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Abstract— A study of the asymmetric geometry based on a 

one-dimensional defective photonic crystal is reported. A 
common structure in the form of (HL)4L(HL)4 is numerically 
investigated to be suitable for channel filters with broadband 
responses. The transmission characteristics, analysed by the 
Transfer Matrix Method (TMM), of the proposed structure in 
UV, VIS and IR ranges are clearly illustrated. A number of 
interesting features on the defect modes such as transmittance 
level, filtering frequency and the number of modes are observed 
when the defect layer thickness is adjusted. The results show a 
promising potential of the designed channel filter for various 
applications including the optical communication.   
 

I. INTRODUCTION 
Optical filter is a device for selectively transmitting light 

in a particular range of wavelengths while the other is 
blocked. Its widespread uses are found in various areas of 
interest such as nanotechnology [1-2], astronomy [3] and 
communication [4-7]. Designing is the first step in making 
an effective channel filter in many applications. Up to now, 
there are an increasing number of designed and developed 
filters to cover operating wavelengths from ultraviolet (UV) 
to terahertz (THz) wavelengths [4-14].  

The one-dimensional photonic crystal (1D-PC) first 
introduced by Yablonovitch [15] and Sanjeev [16] has 
become a structure of choice to design a filter with good 
characteristics. 1D-PC is an artificial layered material with 
periodicity of different refractive indices and thicknesses 
[17]. 1D-PC can guide the flow of light passing through its 
structure. Principally, the existence of the photonic band gap 
(PBG) in PC prohibits a certain wavelength that falls within 
the PBG. Due to a simple structure, 1D-PC is the best 
candidate for a channel filter design with particular 
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specifications. Different dielectric, metal, semiconductor and 
organic materials have been investigated numerically to 
explore their potentials as 1D-PC based bandpass filters [18-
22]. By a theoretical design, 1D-PC uses the effect of 
interference to effectively transmit light over a desirable 
range of wavelength. For example, a transmission filter 
made of Si/SiO2 photonic crystal was numerically and 
experimentally shown to work in IR range [7]. The binary 
structure on metallic-dielectric photonic crystal was studied 
and fabricated as a bandpass filter to cover applications in 
UV range [14] and the design of transmission band using 
Ta2O5 and SiO2 photonic crystal was also developed to use 
in the communication [5]. Note that, these applications are 
realized by using pure PC structure. For more controllable 
features of 1D-PC based channel filter, the doping of some 
materials into the pure PC, changing the thickness of the 
layer or removing a layer from it, called defective PC has 
been increasingly studied. The localized or defect mode 
within the PBG corresponds to the resonant transmittance 
peak due to the change of the interference behavior of the 
light [23].  The introduction of the defect in the design of 
1D-PC structure leads to various applications such as splitter 
and optical filters [2,24]. So far, the effort to extend for even 
more interesting applications is continually studied.  

In this study, a common and simple design for channel 
filter is proposed based on the defective PC. A novel narrow 
band-pass filter at normal incidence over broadband range 
are designed and numerically investigated through Transfer 
Matrix Method (TMM). Based on a common structural 
configuration of (HL)4L((HL)4 design in which a defect layer 
is introduced into a periodic layered structure, a defect mode 
is found to appear at desired wavelengths in ultraviolet 
(UV), visible (VIS) and near infrared (IR) ranges. The 
designed filter as a channel filter exhibits a high 
transmission performance, sharp edge and good rejection of 
the undesired sideband. By just changing the combination of 
materials based on the designed structure, the operating 
wavelength of a channel filter can be tuned conveniently to 
cover the range of wavelengths in UV, VIS and IR.  The 
properties of the proposed channel filter in terms of 
transmission and bandwidth are also investigated in this 
study.  
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II. MATHEMATICAL MODELLING  

A. Transfer Matrix Method (TMM) [17] 
A numerical method so called Transfer Matrix Method 

(TMM) is widely used to solve the amplitude of the light 
propagating inside 1D-PC. Consider a general defective 
photonic crystal structure, air/(HL)mD(HL)m/air,  in which H 
represents the layer of high refractive index and L  
represents low refractive index materials and D is the defect 
layer.  

 

 
 

Fig. 1 One-dimensional photonic crystal  
(1D-PC) with defect 

 
To compute the defect mode in the transmission spectrum, 
TMM for the system can be written as 
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Where                          and m is the number of layers and l 
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B. Transmittance and Reflectance [17] 
Using TMM method, the transmittance and reflectance of 

plane waves through a periodic layered structure, the 
incident light from medium 0, the reflection r and 
transmission t  coefficients are  
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III. RESULT AND DISCUSSION 
A defect layer in asymmetric geometry with a common 

structure of air/(HL)4L(HL)4/air are studied as channel filters 
to cover UV, VIS and IR regions. The proposed 
configuration of channel filter consists of a defect layer 
(with a refractive index of nD) inserted into alternating layer 
of high (nH) and low (nL) refractive index materials as shown 
in Fig. 1. Note that a defect mode referred in the 
transmittance characteristics corresponds to a design 
wavelength (λ0) for a channel filter. Each optical width of the 
layer is chosen to be a quarter-wavelength, i.e., nHdH  = nLdL 

= nDdD = λ0/4. The number of periodicity is optimized for N 
= 4. The substrate is air. This proposed filter was designed 
and calculated through transfer matrix method (TMM) only 
at normal incidence over UV, VIS and IR ranges. The 
transmission performances of the channel filter at each range 
of wavelengths in terms of high transmittance, tunable 
bandpass, photonic band gap (PBG) and band edges are 
investigated and discussed.  
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Fig. 2. Transmission spectrum of designed filter in UV range. 
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A. Design of Ultraviolet (UV) filter  
Based on the asymmetric PC structure, 

air/(HL)4D(HL)4/air, the proposed channel filter in UV 
range is selected as the layers of two different materials TiO2 
(nH = 2.8) and MgF2 (nL = 1.4). A defect layer of MgF2 (nD 
= 1.4) is introduced into PC structure. With each layer of 
quarter-wavelength thickness, the proposed structure, 
(TiO2/MgF2)4MgF2 (TiO2/MgF2)4, is calculated at the design 
wavelength λ0 = 300 nm. The designed PBG is calculated to 
be between 240-400 nm and the defect mode locates at the 
design wavelength within the UV range. Fig 2. shows the 
transmission spectrum of the designed filter. To achieve a 
maximum intensity of the defect mode, it is recommended to 
select a high contrast of the refractive index materials. 
Refractive index of the defect layer is chosen to close to the 
low refractive index material so as to maximize the 
transmittance of the defect mode. In this study, MgF2 is a 
suitable material for this purpose because of its low 
absorption in the UV range. In addition, the proposed 
channel filter can be tuned to a desired wavelength by 
changing the thickness of the defect layer. The position of 
defect mode is shifted to a longer wavelength as the 
thickness of defect layer increases. On the contrary, the 
decrease of the defect layer thickness causes to lower the 
designed wavelength. The relation is clearly shown in Fig. 3. 
The periodicity of the structure, N = 4, gives rise to a sharp 
edge and high transmission. Although the increase of the 
periodicity has influenced on sharp edges, this inevitably 
causes the decrease of the transmittance level of UV channel 
filter.   
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Fig. 3. Transmission spectra of designed filter based on asymmetric 
defective PC of air/(TiO2/MgF2)4 MgF2 (TiO2/MgF2)4/air  

at normal incidence in UV range.  
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Fig. 4. The variation of channel wavelengths of a single defect mode with 
different thicknesses of defect layer based on asymmetric defective PC of 

air/(TiO2/MgF2)4 MgF2 (TiO2/MgF2)4/air at normal incidence in UV range. 

The simulation result shows that the thickness change of the 
defect layer significantly affects a spectral transmission of 
the proposed UV filter. Two defect modes apparently occur 
when the defect layer width has been changed twice as thick 
as an original value. A defect mode near the band edge of 
the long wavelength finally disappears if the thickness keeps 
increasing. However, this clearly points out that the channel 
filter based on the proposed structure can work as either a 
single or multi-channel operation depending on the 
adjustment of the defect layer thickness.  
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Fig. 5. Transmission spectrum of a designed filter in a visible range. 
 

B. Design of Visible (VIS) filter  
Asymmetric one-dimensional defective photonic crystal  

structure based on air/(HL)4D(HL)4/air is also used for a 
channel filter in the visible range. H is taken to be Ti (nH  = 
2.7) and L is taken to be Al (nL = 1.2). To achieve a high 
transmission, a defect layer is chosen to be a low refractive 
index material of Al (nD  = 1.2). So, the designed filter is 
(Ti/Al)4Al(Ti/Al)4. Each layer thickness is set to be a quarter-
wavelength. For normal incidence, the result shows that the 
PBG is 400 – 700 nm and the defect mode locates at a 
design wavelength, λ0 = 500 nm (Fig. 5).  
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Fig. 6. Transmission spectra of designed filter based on asymmetric 
 defective PC of  air/(Ti/Al)4Al(Ti/Al)4/air  

at normal incidence in visible range. 
 

Fig. 6 clearly shows that by increasing the thickness of 
defect layer the channel is shifted towards the longer 
wavelength, whereas the shift to the shorter wavelength 
occurs as the thickness decreases. The increase of the 
periodicity is again found to decrease the transmission of the 
design wavelength.  Therefore, the periodicity of N = 4 is the 
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optimum condition for the performance of the channel filter. 
From Fig. 6, the result shows that two defect modes are 
found within the PBG if the width of defect layer is twice as 
thick as the original quarter-wavelength. One of the two 
defect modes whose position near the band edge of the long 
wavelength disappears according to the increment of the 
thickness of defect layer. This illustrates that the variation of 
defect layer thickness can be used to obtain either a single 
channel filter or multi-channel filter.  
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Fig 7. The variation of  channel wavelengths of a single defect mode with  

different thicknesses of defect layer based on asymmetric defective PC 
 of air/(Ti/Al)4Al(Ti/Al)4/air at normal incidence in visible range. 

 

C. Design of Infrared (IR) filter  
 IR bandpass filter is again designed with asymmetric 
geometry of air/(HL)4D(HL)4/air where H is GaAs (nH = 
3.41), L is LiF (nL = 1.36) and D is LiF (nD = 1.36). The 
design wavelength was chosen to be λ0 = 1060 nm. The  
transmittance of the designed filter, 
(GaAs/LiF)4LiF(GaAs/LiF)4 , at normal incidence shows 
that a high transmittance of the defect mode can be achieved 
when its refractive index is close to the low refractive index 
material.   
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Fig. 8. Transmission spectrum of designed filter in infrared range. 
 
There is a defect mode introduced within the PBG which 

is 800-1600 nm. A defect mode is shifted to the longer 
wavelength for increasing of the defect layer thickness. In 
contrast, the defect mode is shifted to the shorter wavelength 
with decreasing of the thickness of defect layer. The defect 
mode becomes weak or even disappears if the periodicity is 
greater than 4. So, the enhancement of the high 
transmittance for the designed filter is satisfied with the 

periodicity N = 4. This design wavelength is selected for 
near-infrared applications such as medical diagnostics, food 
quality control and optical communication.  
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Fig. 9. Transmission spectra of designed filter based on asymmetric 
defective PC of  air/(GaAs/LiF)4LiF(GaAs/LiF)4/air  

at normal incidence in infrared range. 
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Fig 10. The variation of channel wavelengths of a single defect mode with 
different thicknesses of defect layer based on asymmetric defective PC 

 of air/(GaAs/LiF)4LiF(GaAs/LiF)4/air at normal incidence 
 in infrared range. 

 
 By increasing the width of the defect layer twice as thick 
as its original quarter-wavelength, two defect modes are 
observed within the PBG. When the thickness of defect layer 
increases, the first defect mode is shifted towards the longer 
wavelength. The defect mode disappears while the other 
defect mode near short wavelength remains. By varying the 
thickness of the defect layer, a design wavelength can be 
achieved. Therefore, this designed structure shows its 
function as a single or multi-channel filter, specially applied 
in DWDM applications. Note that the 1310 and 1550 nm are 
covered in this proposed structure.     
 

IV. CONCLUSION 
Using the Transfer matrix method (TMM), a narrow 

channel filter can be designed based on asymmetric 
defective photonic crystal (PC) of air/(HL)4L(HL)4/air. With 
the combination of appropriate materials and a quarter-
wavelength width of the defect layer, a single defect mode 
occurs within the PBG at the design wavelength, within the 
ultraviolet (UV), visible (VIS) and infrared (IR) ranges. The 
position of defect mode can be shifted towards a longer 
wavelength as the defect layer thickness increases. The twice 
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increment of the defect layer thickness with respect to the 
quarter-wavelength defect layer thickness leads to the 
introduction of two defect modes inside the PBG. The 
optimum periodicity, N = 4 in this study, numerically 
illustrates a high transmission of defect modes and sharp 
edges of the spectrum. Such designed filter is fully flexible 
to control the defect mode by changing the width of defect 
layer. The presence of either a single or two defect modes is 
utilized to design a single or multi-channel filter for various 
applications including the optical communication. Table 1 
shows  the summary of channel filter for UV, VIS and IR 
ranges based on the proposed asymmetric geometry 
structure, air/(HL)4L(HL)4/air.  

 
 

TABLE I 
SUMMARY OF THE DESIGNED FILTER 
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Range of 

wavelength 
(nm) 

 
Photonic 
band gap 

(PBG) 
(nm) 

 
The combination of materials based 

on air/(HL)4L(HL)4/air. 

Ultraviolet 240 – 700 (TiO2/MgF2)4MgF2(TiO2/MgF)2
4 

 
Visible 400-700 (Ti/Al)4Al(Ti/Al)4 

Infrared 800-1600 (GaAs/LiF)4LiF(GaAs/LiF)  
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