed by an affine 
transformation [11]. The S-box is calculated by using (1). 

 
TTT VXMF += − ))(( 1                                                      (1) 

 
where X is the input state matrix. M is an 8×8 constant matrix, 
defined as M=[0x8E, 0xC7, 0xE3, 0xF1, 0xF8, 0x7C, 0x3E, 
0x1F]. V is an 8-bit constant vector, defined as V=[0x63]. The 
row vectors of both M and V are represented in the 
hexadecimal format. The process of affine transformation is 
defined as follows: X-1 is multiplied by M first, then 
combined with a constant vector V in the affine 
transformation. 

This study focuses on approaches to deduce and simplify 
the multiplicative inversion in GF(28). Fig.1 shows the 
implementation block diagram of the S-box using the CFA 
technique (Fig.1(a)), the multiplicative inversion circuit 
structure based on the polynomial basis (Fig.1(b)), and 
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normal basis (Fig.1(c)). Based on the CFA technique, the 
S-box can also be calculated by using (2). Two parts are 
included in deriving the multiplicative inversion in GF(28): 
one is the derivation of an inversion module in the composite 
field GF(((22)2)2), and the other is the calculation of mapping 
matrices δ and δ-1 in isomorphism mapping functions. The 
mapping matrices δ and δ-1 are the linear transformations 
between the finite field GF(28) and the composite field 
GF(((22)2)2).  

 
TTT VXMF += −− ))(( 11 δδ                                                (2) 

 
According to Fig.1(a), δ is the mapping matrix from the 

finite field to the composite field, and δ-1 is the inverse of δ. 
The relationship between δ and δ-1 is δ×δ-1=E, and E is a unit 
matrix. Usually, the mapping matrix δ-1 can be combined 
with the affine matrix M to simplify the circuit structure of 
the S-box. For easy presentation, the polynomial basis S-box 
is denoted as Case I, and the normal basis S-box, as Case II. 

The structures of the inversion module and the value of the 
mapping matrix can be derived based on the irreducible 
polynomial coefficients of the composite field GF((22)2) and 
GF((24)2). The irreducible polynomial of the composite field 
GF((24)2)，GF((22)2) and GF(22) operation are denoted as 
follows: 

 
2 2 2 2

2 2 2

2 2
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((2 ) ) : ( )
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GF f z z z
GF f w w w
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                                   (3) 

 
where τ=(0001)4 , Т=(01)2, and υI=(1100)4, ΝI=(10)2 in Case I 
[3], υII=(0001)4, ΝII=(10)2 in Case II [4]. 

According to the selected coefficients τ, υ, Т, Ν, the 
inversion module in Case I can be calculated by using (4), 
and that in Case II, by using (5). The inversion structure in 
Case I is shown in Fig. 1(b), and that in Case II, in Fig. 1(c). 
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where AⅠ∈GF(28), a4h,a4l∈GF(24); AⅡ∈GF(28), a4h,a4l∈

GF(24). In (4), the basis (X,1) is chosen in the composite field 
GF ((24)2). In (5), the basis (Y16, Y) is chosen. 

The irreducible polynomial P(x) =x8+x4+x3+1 in GF(28) is 

selected in the AES encryption, whereas the δ and δ-1 can be 
calculated by using the CFA technique according to the 
following equations: 

 

1
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To reduce the area and shorten the delay of the S-box, the 

concrete method can be summarized as follows: Modules ×υ 
and a2 are merged into one module υ×a2, and a pure 
combinational-logic expression is derived for a-1 utilizing the 
CFA technique; then, the proposed MVP-CSE algorithm is 
used to reduce the gate counts and shorten the critical path in 
a-1 module, the isomorphism mapping functions, and the 
affine transformation. 
  

III. CFA OPERATION FOR S-BOX OPTIMIZATION  
In this section, the detailed architectures are presented to 

optimize the modules of the ×υ, a2, and the a-1 that are shown 
in Fig.1(b) and Fig.1(c) of the S-box. Each module’s 
implementation is derived by using the CFA technique to 
reduce area and to increase speed. The detailed calculation 
process of architectures for ×υII and aII

2 in Case II is 
introduced afterwards, and the modules of ×υI and aI

2 are 
optimized in the same fashion. 

The multiplications in Fig.1(c) are derived based on the 
normal basis according to the following equation: 

 
4

4 4 2 2 2 2 2 2

2 2 2 2 2 2

( ) ( ) ( ( )( ) )
( ( )( ) )

h h l h l h

l l l h l h

A Z B Z a b a a b b Z
a b a a b b Z

= + + + Ν
+ + + + Ν

          (8) 

 
where A4, B4 ∈ GF(24), and they are represented as 
A4(Z)=a2hZ4+a2lZ, and B4(Z)=b2hZ4+b2lZ, respectively, using 
the normal basis (Z4,Z). a2h, a2l, b2h, b2l∈GF(22).  

The multiplication in (8) can be decomposed into GF(22) 
and then further into GF(2). In GF(2), a multiplication is 
simply an AND gate. According to υII=(0001)4, ΝII=(10)2, the 
modules ×υII and a2 are computed based on the CFA 
technique and merged into one single module υII×a2. The υIIa2 
can be calculated by using (9).  
 

2 2 4 4
0 0 1 1

2
1 0 0

( ) ( )

( )
II h l h l

l l l

a a a W Z a a WZ

a a W Z a WZ

υ = + + +

+ + +
                          (9) 

 
where the normal basis (W2, W) are chosen in GF(22), and 
a2h=ah1W2+ah0W, a2l=al1W2+al0W, b2h=bh1W2+bh0W, 
b2l=bl1W2+bl0W. ah1, al1, bh0, bl0∈GF(2). 

Fig. 2 illustrates the detailed opeartions of ×υII and a2, 
together with the merged structure of υII×a2. As observed 
from Fig. 2, ×υII and aII

2 are implemented by 4 XOR gates and 
6 XOR gates, respectively, while the merged module υIIa2 
only needs 3 XOR gates. Table I summarizes the resource 
consumption and critical path optimization of ×υ and a2 by 
using the CFA technique for both Case I and Case II. After 

Fig.1 Implementations block diagram of S-box: (a) Implementation of S-box 
Based on CFA; (b) Inversion circuit structure based on polynomial basis; (c) 
Inversion circuit structures based on normal basis 
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being merged into one module, the υIa2 operation saves 
42.9% in the resource consumption and shortens the critical 
path by 50% in Case I, while the υIIa2 operation saves 70.0% 
in the resource consumption and shortens the critical path by 

75% in Case II. 
The expressions structures of the inversion circuits aI

-1 and 
aII

-1 in GF(24) shown in Fig. 2(a) and Fig. 2(b) are similar to 
those of (4) and (5). Similar to Eqs. (8) and (9), aI

-1 and aII
-1 

can be represented as follows: 
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To further simplify calculations, we substitute ΝI=(10)2 
into (10), and ΝII=(10)2 into (11). The direct implementations 
of the resulting equations for aI

-1 and aII
-1 are given by (12) 

and (13). 
 

IV. MVP-CSE ALGORITHM FOR SUBEXPRESSIONS SHARING 
OPTIMIZATION IN S-BOX 

The subexpressions can be shared to reduce the 

complexity of the a-1 module in GF(24), the mapping function 
δ× module, and the combined inverse mapping and affine 
transformation Mδ-1× module in S-box. The approach to 
select a subexpression for sharing can be described as 
identifying patterns. A single variable is used to replace the 
identified pattern. In [12], it has been proven that selecting a 
pattern to eliminate is an NP-complete problem. To find an 
optimal solution, the proposed MVP-CSE algorithm for 
S-box optimization focuses on the number of variables in 
each candidate pattern. It employs an exhaustive search 
algorithm for the situation that several patterns can be 
selected for elimination. As a result, the MVP-CSE algorithm 
is efficient and yields a better solution. 

A. MVP-CSE Algorithm 
In the MVP-CSE algorithm, the patterns with most 

variables are extracted at each iteration. If there are more than 
one pattern, the patterns with the highest frequency of 
occurrences will be selected. From the highest occurrence 
patterns, an exhaustive search algorithm is employed to 
extract each of them and replace the pattern with a new 
variable. The process continues until no more common 
subexpressions are found. The detail of the MVP-CSE 
algorithm is summarized in Fig. 3. 

Fig.2 The process for merging modules: (a)×υ; (b) a2 ; (c)υII×a2 

TABLE I  
THE OPTIMIZATION OF ×υ AND a 2 OPERATION 

Approach ×υ AND a2 
Resource 

Consumption 
Critical Path

Separate 7 XOR 4 XOR 
Case I 

Merged 4 XOR 2 XOR 

Separate 10 XOR 4 XOR 
Case  II 

Merged 3 XOR 1 XOR 
 

Fig.3 Flowchart of MVP-CSE algorithm 
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For example, considering the constant multiplication 
matrix [0x9, 0xf, 0xf, 0x5], the MVP-CSE algorithm is 
applied to the matrix in (14). According to the flowchart in 
Fig. 3, the algorithm identifies the patterns “x4+x3+x2” to be 
eliminated at the first iteration. A new variable “b1” is 
generated to replace the pattern “x4+x3+x2”. In the second 
iteration, “x3+x2” has the highest frequency of occurrences, 
and it is identified and replaced by a new variable “b2”. The 
computation process can be expressed as follows: 
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B. The MVP-CSE for inverse a-1 module in GF(24) 
According to (12) in section III, the resource consumption 

of the aI
-1 module is 21XORs+25ANDs. The aII

-1 module 
needs 18XORs+16ANDs in (13). The MVP-CSE method can 
be employed to optimize both the XOR gates and AND gates 
by using the same selection rules. The computation process 
of applying the MVP-CSE to (12) and (13) can be expressed 
as: 
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The XOR gates are optimized firstly, then the AND gates, 

by utilizing the MVP-CSE. As a result, the optimized 

multiplicative inversions in GF(24) have a good area 
performance. Case I only needs 13XORs + 8ANDs, 
eliminated 38.1% XOR gates and 68.0% AND gates 
compared with (12). Case II needs only 12XORs +8ANDs, 
eliminating 33.3% XOR gates and 50.0% AND gates 
compared to (13). 

Compared with the works of [3], [5]-[6], [8], the resource 
consumption and critical path of multiplicative inversions in 
GF(24) are shown in Table II. The area-delay in Case II is 
used as the basic unit for reference. 

Table II shows that Case II has the best performance in 
area-delay and the shortest critical path. The reference [3] 
presented the smallest multiplicative inversion in GF(24), but 
a long critical path. 

C. The MVP-CSE for δ-1× and Mδ-1× functions 
According to the section II, the implementation of S-box 

includes two parts, namely the multiplicative inversion in 
GF(28) and the affine transformation. The multiplicative 
inversion in GF(28) can be decomposed into the ones in 
GF((24)2), which includes the isomorphism mapping 

TABLE II 
THE RESOURCES CONSUMPTION AND CRITICAL PATH IN GF (24) 

MULTIPLICATIVE INVERSION 

Approach Resources 
Consumption Critical Path 

 XOR AND XOR AND 
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[3] 9 
2NOR+ 

2NAND+ 
6AND 

5 2 1.53 
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III 13 9 5 2 1.91 
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functions and the inversion. The affine matrix M and the 
mapping matrix δ-1 can be merged into a single matrix Mδ-1. 
The matrices MδI

-1 in Case I and MδII
-1 in Case II are shown 

separately in (17). 
 

⎩
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 The constant matrices δⅠ, MδⅠ-1, δⅡ and MδⅡ-1 in S-box 
are optimized utilizing the MVP-CSE. The process and result 
of δⅠ optimization are given in (18). The MVP-CSE is also 
applied to the remaining constant matrices mentioned above 
in the same fashion as (18). 

Table III shows the MVP-CSE optimization results of the 
matrices δⅠ, MδⅠ-1, δⅡ and MδⅡ-1. The area reductions range 
from 23% to 50%, while the critical path delay increases 
slightly (one extra XOR gate delay in δⅠ). 

The reference [5] takes a double-variable pattern CSE 
algorithm to optimize the mapping matrices, yielding the 
resource consumption of 29 XORs and the critical path of 6 
XORs. For comparison, Case I requires 26 XORs in resource 
consumption with the critical path of 7 XORs, and Case II 
needs only 25 XORs in resource consumption with the 
critical path of 6 XORs. The results show that the case II has 
a better optimization result than those of Case I and [5]. 
Compared with [5], Case I saves 10.3% XOR gates with a 
slight critical path length increase, and Case II reduces 13.8% 
XOR gates while having the same critical path. 

 

V. IMPLEMENT RESULTS AND ANALYSIS 
The performance comparison between Case I and Case II 

is illustrated in Table IV. Combining with Fig.1, the CFA 
algorithm is used for the υ×a2  module optimization and the 
combinational logic expression derivation of the a-1 module. 
Moreover, the MVP-CSE algorithm is efficient in reducing 
the redundant resource of the a-1 module and the mapping 
matrix modules. The results show that, Case II reduces 20.4% 
XORs in resource consumption with a shorter critical path 
compared with Case I. 

From the performance analysis of Cases I and II, and 
compared with prior works [2], [3], [5]-[8], the results of 
resource consumption and critical path are shown in Table V. 
In the table, a polynomial basis was employed for [2], [7]-[8] 
as well as Case I. Comparing Case I with [2] and [7], Case I 
uses less resource and has a shorter critical path. In addition, 
Case I saves 7.5% XOR gates with a small critical path 
sacrifice compared with [8]. The normal basis was used in [3], 
[5] and Case II, whereas [6] combined both polynomial basis 

and normal basis for S-box implementation. Case II uses less 
resource and has a shorter critical path than [5] and [6]. 
Compared with [3], it shortens the critical path length by 
9.1%XORs + 25.0%ANDs with slight larger area 
consumption. The results show that Case I and Case II 
optimized by using the CFA and MVP-CSE algorithms 
achieve a good area-delay performance, since these 
algorithms consider both area and delay factors 
comprehensively. 

In the 0.18µm CMOS technology, the area consumption is 

TABLE III 
THE MVP-CSE OPTIMIZATION RESULTS FOR δ× AND Mδ-1× FUNCTIONS

Without 

MVP-CSE 

(XOR) 

With MVP-CSE 

(XOR) 
MCM 

matrix 

Area Delay Area Delay 

Optimization 

Rate 

δⅠ 24 3 12 4 50.0% 

MδⅠ-1 21 3 16 3 23.8% 

δⅡ 24 3 14 3 41.7% 

MδⅡ-1 17 3 11 3 35.3% 
 

TABLE IV 
THE PERFORMANCE COMPARISON OPTIMIZED AES S-BOXES IN COMPOSITE FIELD COMPUTATION 

Inversion of Composite Field Mδ-1 δ S-box 

RC CP RC CP RC CP RC CP Approach 
Modules 

XOR AND XOR AND XOR XOR XOR XOR XOR AND XOR AND

GF(24) Inversion 13 8 3 2 

GF(24)Multiplication 20 9 4 1 

υ×a2 4 -- 2 -- 
CaseⅠ 

GF(28) Inversion 85 35 13 4 

14 3 12 4 111 35 20 4 

GF(24) Inversion 12 8 3 1 

GF(24) Multiplication 10 9 4 1 

υ×a2 3 -- 1 -- 
CaseⅡ 

GF(28) Inversion 68 35 14 3 

14 3 11 3 93 35 20 3 

RC: Resources Consumption, CP: Critical Path 

TABLE Ⅴ  
THE RESOURCES CONSUMPTION AND CRITICAL PATH OF AES S-BOX IN 

DIFFERENT CASES 

Resources Consumption Critical Path
Approach

XOR AND XOR AND

[2] 126 36 25 4 

[3] 91 36 22 4 

[5]caseⅢ 96 36 20 4 

[6]caseⅢ 117 35 20 3 

[7] 123 36 23 4 

[8] 120 35 19 4 

CaseⅠ 111 35 20 4 

CaseⅡ 93 35 20 3 
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26.6112µm2 in a XOR gate and 13.3056µm2 in an AND gate, 
while the standard delay is 1ns in a XOR gate as well as in an 
AND gate. Using these parameters, Table VI lists the costs of 
S-box implementation in [3], [8], Case I, and Case II. 

It is observed from Table VI that the area-delay product of 
Case I is 2.48% less than that of [8], while that of Case II is 
10.32% less than that of [3]. The results illustrate that Cases I 
and II achieves a better performance in the area-delay 
product, with Case II achieving the best one.  For example, 
Case II saves 17.59%, 10.32%, and 19.64% in the area-delay 
product, compared to Case I, [3], and [8], respectively. 

 

VI. CONCLUSIONS 
This paper discussed the optimization of the compact AES 

S-box implementation. Two structures of S-box have been 
proposed based on a polynomial basis and a normal basis, 
respectively. A CFA algorithm is used to combine ×υ and a2 
modules to reduce the area-delay product. In addition, a new 
MVP-CSE algorithm is proposed for subexpressions sharing 
in mapping functions and a-1 module. As a result, the 
proposed techniques are efficient in saving the resources and 
shortening the critical path. Implementing the S-box 
combinational-logic circuits in 0.18μm COMS technology, 
the results show that the case based on the normal basis 
achieves the best area-delay product, saving 17.59%, 10.32%, 
and 19.64% in the area-delay product, respectively, over the 
case based on the polynomial basis, [3] and [8]. 

The combinational-logic circuits of S-box based on either 
polynomial basis or normal basis are adapted to the pipelined 
structure, which could further improve the operating 
frequency of S-box as well as the data throughput. However, 
high-speed S-box design generally results in a high power 
consumption. Therefore, future work will be carried out to 
jointly optimize the speed and power consumption of the 
S-box hardware implementation. 
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TABLE Ⅵ 
THE AREA-DELAY PRODUCTS OF S-BOXES IN 0.18µM CMOS 

TECHNOLOGY 

Approach Delay 
(ns) Area(µm2) Area-delay 

product(µm2•ns) 
[3] 26 2900.6208 75416.1408 

[8] 23 3659.0400 84157.9200 

Case I 24 3419.5392 82068.9408 

Case II 23 2940.5376 67632.3648 
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