
 

 
Abstract—In order to determine the thermal rises of power 

cables under severe and short shock and size the proper type 
accordingly, this paper proposes analytical solutions and 
presents case study examples taking skin effect into 
consideration.  Analyses show temperature arise upon exciting 
currents at high frequency exhibits quite different profile with 
that of low frequency currents whose skin depth outnumber the 
overall radius of power cable many times. 
 

Index Terms—power cable, skin effect, transient thermal 
analysis 
 

I. INTRODUCTION 

OWER cables are apparatus widely used in electrical 
engineering. Engineers can easily size the appropriate 

type according to the datasheet provided by manufactures 
based on the magnitude of steady flowing current. Apart 
from steady carrying, cables may undergo shocks for very 
short time counting on seconds yet with magnitude more than 
tenfold of normal current. It’s not complicated to calculate 
roughly the thermal rise assuming that current is distributed 
evenly on cross section and during the shock time the copper 
part is thermally isolated, i.e. no thermal energy can diffuse to 
parts other than copper. However, there are cases where 
appearance of overcurrent waveform look odd in a way quite 
different with sinusoid or even pulsing pattern with 
frequency in kilo Hertz. Such cases include sudden shorting 
of electrical machines, current through DC-link braking 
branch, expected transient overload and etc. Based on 
Fourier decomposition, harmonics arises which further leads 
to more current swarming close to the copper surface than 
areas far away from surface, a phenomenon usually termed as 
skin effect in electromagnetics. Since thermal arise is 
proportional to current density temporarily ignoring energy 
dissipated into protective sleeves, it will definitely lead to 
higher temperature rises on surface. Quantitative analyses 
cannot be obtained by elementary math with moderate effort 
and therefore prohibit engineers exploring the exact thermal 
stress and determine whether proper cables are selected 
accordingly. To overcome this obstacle, this paper gives 
analyses and solutions based on several reasonable 
assumptions that simplify the problem considerably. 

In the following, firstly several assumptions are presented 
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and elaborated. Next, the author proposes mathematical 
model based on well-established heat conduction theory and 
analytical solutions using eigenfunction expansion. 
Moreover, to make the result more vividly, a specific case 
study is analyzed which demonstrate that currents swarming 
near surface lead to much higher temperature than that of 
other areas and overlook of it may lay a bomb in system 
electrical design.  

 

II. ASSUMPTIONS 

A. Compressed Wires as One Solid Rod 

A close look on cross section of power cable shows that 
the copper strings are tightened closely and can be treated as 
a single copper rod with constant thermal and 
electro-magnetic properties. 

 
Fig. 1  Cross section of power cable 

B. Thermally Isolated Copper During Transient Shock 

The thermal boundary condition between copper and 
rubber sleeve can be modeled as (1) stated 
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Considering the thermal conductivity of rubber c  is 

hundred times larger than that of copper  r  and during a 

short time there is no enough thermal energy to heat up the 

rubber thus the thermal gradient ru

r




within rubber is small, 

we have a good reason to ignore the energy flowing from the 
heat source, namely copper, to the surrounding rubber. 
Hereby the boundary condition for copper part can be 
reduces as (2) 
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C. Three Dimension Problem Reduced to One Counterpart 

 For simplicity, we assume cable under investigation has 
uniform thermal and electro-magnetic properties and 
therefore areas with same distance from the center of circular 
copper rod share equivalent temperature. Furthermore, 
suppose cable is long enough that areas with equivalent 
radius on each cross section along the cable also share the 
same temperature. Hereto we arrive at one dimensional 
temperature problem which diversifies with radius and time.  
 

III. MATHEMATICAL MODELS 

This part falls into two sections: one for thermal source 
model governed by Maxwell equations and another for heat 
conduction model derived from Fourier conduction theorem. 

 
Fig. 2  Idealized cross section 

A. Thermal Source Model 

For simplicity again, consider Transverse Electromagnetic 
Waves (TEM) propagate along copper rod and both electric 
field and magnetic field are time harmonic vectors [1]. The 
current density within cross section of copper is governed by 
(3) 
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Where 

rJ  Current density of concentric circle at 

distance r  away from copper surface 

0J    Current density of copper surface 

l    Radius of copper 

    Skin depth of copper, variant with current  
       frequency 

Due to the overall current I  flowing through cross section 

is normally given, surface current density 0J   can be derived 

if we take a double integration as 
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Simple math manipulation leads to expression of  0J  as 
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As skin depth   goes to infinity, 0J  approaches to 

2/ ( )I l  which means uniform current distribution. 

Finally we have the heat source formula which represents 
energy per unit volume provided by copper itself as 
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B. Heat Conduction Model 

Based from Fourier heat conduction theorem which 
depicts the proportional relationship between heat flow per 
unit area and temperature gradient, it’s not hard to the 
following (7) which we skip the derivation process found 
notable in every heat transfer textbook [2]. 
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Where 
  Reciprocal of thermal diffusivity of 

copper 

 f r  Heat source function  p r  divided by 

thermal conductivity of copper 
Together with boundary condition equation as 
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And initial condition as 

 , 0u r b .       (9) 

C. Analytical Solution 

For (7) (8) (9), the analytical solution is derived based on 
Partial Differential Equation (PDE) theory [3], [4] as follows. 

First we suppose a tentative solution exist as 
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 .     (10) 

Substitute variable F with  ,u r t  in Helmholtz 

equation 

  2
nF kF F     .     (11) 

After simple manipulation 
2 2 2 0rrn rn n nr R rR r R   .    (12) 

Where  

    rrnR  Second order derivative of nR  on r  

    rnR   First order derivative of nR  on r  

Equation (12) takes the form of 0 order Bessel equation 

and the solution is Bessel function 0 ( )J r . 

Solution (10) should comply with boundary condition (8) 
and thus another equation is obtained as  

    0n nT t R l        (13) 

 Further manipulation leads to  
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0 ( ) 0nJ l         (14) 

 i.e. 

1( ) 0nJ l  .       (15) 

In another word, (15) must hold if solution (10) comply 
with Helmholtz equation and boundary condition and the 

unknown parameter n   should be equal to roots of first 

order Bessel function which we denote here as 

 0,1,na n    , divided by copper radius l . 

Normalize  nR r   as 
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Expand heat source function  f r  and initial condition 

b  with  nR r  
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Where 
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Where 

 
0

l

n nb rbR r dr   

Substitute equation (16) (17) (18) into equation (7), we 

conclude a equation on  nT t  
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Equation (19) is constant coefficient ordinary equation 
with general solution as 
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Hereto the original tentative solution become 
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(21) 
Use initial condition 
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We find the last unknown coefficient nC   as 
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Remarks about the solution above: 

1) From the very beginning, the author assumes the 
exciting current behaves as time harmonic function and 

the current denotation I is actually RMS value of 

sinusoidal current with amplitude of 2I . For arbitrary 
periodic waveforms, we first decompose it into 
components of different frequencies, solve the PDEs as 
(7) (8) (9) and then add all the solutions. It will work due 
to the linearity of governing equations. 

2) Engineers lost in the derivation above should feel relived 
with the help of numerous numerical PDE solvers, 
commercially available as Matlab, Maple and etc. or 
self-made algorithms based on Finite Difference Method, 
Finite Element Method and etc. No matter which one 
engineers select, it can solve specific problems on no 
condition of demanding knowledge of solving PDE 
analytically. However, acquaintance of derivation above 
helps to understand the most underlying principles 
which brew the original thoughts where the exploring 
comes from and what new may happen at another time. 

IV. CASE STUDY 

After lengthy mathematical derivation at which engineers 
frown, some real life cases are introduced here to 
demonstrate what the temperature profiles look like upon 
transient shocks and how the skin effect influences the whole 
process. 

Consider a very long 20 2mm  power cable endures 0.6 
second shock by several types of waveforms. 
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Fig. 3  Square wave (solid line) and Fourier expansions sum (dashed line) 
counting up to 5rd harmonic. The appropriate number of decomposition to be 
taken depends on the influence on temperature rise on hottest spot of high 
order harmonics. 

 
A. Square Pulse Excitation 
In case of square pulse excitation, as mentioned above, 
Fourier expansion can be used to decompose the original 
pulse with combination of numerous sinusoidal waves as 
Fig.3 shows. Here we assume the magnitude and frequency 
as 1500A and 4000 Hz. The number of harmonics should be 
considered relating to the decaying influencing pattern of 
high order components. We can safely substitute the original 
square pulse with combination of harmonic components up to 
the exact order that higher ones stop contribute the 
temperature rise notably. Comparison two plots in Fig. 4 
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shows that counting up to the first 5 components for analysis 
will not lead to much difference with the result of original 
square pulses. 
 

B. Low Frequency Sinusoidal Excitation 
As a comparison, consider 0.01Hz, a very low frequency 

sinusoidal excitation with the same amplitude as the 
fundament of square pulse in the last section. The result in 
Fig. 5 clearly demonstrates that current spreading evenly on 
cross section leads to uniform temperature profile. The 
temperature of hottest area, namely the boundary surface, 
equals to nearly one half that of square pulse excitation. 
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Fig. 4  Temperature rises caused by the first 6 and the first 5 components 
make no obvious difference. 
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Fig. 5  Temperature rises caused by the very low frequency excitation. The 
current distributes evenly on cross section and finally lead to uniform 
temperature profile at each constant. 
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