
 

 
Abstract—This paper is presented a generalization of the 

Cauchy problem for the three dimensional Navier-Stokes 
equations with Holder continuous coefficients in the Cartesian 
coordinate system. Using the parametrix method of theory 
nonlinear partial differential equations were obtained the 
velocity components of the transient compressible flows. Key 
aspects of technical work based on the previous research 
which provided a description of the constitutive relationships 
between three physical quantities: the velocity vector, the 
external and internal forces, the pressure distribution.  Using 
‘a priori’ estimation for the velocity vector was proved the 
uniqueness theorem for compressible flows. 
 

Index Terms—Navier-Stokes equations, compressible flow, 
parametrix method, turbulent fluid motion, potential field, 
pressure distribution 
 

I. INTRODUCTION 

 
HIS paper is presented mathematical theory of 
turbulent compressible flows given by the Navier-
Stokes equations .  

    The Navier-Stokes equations as nonlinear partial 
differential equations in real natural situation were  
formulated in 1821 and appeared to give an accurate 
description of fluid flow including laminar and turbulent 
features. We have focused on the global existence, 
uniqueness and smoothness of the Navier-Stokes problem 
for compressible flows. Examples of weak solution for 
incompressible flows were given by L. Caffarelli [1], 
V.Sheffer [2]. A critical analysis for many analytic and 
numerical solutions of Navier-Stokes equations was given 
by C.L.Fefferman [3]. We will extent this unique idea of 
existence of solution given in [3] by using the energy 
conservation law for the external and internal forces, the 
gradient of pressure. This paper has focused on the 
parametrix method with Holder continuous coefficients of 
the kinematic and dynamic viscosity. This result has shown 
the next step to mathematical understanding of the elusive 
compressible phenomena of turbulence .There we have got 
some additional fundamental information about behavior of 
potential, kinetic and static energies for the description their 
general mechanics of the turbulent compressible motion. 
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II. MATHEMATICAL FORMULATION OF THE PROBLEM  
 

    Turbulence model is considered in the three-dimensional 
infinite spaces 3R .Denote by

 
),,( 321 xxxx 

 
a point in 

3R , let us consider the velocity vector in a point ),( txM  of 

the three spatial coordinates at  a given time t  by the 

formula 
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 Suppose that infinite spaces 3R , )0(3  tRT
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is the velocity vector, ),( txp is the fluid pressure field.  

   Let us consider a function ),( tx  defined on a bounded 

closed set S of 3R . The function ),( tx  is said to be 

Holder continuous of exponent )10(   in S if there 

exists a const A such that  
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for all 
TTtx  ),(,),(   in S . 

We consider compressible flow given by the general Navier 

-Stokes problem  in the following form 
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the vector function 
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denotes an external and internal forces, ),( tx  is a 

kinematic viscosity, ),( tx  is a fluid density, the 

symbol  denotes the gradient with respect to the function, 

the symbol   denotes the three dimensional  Laplace 
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operator, ),( tx  is a dynamic viscosity which is related to 

the kinematic viscosity by the formula   . 

   There we assume that 
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The aim here is to understand turbulent features of the 

Navier-Stokes problem for compressible flows. The initial 

value problem (1)-(2) concerns with the fundamental 

solution of Poisson and heat conduction equations. 

Turbulent motion is supported by the subjected power from 

some external forces and initial velocity. The shape of 

turbulent  region is determined by the property which has 

shown stability or instability of the velocity motion and the 

pressure distribution. Stabilizing mechanisms have been 

advocated to explain features observed in numerical 

simulations of turbulence.   

     

III. STABLE SOLUTION  OF  THE  NAVIER-STOKES   

PROBLEM   IN THE POTENTIAL FIELD  

 

    In this part we consider fluid when characterized by the 

three-dimensional Navier-Stokes problem with Holder 
continuous coefficient ),( tx  in the following system of 

equations: 
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 Using well-known formula of vector analysis 
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we have got  
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Applying the expression  
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to the Navier-Stokes equations (3)-(5) we obtain the 

mathematical  problem for heat equation 
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Consider the heat equation (5) where the coefficient ),( tx  

is defined in a cylinder    TtDxtxTD  0,);,(,0 ,  

D  is the closure of a bounded domain 3RD  .     Let for 
all  TDtx ,0),(  ,  TD ,0),(   coefficient satisfies 

Holder conditions 
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Following the classical procedure [6] we can get solutions 

for the problem (8)-(1-) in the integral sum of the parabolic 

potentials   
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Fundamental solution  ),( txG   was obtained from 

integral equation 
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Using the equation (8) was found unknown function 

),;,(  tx  as solution of the following Volterra-

Fredholm integral equation  
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 Fundamental solution ),,( txG   has estimations for their 

derivations 
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   Using properties of the fundamental solution 
),,( txG  and its derivative evaluations we have got a 

uniqueness and stable solution (11) satisfying following 

estimation 
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    Condition for the scalar pressure function ),( txp  
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predicts a steady feature which introduces a stable turbulent 

motion when  
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For pressure function ),( txp  we have got the following 

estimation 
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Consequently, we see that a stability of the turbulent flow 

depends on the condition (13).        

IV. VELOCITY COMPONENTS AND  FUNCTION OF PRESSURE 

FOR TURBULENT SWIRLING MOTION 

 

   Assume that 
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then the Navier-Stokes equation (3) can be written as :  
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There vector function *f
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 is a convolution between vector 

and matrix 
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  Considering condition 0frot


 and using rotor operator 

we obtain equation  
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Donate that   
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 we obtain following  vector equation  
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Due to this fact we have the unique solution of the problem 

(3)-(5) 
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  Vector function ),( txF
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Using the well-known properties of Green’s functions we 

have got estimation for the vector velocity  
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in the functional space  ),0(
3

2
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classical procedure we get the uniqueness and stability of 

solution for the problem (3)-(5). Also we obtain equation 

for the pressure function 
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The problem (1)-(2) when 0),( txudiv


is Clay 

Institute’s Millennium problem which was formulated by 

Fefferman [3]. When 0frot


is defined solution 

which has non-continuous Heaviside step function 

),( tx


therefore in general case  can be determined only 

weak solution which satisfies  the obtained balance 

equation (21).  Due to this obtained balance equation                         

for the pressure distribution were defined significant 

properties of the transient incompressible flow which 

provide a description of the constitutive relationships 

between three physical quantities: the velocity vector, the 

external and internal forces, the scalar pressure distribution. 

The Navier-Stockes problem (1)-(2) in the general  when 
0),( txudiv


 is applicable to real turbulent processes 

which represent an average departure from the different 

points of the space and we have different combinations of 

the conditions 
  0),( txudiv


,  0),( txudiv


,  0),( txudiv


                         

Combining these conditions for the vector velocity we can 

explain transfer mechanisms of divergent-convergent flows. 

V. THE NAVIER-STOKES PROBLEM FOR THE DIVERGENT 

POTENTIAL FIELD 

    Let investigate the behavior of the Navier-Stockes 
problem (1)-(2) in the general case when 0),( txudiv


.  
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      For problem (1)-(2) in the general case we have 
got second order nonlinear Volterra-Fredholm integral 
equation in a matrix form satisfying  
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   Successive approximation method can be 
successfully applied to solve the nonlinear Volterra-
Fredholm matrix integral equation (22). Considering 
(22) in the operator form we have equation 
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Using inverse operators iR for  the operators iK  

( 2,1i ) we have got 
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Using the properties of Green’s functions we have got 
estimation for the vector velocity in the space 
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Using the Navier-Stokes equation (1) we have  a 
unique scalar function of pressure ),( txp  which 

satisfies  
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VI. RESULTS AND DISCUSSION 

 
From previous studies [5]-[6] in cases 0),( txudiv


 

and 0),( txudiv
 for unstable motions we have the 

nonlinear Folterra -Fredholm matrix equation which 
give some simple consequences of the theorems given 
in [6]. This result are shown analogical conditions of 
existence and uniqueness for the three dimensional 

Navier-Stokes equations with Holder continuous 

coefficients in the Cartesian coordinate systems which 
depend on the energy conservation law and provide 

behavior of  motion for compressible flows. There 

Navier-Stokes equations in the general case represent the 

evolution of the governing distribution functions, which 

depend on the velocity vector in the position of particles as 

a result of thermal excitation at any finite turbulent energy.  

VII. CONCLUSION 

     This paper is presented convenient procedure in solving 

the Navier-Stokes problem for compressible flows which 

allows to prove the uniqueness and regularity of the 

solutions in the general case. In the considered case 
when weak solution of the Navier-Stokes problem (1)- 
(2) satisfies the energy conversation law (13) we have 
sufficiently regular solution which means 

)()(),( )0,1()1,2(
TT CCtxu 


 and satisfies classical 

formulation in this considered case. In view of this fact, 
the obtained balance relation between components of the 

velocity vector and the pressure function in terms on the 

energy conversation law (13) provides equivalence of 
the strong and weak solution. In case when  0frot


 

the Navier-Stokes problem (1)- (2) for compressible flows 

satisfies weak formulation. 
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