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Abstract—A control methodology for asynchronous sequen-
tial machines is addressed in this paper. The considered machine
consists of a number of input/state asynchronous machines,
termed submachines, between which asynchronous switching is
conducted by the switching signal. The control objective is to
design a corrective controller so that the stable-state behavior
of the closed-loop system can mimic a reference model. In
response to the external input and state feedback, the corrective
controller generates a sequence of appropriate switching signals
that change the mode of the asynchronous machine to show
the desirable input/state specifications. An illustrative example
is provided for demonstrating the proposed corrective control
scheme.

I. Introduction

Owing to the lack of a synchronizing clock, asynchronous
sequential machines are regarded more difficult to design
than synchronous machines. Once implemented, on the other
hand, asynchronous sequential machines exhibit significant
advantages over synchronous machines such as fast transition
speed, low power consumption, etc. For this reason, asyn-
chronous sequential machines are widely used in high speed
computing and parallel computing mainly having the form of
digital systems, in modeling molecular biology, and in many
other engineering applications [1]–[3].

In this paper, we present a control theoretic approach to
asynchronous sequential machines—corrective control the-
ory as it is often called [4]–[6]. If the behavior of an existent
asynchronous machine is undesirable or the machine is sub-
ject to negative effects of adversarial entities or disturbances,
we usually re-design the inner logic of the faulty machine.
In corrective control, however, the considered machine is
always intact; instead, we design a corrective controller
and place it in front of the controlled machine. Receiving
the external input and state or output feedback from the
machine, the corrective controller provides a sequence of
control inputs so that the closed-loop system can show the
agreeable behavior. Corrective control is unique in that all
the interactions between the controller and the machine are
executed in an asynchronous mechanism. Thus the operation
of the closed-loop system is interpreted in terms of the
stable-state behavior. This scheme allows the asynchronous
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machine to show the transition features that are not inherently
specified in the machine.

The main consideration of this paper is to present the
model matching problem of the switched asynchronous se-
quential machines. The switched asynchronous sequential
machine consists of multiple asynchronous machines, termed
submachines or modes. The present mode of the machine is
changed in response to the switching signal. The switched
machine is equivalent to one of its submachines at a specific
time and by change of the switching signal, it transfers to
another submachine. Since each submachine is supposed to
have the same input and state set in this study, the mode
switching between any pair of submachines is made possible.

Recently, switched systems are gaining a prominent po-
sition in control theory, as many engineering systems can
operate with different models according to the environment
changes or by virtue of hardware redundancy. Researches
on switched systems for the past decades mainly focused
on continuous/discrete time systems [7], [8]. In contrast, the
topic of switched event-driven systems, which the present
study may belong to, has been attracting little interest.
Among few results, switched Boolean control networks
(BCN), a specific type of switched event-driven systems,
haven been studied by several research groups to describe
the model of gene regulatory networks in cells [9], [10].

The corrective controller studied in this paper generates the
switching signal as its output value. This control structure
differs from the prior works since the previous corrective
controllers generate a sequence of input characters as its
output. Our control goal is to derive the existence condition
and design procedure for a corrective controller so that
the closed-loop system follows the behavior of a reference
model. This problem, called model matching, has been
extensively studied in both continuous time domain and event
driven systems [11]–[13]. A novel scheme of interweaving
the switching and state feedback operations is addressed in
this paper, and a simple example is provided to demonstrate
the applicability of the proposed scheme.

Pioneering results on corrective control for single asyn-
chronous sequential machines are found in [14], [15] where
critical races lying in the input/state asynchronous machines
are invalidated by corrective controllers. These studies have
been extended to input/output asynchronous machines in
[16], [17]. Corrective control has been also employed to
realize fault tolerance in asynchronous machines with various
fault circumstances [5], [6], [18]–[26]. Other topics include
the model matching problem for input/output asynchronous
machines [27], elimination of infinite cycles in the machines
[28], adaptive corrective control for asynchronous machines
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with model uncertainties, and corrective control with descrip-
tion of semi-tensor product (STP) [30].

II. Preliminaries

A. Switched Asynchronous Sequential Machines

A switched asynchronous sequential machine with m sub-
machines is represented as

Σσ :“ pA, X, x0, fσq. (1)

σ P M is the switching signal generated by the controller
where M :“ t1, . . . ,mu. Σi, i P M, is the ith submachine
modeled as an input/state asynchronous machine in which
the current state is given as the output. A and X are the
input and state set, respectively, x0 P X is the initial state,
and

fi : X ˆ A Ñ X

is the state transition function partially defined on X ˆ A.
Note that all m submachines have the same input and state
set; only their state transition characteristics are different with
each other.
Σi complies with the feature of asynchronous machines.

A valid state and input pair px, vq P X ˆ A is said to be
a stable combination and x a stable state if fipx, vq “ x.
Since no global clock exists that synchronizes the change
of all the variables, Σi lingers at px, vq infinitely as long as
the external input remains fixed. Else if fipx, vq , x, px, vq is
called a transient combination and x a transient state. Σi falls
into a transition combination from a stable combination by a
change of the input, for example, from v1 to v where px, v1q is
a stable combination. Due to the absence of a synchronizing
clock, a transient combination causes Σi to pass through a
chain of transient combinations, e.g.,

fipx, vq “ x1,

fipx1, vq “ x2,

...

Note that the input value v remains unchanged throughout
the transitions. This chain of transitions may or may not
terminate. It it does not terminate, px, vq, px1, vq, . . . are part
of an infinite cycle. In this study, we restrict our attention
to asynchronous machines that have no infinite cycles. Thus
Σi reaches another stable combination px1, vq as the result of
the transitions. x1 is termed the next stable state of px, vq.

A significant feature of asynchronous sequential machines
is that the speed of transient transitions is very fast. This
means the duration that Σi stays at transient states is almost
zero time and imperceptible by outer users. Thus it is
convenient to depict the transitions of Σi only in terms
of stable states. For this purpose, we introduce the stable
recursion function si : X ˆ A Ñ X [15] as

sipx, vq :“ x1

where x1 is the next stable state of px, vq. If px, vq is a stable
combination, spx, vq “ x. The domain of si can be extended
from input characters to strings recursively. For x P X and
v1v2 ¨ ¨ ¨ vk P A`, where A` is the set of all non-empty strings
of characters of An, we define

sipx, v1v2 ¨ ¨ ¨ vkq :“ spspx, v1q, v2 ¨ ¨ ¨ vkq.

Definition 1. Let Σi be a submachine of the switched
asynchronous machine (1). A chain of transient transitions
from one stable state to another is termed a stable transition
in Σi, e.g., from x to x1 in response to v characterized by
sipx, vq “ x1. If there exists an input string t P A` such that
x1 “ sipx, tq, x1 is said to be stably reachable from x in Σi

[15].

B. Closed-Loop System
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Fig. 1. Corrective control system Σc for model matching with Σ1.

Fig. 1 shows the proposed architecture of the corrective
control system for the switched asynchronous machine (1). C
is the corrective controller having the form of an input/output
asynchronous machine, that is, its output is different from
the current state. v P A is the external input, and σ P M
is the switching signal generated by C. D and P represent
the demultiplexer and multiplexer, respectively. D receives
the external input v and provides it to the input channel of
submachine Σσ that is determined by the switching signal
σ. Among m state feedbacks from Σ1, . . . ,Σm, P selects x,
namely the state feedback of the active submachine. x is
delivered to C along with i P M, the index of the active
submachine.

Referring to Fig. 1, C is described as the following finite-
state machine.

C :“ pM ˆ X ˆ A,M,Ξ, ξ0, ϕ, ηq (2)

where Ξ is the state set, ξ0 P Ξ is the initial state, and ϕ
and η are the state transition function and output function,
respectively, having the mapping

ϕ : Ξˆ M ˆ X ˆ A Ñ Ξ

η : ΞÑ M.

Note that the corrective controller C differs from the prior
works [5], [15], [16] in that it generates the switching signal
instead of the control input character. Although C can read
the external input v, it does not alter its value in our setting as
illustrated in Fig. 1. In other words, C controls the switched
asynchronous machine (1) only by changing its mode in a
desirable way. The closed-loop system represented by the
diagram of Fig. 1 is denoted by Σc.
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The control objective is to present the existence condi-
tion and design algorithm for C for which the stable-state
behavior of the closed-loop system Σc can match that of a
reference model Σ1 defined as

Σ1 :“ pA, X, x0, s1q.

Model matching between Σc and Σ1 is regarded accomplished
if their stable-state behaviors are equivalent with other other,
that is, for a valid state and input pair, they reach the same
next stable state. Hence only the stable recursion function s1

of Σ1 is given without loss of generality.
To prevent asynchronous sequential machines from doing

unpredictable behaviors, one must design the machines so
as to preserve the principle of the fundamental mode oper-
ation [31], namely to prohibit changes to the input while
a machine is in transition. Assume on the contrary that
the external input changes its value while the asynchronous
machine undergoes transient transitions. Due to the lack of
a synchronizing clock, it is indeterminate which transient
state the machine has at the moment of the input change.
Thus the next transition would be uncertain, impeding the
deterministic operation. Based on the former studies on the
system configuration [18], [29], we derive the following
conditions for the closed-loop system Σc of Fig. 1 to preserve
the principle of the fundamental mode operation.

Condition 1. The closed-loop system Σc of Fig. 1 operates
in fundamental mode when all the following conditions are
valid:
(i) Among C and Σ1, . . . ,Σm, whenever one machine goes

on transient transitions, the other machines are at stable
combinations.

(ii) The inputs σ and v to the demultiplexer D must change
their values only one at a time.

(iii) The outputs i and x of the multiplexer P must change
their values only one at a time.

These conditions must be implemented during the design
of the closed-loop system Σc. The reason for ensuring part
(ii) is obvious. If the inputs σ and v change simultaneously,
the next operation of D would be ambiguous, i.e., whether D
must change the mode of the switched asynchronous machine
to Σσ or it must change the current input value to v. Part (ii)
can be satisfied by setting the operation sequence of C in
the following way: Whenever the switching signal σ must
be activated in response to the change of v, C provides σ
before transmitting the changed v. This is possible because
v always passes through C as shown in Fig. 1. Furthermore,
to guarantee part (iii), every switching operation must be
conducted in such a way that the present mode and state are
not changed simultaneously.

III. ModelMatching

A. Controller Existence

Let us first review the prior results (e.g., [15], [28]) on the
model matching problem of a single asynchronous machine
Σ1 “ pA, X, x0, f1q, or m “ 1 in terms of (1). Let s1 be the
stable recursion function of Σ1. Assume that for a valid pair
px, vq P X ˆ A of the model Σ1 “ pA, X, x0, s1q, s1px, vq “ x1

whereas s1px, vq , x1. Since the stable-state behaviors of Σ1
and Σ1 mismatch each other at px, vq, the correction procedure

must be activated when Σ1 has the pair px, vq. The necessary
and sufficient condition for the existence of a corrective
controller is that the goal state x1 is stably reachable from
x, namely there exists an input string t P A` such that
s1px, tq “ x1 (refer to Definition 1). t is used by the corrective
controller as the control input sequence. Upon receiving the
external input v while Σ1 staying at x, the controller provides
asynchronously the sequence of input characters of t while
suppressing v. As a result, Σ1 will undergo a chain of stable
transitions from x to x1. Since the transient transitions of
Σ1 and the generation of control inputs by the corrective
controller are conducted in an asynchronous manner, the
closed-loop system will seem to transfer from x directly
to x1 in response to v, thus accomplishing the matching
performance.

As mentioned before, the proposed corrective controller
C in Fig. 1 is endowed with only switching capability.
Hence the foregoing control scheme applied to a single
asynchronous machine cannot be used in our study. Instead,
C must provide the switching signal that changes the present
mode to a submachine having the same reachability as
Σ1. To describe this in formal terms, we first define sets
A1pxq, Aipxq Ď A for x P X as

A1pxq :“ tv P A|s1px, vq is definedu,

Aipxq :“ tv P A|sipx, vq is definedu.

A1pxq and Aipxq are the set of input characters that make a
valid pair with the state x in the model Σ1 and submachine Σi,
respectively. Further, we define subsets of A1pxq and Aipxq

as follows.

U 1pxq :“ tv P A1pxq|s1px, vq “ xu,

Uipxq :“ tv P Aipxq|sipx, vq “ xu,

T 1pxq :“ tv P A1pxq|s1px, vq , xu, (3)
Tipxq :“ tv P Aipxq|sipx, vq , xu.

U 1pxq and Uipxq denote the set of input characters that
make a stable combination with x in Σ1 and Σi, respectively.
Similarly, T 1pxq and Tipxq denote the set of input characters
that make a transient combination with x in Σ1 and Σi.
Clearly, for all x P X and all i P M,

U 1pxq X T 1pxq “ H,

Uipxq X Tipxq “ H,

U 1pxq Y T 1pxq “ A1pxq,

Uipxq Y Tipxq “ Aipxq.

Since all the asynchronous sequential machines are sup-
posed to have no infinite cycles in any case, we have the
following.

Condition 2. For every state x P X of Σi, Uipxq , H, i “

1, . . . ,m. For every state x P X of Σ1, U 1pxq ,H.

To materialize model matching with Σ1, at least one
submachine must have the same transition characteristics as
Σ1 for each transient combination px, vq P X ˆ T 1pxq. The
latter condition is written as

@x P X and @v P T 1pxq,

Di P M such that sipx, vq “ s1px, vq. (4)
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While (4) is the necessary condition for materializing
model matching between (1) and Σ1, it is not sufficient.
For example, suppose v1 P T 1pxq and sipx, v1q “ s1px, v1q

for some i P M. Assume that model matching has been
well implemented thus so far and that the present mode
of the switched asynchronous machine (1) is Σk while Σk

stays at a stable combination px, aq P X ˆ Ukpxq. Assume
further that the external input changes to v1. If skpx, v1q “

s1px, v1q, model matching is automatically satisfied, so no
subsequent control action is required. On the other hand, if
skpx, v1q , s1px, v1q, the next state transition would violate
the input/state specification of the model Σ1 unless any
control action is enforced before the stable transition. Since
sipx, v1q “ s1px, v1q by assumption, it seems that model
matching can be maintained if the controller C generates
the switching signal σ “ i at the moment the external input
v1 is transmitted to C.

However, an attention has to be paid to the switching
operation between two submachines, since the property that
an asynchronous machine cannot stay at a transient state
imposes a restraint on the switching operation. Suppose that
in response to the switching signal σ “ i, the switched
asynchronous machine changes its mode to Σi. Since the
demultiplexer D in Fig. 1 preserves the principle of the
fundamental mode operation, its inputs σ and v cannot
change simultaneously. Hence, when σ switches to i, v does
not change its value yet, which means that the value of
the input channel provided by D is still a at the moment
the present mode becomes submachine Σi. If a P Uipxq,
the switched machine maintains the present state at x after
completion of switching to Σi. If a < Uipxq, on the other
hand, Σi cannot stay at x with the external input a but
initiate the chain of transient transitions from px, aq. Even
though the external input v1 may be transmitted to Σi right
after the switching operation, the intended stable transition
sipx, v1q “ s1px, v1q could not be manifested since Σi is not
at the state x any more.

We ensure that to elude this problem, a must belong to
Uipxq, namely a must make a stable combination with x in
submachine Σi. In fact, a can be any input character that
makes a stable combination with x in the model Σ1, that is,
a P U 1pxq, because model matching is supposed to have been
well accomplished until now. Thus we must guarantee that
not only a but all the characters in U 1pxq must be elements
of Uipxq for certifying a consistent switching operation at the
state x with respect to the input character v1. The foregoing
condition is described as

U 1pxq Ď Uipxq. (5)

The above condition is still insufficient to solve model
matching at x, since it only elucidates the requirement for
dealing with the input character v1. When the switched
asynchronous machine stays at the stable state x, the next
input character can be any element of T 1pxq. For such a
character, condition (5) must be always valid. Considering
(4) and (5) together, we have the following conclusion.

‚ For every vi P T 1pxq, there must exist a submachine Σi

for which (4) is valid, i.e., sipx, viq “ s1px, viq.
‚ For every submachine Σi that is selected for the stable

transition from px, viq, (5) must be satisfied.

More than one submachine may emulate a stable transition
of the model Σ1. In that case, (5) serves as the criterion for
choosing a pertinent submachine. For instance, assume that
sipx, v1q “ s jpx, v1q “ s1px, v1q for some i, j P M. Assume
further that U 1pxq Ď Uipxq but U 1pxq * U jpxq. Definitely,
submachine Σi must be selected in the correction procedure
for px, v1q.

Our discussion thus so far is summarized in the following
theorem.

Theorem 1. Given the switched asynchronous sequential
machine (1), let Σ1 “ pA, X, x0, s1q be the reference model and
let T 1pxq, U 1pxq, and Uipxq, i “ 1, . . . ,m, be the subsets of A
as defined in (3). In view of Fig. 1, there exists a corrective
controller C that solves model matching between Σc and Σ1

if and only if for each x P X,

@v P T 1pxq, Di P M s.t.

s1px, vq “ sipx, vq and U 1pxq Ď Uipxq. (6)

B. Controller Design

Reminding that the form of the corrective controller is as
described in (2), we design Cpzq “ pMˆXˆA,M,Ξ, ξ0, ϕ, ηq,
namely a corrective controller module that solves the model
matching problem for the state z P X. Once Cpzq is designed
for every valid pair pz, vq of Σ1, the overall controller C is
obtained by assembling all Cpzq’s:

C :“ _zPXCpzq

where ‘_’ is the join operation that combines two corrective
controller modules [18], [28].

Suppose that the switched asynchronous machine (1) sat-
isfies all the conditions (6) described in Theorem 1 are valid
with respect to the model Σ1. Assume that model matching
between Σc and Σ1 has been well accomplished, and that
Cpzq stays at the initial state ξ0. Assume further that Σc and
Σ1 reach a stable combination with the state z. Cpzq then
transfers to ξz P Ξ, namely the transition state that deals
with all the transitions starting from z. To this end, we set
the recursion function ϕ as

ϕpξ0, i, z, vq “ ξz, v P Uipzq,

ϕpξz, i, z, vq “ ξz, v P Uipzq (7)

where i P M denotes the present mode of the switched asyn-
chronous machine (1). Since no actual control is executed
in either ξ0 or ξz, Cpzq maintains the present mode of the
switched machine, so the output function η is defined as

ηpξ0q “ i,

ηpξzq “ i. (8)

Assume now that the external input changes to another
value v1 P T 1pzq when Cpzq is at ξz. Two cases arise with
respect to the changed input character.
(i) First, if s1pz, v1q “ sipz, v1q where si is the stable recur-

sion function of the present submachine Σi, no control
activity is necessary because Σi has the same transition
characteristic as Σ1 at pz, v1q. Hence, Cpzq maintains the
present switching signal σ “ i. When the state feedback
changes to another value, say z1 :“ sipz, v1q, Cpzq returns
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to the initial state ξ0. The latter behavior is implemented
by the following.

ϕpξz, i, z, v1q “ ξz,

ϕpξz, i, z1, v1q “ ξ0. (9)

(ii) Secondly, assume s1pz, v1q , sipz, v1q. Model mismatch
would occur unless corrective control is enforced. By
assumption, a submachine Σ j exists that satisfies condi-
tion (6) for the state/input pair pz, v1q, that is, s1pz, v1q “

s jpz, v1q and U 1pzq Ď U jpzq. Hence, upon receiving
the changed input character v1, Cpzq transfers to the
auxiliary state ξpz,v1q P Ξ and provides the switching
signal σ “ j as the control input. In response to
σ “ j, the switched asynchronous machine (1) changes
its mode to Σ j and receives the input v1, which moves
Σ j to the desirable state z1 :“ s1pz, v1q “ s jpz, v1q. The
foregoing correction procedure is implemented by the
following assignment of ϕ and η.

ϕpξz, i, z, v1q “ ξpz,v1q,

ϕpξpz,v1q, i, z, v1q “ ξpz,v1q,

ηpξpz,v1qq “ j, (10)
ϕpξpz,v1q, j, z1, v1q “ ξ0.

(7)–(10) serve as the design algorithm of the corrective
controller Cpzq that solves the model matching problem for
valid pairs tzu ˆ A1pzq of Σ1.

‚ At first glimpse, (9) and (10) seem contradictory with
each other. However, Cpzq will utilize only of them,
depending on the feature of submachine Σi. As men-
tioned already, if s1pz, v1q “ sipz, v1q, Cpzq employs the
procedure (9); else if s1pz, v1q , sipz, v1q, it must launch
the switching operation according to (10).

‚ Cpzq requires the states ξ0, ξz, ξpz,v1q to realize the above
procedure. Generalizing this procedure to all the input
characters of T 1pzq that invoke transient transitions with
z, we have the state set of Cpzq:

Ξ “ tξ0, ξzu Y tξpz,v1q|v1 P T 1pzqu.

IV. Example
Consider a switched asynchronous machine with two

submachines Σ1 and Σ2 shown in Fig. 2, i.e., m “ 2 and
M “ t1, 2u. The input and state set of the machine are

X “ tx1, x2, x3, x4u,

x0 :“ x1,

A “ ta, b, c, du.

For the sake of simplicity, we set

fipx, vq “ sipx, vq, @px, uq P X ˆ A, i “ 1, 2.

The objective is to determine whether a corrective con-
troller C exists such that the closed-loop system Σc can match
the behavior of the reference model Σ1 “ pA, X, x0, s1q whose
state flow diagram is illustrated in Fig. 3. Applying Theorem
1, let us check whether condition (6) is satisfied for each state
of X. U 1pxq’s and T 1pxq’s are derived from Fig. 3:

U 1px1q “ ta, du, T 1px1q “ tb, cu,
U 1px2q “ tb, du, T 1px2q “ tau,
U 1px3q “ ta, cu, T 1px3q “ tb, du,
U 1px4q “ ta, bu, T 1px4q “ tdu.

x
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a,d

cb,d
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4

b

a

b ca c

x
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x
3

x
1

d

a,c
d

c,d

x
4

a,b

d

c b

a

(a)

(b)

b

Fig. 2. Switched asynchronous machine with m “ 2: (a) Σ1 and (b) Σ2.

Consider x1 in the first. A comparison between Fig. 2
and Fig. 3 shows that x1 of submachine Σ1 has the same
characteristics of transient transitions as x1 of the model Σ1.
Formally, we have

s1px1, bq “ s1px1, bq “ x2,

s1px1, cq “ s1px1, cq “ x3.

Also, we have

U1px1q “ ta, du “ U 1px1q.

Hence x1 of Σ1 satisfies condition (6) for all the input
characters of T 1px1q. In a similar manner to the case of
x1, we can prove that x2 of Σ1, x3 and x4 of Σ2 emulate
the corresponding states of the model Σ1. By Theorem 1,
the corrective controller C exists that makes the closed-loop
system Σc stably equivalent to the model Σ1. The construction
of C can be conducted according to the algorithm (7)–(10).
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Fig. 3. Reference model Σ1.

V. Conclusion
A corrective control scheme has been presented to solve

the model matching problem for switched asynchronous
sequential machines. The proposed controller generates the
switching signal that changes the mode of the considered
switched machine. According to the incoming input value
and the present state, the controller determines the next
submachine so that the input/state behavior of the switched
asynchronous machine can match that of a reference model.
The necessary and sufficient condition for the existence of
an appropriate controller has been addressed and the design
algorithm for the controller has been outlined. Although the
present study focuses on the corrective controller having only
switching capability, it can be extended to the controllers that
can provide not only the switching signal but also the control
input character. The latter topic will be studied as a future
research.
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