The Wigner System Coupled with Hartree-type Nonlinearity

Bin Li, Jieqiong Shen

Abstract—This paper is concerned with the generalized Wigner system, which models quantum mechanical (charged) particles-transport under the influence of a Hartree-type non-linearity. In three dimensions, existence and uniqueness of the local mild solution are established on weighted- L^2 space. The main difficulty in establishing mild solution is to derive a priori estimates on the Hartree-type nonlinearity. The proof is based on semigroup theory and splitting the singular kernel $\frac{1}{|x|^{\alpha}}$ with $0 < \alpha \leq 1$. This result generalizes the previous result by Manzini [14], which dealt with the solution with $\alpha = 1$.

Index Terms—Wigner system, Hartree-type nonlinearity, semigroup theory, singular kernel.

I. INTRODUCTION

THE following Hartree (generalized Schrödinger) equations

$$i\hbar\psi_t(t,x) = -\frac{\hbar^2}{2}\Delta\psi(t,x) + V(t,x)\psi(t,x), \ x \in \mathbb{R}^n, \quad (1)$$

$$V(t,x) = \frac{\lambda}{|x|^{\alpha}} *_x \rho(t,x), \ 0 < \alpha < n \quad (2)$$

have arisen in quantum mechanics and been studied by many researchers in the recent years, see [7], [12] and therein for more details. This model describes the timeevolution of a complex-valued wave function $\psi(t, x)$, under the influence of a Hartree-type nonlinearity (see [9], [17] for a broader introduction). Above, $\frac{\lambda}{|x|^{\alpha}}$ denotes a given realvalued interaction kernel, and * denotes the convolution. Where $x \in \mathbb{R}^n$ is the position, t is the time, \hbar denotes the Planck constant and $\lambda \in \mathbb{R}$. The macroscopic density $\rho = \rho(t, x)$ is now given by the zeroth order moment in the kinetic variable v, i.e., by the physical observables from both the wave function ψ and the Winger function w, namely,

$$\rho(t,x) = |\psi|^2 = \int_{R^n} w(t,x,v) dv.$$
 (3)

The Wigner transform of $\psi(t, x)$ is

$$w(t, x, v) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \psi(t, x - \frac{\hbar}{2}y) \overline{\psi}(t, x + \frac{\hbar}{2}y) \exp(iv \cdot y) dy \quad (4)$$

where $\overline{\psi}$ denotes the complex conjugate of ψ . A direct calculation by applying the Wigner transform (4) to the generalized Schrödinger equations (1)-(2) shows that w(t, x, v) satisfies the so-called Wigner equation, see e.g. [13], [19],

$$w_t + (v \cdot \nabla_x)w - \Theta_{\hbar}[V]w = 0.$$
(5)

Where the Wigner function w = w(t, x, v) is a probabilistic quasi-distribution function of particles at time $t \ge 0$, located at $x \in \mathbb{R}^n$ with velocity $v \in \mathbb{R}^n$. The operator $\Theta_{\hbar}[V]w$ in the equation (5) is a pseudo-differential operator, as in [3], [4], [10], formally defined by

$$\Theta_{\hbar}[V]w(t,x,v) = \frac{i}{(2\pi)^{n}\hbar} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \delta[V](t,x,\eta)w(t,x,v')e^{i(v-v')\eta}dv'd\eta, \quad (6)$$
$$\delta[V](t,x,\eta) = V\left(t,x+\frac{\hbar\eta}{2}\right) - V\left(t,x-\frac{\hbar\eta}{2}\right).$$

It is clear that the equations (5)-(6) coupled with (2) contain the Wigner-Poisson equation (e.g., $n = 3, \alpha = 1$). Over the past years, there have been many mathematical studies of mild or classical solution for the Wigner-Poisson equation, which models the charge transport in a semiconductor device under the Poisson potential. For instance, it has been studied in the whole space $R_x^3 \times R_v^3$ (see [11] and the references therein), in a bounded spatial domain with periodic [5], or absorbing [1], or time-dependent inflow [14], [15], boundary conditions, and on a discrete lattice [8], [18].

The present paper is devoted to investigating the system (5)-(6) coupled (2) and establishing certain mathematical results on the existence and uniqueness of the mild solution, with the following initial boundary conditions

$$w(t, 0, x_2, x_3, v) = w(t, v, l, x_2, x_3),$$
(7)

$$w(t, x_1, 0, x_3, v) = w(t, x_1, l, x_3, v),$$
(8)

$$w(t, x_1, x_2, 0, v) = w(t, x_1, x_2, l, v),$$
(9)

$$w(t = 0, x, v) = w_0(x, v), \ l > 1,$$
(10)

which is very difficult: first, the function V(t, x) does not satisfy $\Delta_x V = \rho$ as in Wigner-Poisson equation (see [15] and so on); and the second is to derive priori estimates on the nonlinear operators $\Theta_{\hbar}[V]w$. Therefore, the mathematical analysis must be done on the some new methods such as splitting the singular kernel $\frac{1}{|x|^{\alpha}}$ with $0 < \alpha \leq 1$.

On the other hand, the natural choice of the functional setting for the study of the Wigner-Poisson or Wigner-Poisson-Fokker-Planck problem is the Hilbert space $L^2(R_x^n \times R_v^n)$, see [6], [13]. However, it can be immediately observed that the density $\rho(t, x)$, given by (3), is not well-defined for any w(t, x, v) belonging to this space. In other words, the nonlinear term $\Theta_{\hbar}[V]w$ is not defined pointwise in t on the state space of the Wigner function. Therefore, in Section II we introduce a Hilbert space $X = L^2([0, t]^3 \times R_v^3, (1 + |v|^2)^2 dx dv)$ (see also [3], [5], [15]), such that, the existence of the density $\rho(t, x)$ is granted for any $w \in X$.

With the above notations, the main result of this paper can be described as the following theorem:

Theorem 1 Let $0 < \alpha \leq 1$, for every $w_0 \in X$, the equations (5)-(6) coupled with the equation (2), with initial

Manuscript received November 29, 2014; revised January 22, 2015. Bin Li is with the Dept. of Mathematics, Jincheng College of Sichuan University, Chengdu, 611731, China. E-mail: endure2008@163.com.

Jieqiong Shen is with the Department of Mathematics, Jincheng College of Sichuan University/Sichuan University, Chengdu, 611731/610064, China. E-mail: jieqiongshen123@163.com.

boundary conditions (7)-(10), has a unique mild solution $w \in C([0, t_{\max}), X)$.

Remark 1 It is straightforward to extend our results to the high dimensional case (n > 3) with $0 < \alpha \le n - 2$.

Our paper is structured as follows: In section II we introduce a weighted space for the Wigner function w that allows to define the nonlinear term $\Theta_{\hbar}[V]w$. In section III, we obtain a local-in-time mild solution on the weighted L^2 space via the the Lumer-Phillips theorem [16] in three dimensions.

II. THE FUNCTIONAL SETTING AND PRELIMINARIES

In this section we shall discuss the functional analytic preliminaries for studying the nonlinear Wigner equations (5)-(6) coupled (2). Or more accurately, we shall introduce an appropriate state space for the Wigner function w which allows to control the nonlinear term $\Theta_{\hbar}[V]w$, which will be considered as a perturbation of the generator A defined in (19). This is one of the key ingredients for proving the Theorem 1.

We would show that the pseudo-differential operator $\Theta_{\hbar}[V]w$ is (local) bounded in the weighted L^2 space, in symbols:

$$X := L^2(I_x \times R_v^3, (1+|v|^2)^2 dx dv), \ I_x = [0, l]_x^3, \quad (11)$$

endowed with the following scalar product

$$\langle f,g\rangle_X := \int_I \int_{R_v^3} f(x,v) \cdot \overline{g(x,v)} (1+v^2)^2 dv dx, \quad (12)$$

for $f, g \in X$. In our calculations, we shall use the following equivalent norm:

$$||f||_X^2 := ||f||_{L^2}^2 + \sum_{i=1}^3 ||v_i^2 f||_{L^2}^2, \tag{13}$$

The following proposition motivates our choice of the space X for the analysis.

Lemma 1 Let $w \in X$ and $\rho(t, x)$ defined in (3), for all $x \in I$, then ρ belongs to $L^2(I)$ and satisfies

$$||\rho||_{L^2(I)} \le C||w||_X,\tag{14}$$

 ρ also belongs to $L^1(I)$ and satisfies

$$||\rho||_{L^1(I)} \le C||w||_X. \tag{15}$$

Moreover, for every $p \in [1,2], \ \rho$ belongs to $L^p(I)$ and satisfies

$$||\rho||_{L^p(I)} \le C||w||_X.$$
 (16)

Proof The first assertion follows directly by using Cauchy-Schwartz inequality in v-integral, see also [14], [15]. On the other hand, by Hölder inequality, we have

$$\|\rho\|_{L^{1}(I)} \leq \int_{I} \left| \int_{R_{v}^{3}} w(t, x, v) dv \right| dx \leq \left[\int_{I} 1^{2} dx \right]^{\frac{1}{2}} \left[\int_{0}^{1} \left| \int_{R_{v}^{3}} w(t, x, v) dv \right|^{2} dx \right]^{\frac{1}{2}} \leq C \|w\|_{X}.$$

Using the interpolation inequality, we get

$$\|\rho\|_{L^p(I)} \leq \|\rho\|_{L^2(I)}^{\theta}\|\rho\|_{L^1(I)}^{1-\theta} \leq C \|w\|_X.$$

ISBN: 978-988-19253-9-8 ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online) **Remark 2** The choice of the $|v|^2$ weight was already seen to be convenient to control the L^2 -norm of the density on the whole space R_x^3 [3] and therein, and a bounded or periodic spatial domain [14], [15]. However, the choice of the space X as the state space for our analysis is not optimal, see [15], in the sense that we could obtain an estimate analogous to the (14) even under decreased regularity assumption on the function $\mathcal{F}_{v \to \eta} w$. Precisely, we could assume $w \in L^2(R_x^n \times R_v^n, (1 + |v|^2)^k) dx dv)$ with k > 2n.

Next, we consider the Lipschitz properties of the pseudodifferential operator $\Theta_{\hbar}[V]w$ defined by (6). But by the definition of it, the *w* have to be 0-extended to R_x^3 . We will show indeed that this operator is well defined from the space *X* to itself. Moreover, we can state the following results:

Lemma 2 Let $0 < \alpha \le 1$, for all $w \in X$, the operator $\Theta_{\hbar}[V] w$ maps X into itself and there exists C > 0 such that

$$||\Theta_{\hbar}[V]w||_{X} \le C||w||_{X}^{2}.$$
(17)

Proof Indeed, the operator $\Theta_{\hbar}[V]w$ can be rewritten in a more compact form as,

$$\mathcal{F}_{v \to \eta}(\Theta_{\hbar}[V]w)(x,\eta) = \frac{i}{\hbar} \delta V(x,\eta) \mathcal{F}_{\eta \to v}^{-1} w(x,\eta), \quad (18)$$

where the symbol $*_v$ is the partial convolution with respect to the variable v, $\mathcal{F}_{v \to \eta}$ is the Fourier transformation with respect to the variable v and $\mathcal{F}_{\eta \to v}^{-1}$ its inverse:

$$\mathcal{F}_{v \to \eta}[f(x, \cdot)](\eta) = \int_{R^n} f(x, v) e^{iv \cdot \eta} dv,$$
$$\mathcal{F}_{\eta \to v}^{-1}[g(x, \cdot)](v) = \frac{1}{(2\pi)^n} \int_{R^n} g(x, v) e^{-iv \cdot \eta} d\eta$$

for suitable functions f and g. Then one has

$$\begin{aligned} & \|\Theta_{\hbar} \left[V\right] w\|_{L^{2}} \leq C \|\delta V(x,\eta) \mathcal{F}_{\eta \to v}^{-1} w\|_{L^{2}} \leq \\ & C \|V\|_{L^{\infty}} \|\mathcal{F}_{\eta \to v}^{-1} w\|_{L^{2}} \leq C \|V\|_{L^{\infty}} \|w\|_{L^{2}}. \end{aligned}$$

Let $k(\cdot) = \frac{1}{|\cdot|^{\alpha}}$, $k_1 = k(\cdot)|_{|\cdot| \le 1}$ and $k_2 = k(\cdot)|_{|\cdot| > 1}$, so, $k(\cdot) = k_1 + k_2$ with $k_1 \in L^p(R^3)$ for all $p \in [1, \frac{3}{\alpha})$ and $k_2 \in L^q(R^3)$ for all $q \in (\frac{3}{\alpha}, +\infty]$. On the other hand, since $V = \frac{1}{|\cdot|^{\alpha}} * \rho$, using Hölder's inequality we have

$$k_1 * \rho \|_{L^{\infty}(B)} \le C \|k_1\|_{L^2(B)} \|\rho\|_{L^2(B)} \le C \|\rho\|_{L^2(B)} \le C \|\rho\|_{L^2(I)},$$

where B is the three dimensional unit ball. Likewise, outside B we get

$$||k_2 * \rho||_{L^{\infty}(R^3 \setminus B)} \le C ||k_2||_{L^{\infty}(R^3 \setminus B)} ||\rho||_{L^1(I \setminus B)} \le C ||\rho||_{L^1(I \setminus B)} \le C ||\rho||_{L^1(I)}.$$

By Lemma 1, we can get

$$\|\Theta_{\hbar}[V]w\|_{L^{2}} \le C\|V\|_{L^{\infty}}\|w\|_{L^{2}} \le C\|w\|_{X}^{2}$$

On the other hand, by [3],

$$v_i^2 \Theta_{\hbar} \left[V \right] w = \frac{1}{4} \Theta_{\hbar} \left[\partial_i^2 V \right] w + \Theta_{\hbar} \left[V \right] v_i^2 w + \Omega_{\hbar} \left[\partial_i V \right] u$$

with the pseudo-differential operator

$$\Omega_{\hbar}[\varphi]w = \frac{i}{(2\pi)^{n}\hbar} \int_{R^{n}} \int_{R^{n}} \kappa[\varphi]w(t,x,v')e^{i(v-v')\eta}dv'd\eta,$$

$$\kappa[\varphi] = \varphi\left(t,x + \frac{\hbar\eta}{2}\right) + \varphi\left(t,x - \frac{\hbar\eta}{2}\right).$$

IMECS 2015

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol II, IMECS 2015, March 18 - 20, 2015, Hong Kong

In the sequel we use the abreviation $\partial_i = \partial_{x_i}$, and get

with

$$\|v_i^2 \Theta_{\hbar} [V] w\|_{L^2} \le \frac{1}{4} \|\Theta_{\hbar} [\partial_i^2 V] w\|_{L^2} + \|\Omega_{\hbar} [\partial_i V] w\|_{L^2} + \|\Theta_{\hbar} [V] v_i^2 w\|_{L^2}.$$

The first two terms can be estimated as follows:

$$\begin{split} \|\Theta_{\hbar} \left[\partial_{i}^{2}V\right]w\|_{L^{2}} &\leq C\|\delta(\partial_{i}^{2}V)\mathcal{F}_{v\to\eta}w\|_{L^{2}} \leq \\ C\|\partial_{i}^{2}V\|_{L^{2}(R^{3})}\|\mathcal{F}_{v\to\eta}w\|_{L^{2}(I;L^{\infty}(R^{3}_{\eta}))} \leq \\ C\||x|^{-2-\alpha}*_{x}\rho\|_{L^{2}(R^{3})}\|(1+|v|^{2})w\|_{L^{2}} \leq \\ C(\|\frac{1}{|x|^{2+\alpha}}*_{x}\rho\|_{L^{2}(B)}+\|\frac{1}{|x|^{2+\alpha}}*_{x}\rho\|_{L^{2}(R^{3}\setminus B)})\|w\|_{X} \leq \\ C(\|\rho\|_{L^{2}(I)}+\|\rho\|_{L^{1}(I)})\|w\|_{X} \leq C\|w\|_{2}^{2} \end{split}$$

by applying Hölder's inequality, $\frac{3}{2+\alpha} < 2$ with $0 < \alpha \le 1$ and the Sobolev imbedding $\mathcal{F}_{v \to \eta} w \in W^{2,2}(R^3_{\eta}) \hookrightarrow L^{\infty}(R^3_{\eta})$.

$$\begin{split} \|\Omega_{\hbar} \left[\partial_{i}V\right]w\|_{L^{2}} &\leq C\|\delta(\partial_{i}V)\partial_{\eta_{i}}\mathcal{F}_{v\to\eta}w\|_{L^{2}} \leq \\ &C\|\partial_{i}V\|_{L^{4}(R^{3})}\|\partial_{\eta_{i}}\mathcal{F}_{v\to\eta}w\|_{L^{2}(I;L^{4}(R^{3}_{\eta}))} \leq \\ &C\||x|^{-1-\alpha}*_{x}\rho\|_{L^{4}(R^{3})}\|(1+|v_{i}|^{2})w\|_{L^{2}} \leq \\ &C(\|\frac{1}{|x|^{1+\alpha}}*_{x}\rho\|_{L^{4}(B)} + \|\frac{1}{|x|^{1+\alpha}}*_{x}\rho\|_{L^{4}(R^{3}\setminus B)})\|w\|_{X} \leq \\ &C\|\frac{1}{|x|^{1+\alpha}}\|_{L^{\frac{7}{5}}(B)}\|\rho\|_{L^{\frac{28}{15}}(B)}\|w\|_{X} + \\ &C\|\frac{1}{|x|^{1+\alpha}}\|_{L^{4}(R^{3}\setminus B)}\|\rho\|_{L^{1}(I\setminus B)}\|w\|_{X} \leq \\ &C(\|\rho\|_{L^{\frac{28}{15}}(B)} + \|\rho\|_{L^{1}(I\setminus B)})\|w\|_{X} \leq C\|w\|_{X}^{2} \end{split}$$

by the Sobolev imbedding $\partial_{\eta_i} \mathcal{F}_{v \to \eta} w \in W^{1,2}(R^3_{\eta}) \hookrightarrow L^4(R^3_{\eta}), \frac{3}{1+\alpha} > \frac{7}{5}$ and $\frac{3}{1+\alpha} < 4$ with $0 < \alpha \leq 1$, and Lemma 1. We also get

$$\begin{split} \|\Theta_{\hbar} [V] v_{i}^{2} w\|_{L^{2}} &\leq C \|V\partial_{\eta_{i}}^{2} \mathcal{F}_{v \to \eta} w\|_{L^{2}} \leq \\ C \|V\|_{L^{\infty}(R^{3})} \|\partial_{\eta_{i}}^{2} \mathcal{F}_{v \to \eta} w\|_{L^{2}} \leq \\ C (\|\frac{1}{|x|^{\alpha}} *_{x} \rho\|_{L^{\infty}(B)} + \|\frac{1}{|x|^{\alpha}} *_{x} \rho\|_{L^{\infty}(R^{3} \setminus B)}) \|w\|_{X} \leq \\ C (\|\frac{1}{|x|^{\alpha}}\|_{L^{2}(B)} \|\rho\|_{L^{2}(B)} \|w\|_{X} + \\ C \|\frac{1}{|x|^{\alpha}}\|_{L^{\infty}(R^{3} \setminus B)} \|\rho\|_{L^{1}(I \setminus B)} \|w\|_{X} \leq \\ C (\|\rho\|_{L^{2}(B)} + \|\rho\|_{L^{1}(I \setminus B)}) \|w\|_{X} \leq C \|w\|_{X}^{2} \end{split}$$

by applying Hölder's inequality and Lemma 1. This concludes the proof of result.

Lemma 3 Let $0 < \alpha \le 1$, for all $w \in X$, the operator $\Theta_{\hbar}[V] w$ is of class C^{∞} in X, and satisfies

$$\begin{aligned} \|\Theta_{\hbar} [V_1] w_1 - \Theta_{\hbar} [V_2] w_2 \|_X &\leq \\ C(\|w_1\|_X + \|w_2\|_X) \|w_1 - w_2\|_X \end{aligned}$$

Proof For all $w_i \in X, i = 1, 2$, setting $\Pi = \Theta_{\hbar} [V_1] w_1 - \Theta_{\hbar} [V_2] w_2$, $\Pi_1 = \Theta_{\hbar} [V_1] w_1 - \Theta_{\hbar} [V_1] w_2$ and $\Pi_2 = \Theta_{\hbar} [V_1] w_2 - \Theta_{\hbar} [V_2] w_2$, we have

$$\|\Pi\|_X \le \|\Pi_1\|_X + \|\Pi_2\|_X$$

ISBN: 978-988-19253-9-8 ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

$$C \|\delta V[w_{1}]\mathcal{F}_{v \to \eta}(w_{1} - w_{2})\|_{L^{2}} + C\sum_{i=1}^{3} \|\delta\partial_{i}^{2}V[w_{1}])\mathcal{F}_{v \to \eta}(w_{1} - w_{2})\|_{L^{2}} + C\sum_{i=1}^{3} \|\delta(\partial_{i}V[w_{1}])\partial_{\eta_{i}}\mathcal{F}_{v \to \eta}(w_{1} - w_{2})\|_{L^{2}} + C\sum_{i=1}^{3} \|\delta V[w_{1}]\partial_{\eta_{i}}^{2}\mathcal{F}_{v \to \eta}(w_{1} - w_{2})\|_{L^{2}} \leq C \|V[w_{1}]\|_{L^{\infty}}\|w_{1} - w_{2}\|_{L^{2}} + C\sum_{i=1}^{3} \|\partial_{i}^{2}V[w_{1}]\|_{L^{2}}\|\mathcal{F}[w_{1} - w_{2}]\|_{L^{2}(I;L^{\infty}(R_{\eta}^{3}))} + C\sum_{i=1}^{3} \|\partial_{i}V[w_{1}]\|_{L^{4}}\|\partial_{\eta_{i}}\mathcal{F}[w_{1} - w_{2}]\|_{L^{2}(I;L^{4}(R_{\eta}^{3}))} + C\sum_{i=1}^{3} \|\partial_{i}V[w_{1}]\|_{L^{4}}\|\partial_{\eta_{i}}\mathcal{F}[w_{1} - w_{2}]\|_{L^{2}} \leq C \|w_{1}\|_{L^{2}}\|w_{1} - w_{2}\|_{X}; \\ \|\Pi_{2}\|_{X} = \|\Theta_{h}[V_{1} - V_{2}]w_{2}\|_{X} \leq \|\Theta_{h}[V_{1} - V_{2}]w_{2}\|_{L^{2}} + \sum_{i=1}^{3} \|v_{i}^{2}\Theta_{h}[V_{1} - V_{2}]w_{2}\|_{L^{2}} + C\sum_{i=1}^{3} \|\delta\partial_{i}^{2}V[w_{1} - w_{2}])\mathcal{F}_{v \to \eta}w_{2}\|_{L^{2}} + C\sum_{i=1}^{3} \|\delta\partial_{i}^{2}V[w_{1} - w_{2}]\mathcal{F}_{v \to \eta}w_{2}\|_{L^{2}} + C\sum_{i=1}^{3} \|\delta\partial_{i}^{2}V[$$

 $\|\Pi_1\|_X = \|\Theta_\hbar [V_1] (w_1 - w_2)\|_X \le$

 $\|\Theta_{\hbar} [V_1] (w_1 - w_2)\|_{L^2} + \sum_{i=1}^3 \|v_i^2 \Theta_{\hbar} [V_1] (w_1 - w_2)\|_{L^2} \le$

$$C\sum_{i=1}^{3} \|\delta(\partial_{i}V[w_{1}-w_{2}])\partial_{\eta_{i}}\mathcal{F}_{v\to\eta}w_{2}\|_{L^{2}} + C\sum_{i=1}^{3} \|\delta V[w_{1}-w_{2}]\partial_{\eta_{i}}^{2}\mathcal{F}_{v\to\eta}w_{2}\|_{L^{2}} \leq C\|V[w_{1}-w_{2}]\|_{L^{\infty}}\|w_{2}\|_{L^{2}} + C\sum_{i=1}^{3} \|\partial_{i}^{2}V[w_{1}-w_{2}]\|_{L^{2}}\|\mathcal{F}w_{2}\|_{L^{2}(I;L^{\infty}(R^{3}_{\eta}))} + C\sum_{i=1}^{3} \|\partial_{i}V[w_{1}-w_{2}]\|_{L^{4}}\|\partial_{\eta_{i}}\mathcal{F}w_{2}\|_{L^{2}(I;L^{4}(R^{3}_{\eta}))} + C\sum_{i=1}^{3} \|V[w_{1}-w_{2}]\|_{L^{\infty}}\|\partial_{\eta_{i}}^{2}\mathcal{F}_{v\to\eta}w_{2}\|_{L^{2}} \leq C\|w_{2}\|_{X}\|w_{1}-w_{2}\|_{L^{2}},$$

and the assertion is proved.

III. PROOF OF THEOREM 1

In this section, we will prove the main result of the paper. Let we may rewrite the Wigner equation as

$$w_t = Aw + \Theta_{\hbar}[V]w, \ t > 0, \tag{19}$$

$$w(t=0) = w_0,$$
 (20)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol II, IMECS 2015, March 18 - 20, 2015, Hong Kong

where linear operator $A: D(A) \to X$ by

$$Af = -v \cdot \nabla_x w$$

and its domain

$$D(A) = \{ w \in X | v \cdot \nabla_x w \in X, \\ w(0, x_2, x_3) = w(l, x_2, x_3), \\ w(x_1, 0, x_3) = w(x_1, l, x_3), \\ w(x_1, x_2, 0) = w(x_1, x_2, l), l > 1 \}.$$

Proof of Theorem 1 Indeed, the A generates a C_0 group of isometries $\{S(t), t \in R\}$ on X, given by S(t)w(x, v) =w(x - vt, v), see also [2]. Next, we consider $\Theta_{\hbar}[V]w$ as a bounded perturbation of the generator A. Since $\Theta_{\hbar}[V]w$ is locally Lipschitz continuous (see Lemmas 2 and 3 for detail), Theorem 6.1.4 of [16] shows that the problem (19)-(20) coupled with (2) has a unique mild solution for every $w_0 \in X$ on some time interval $[0, t_{\max})$, where t_{\max} denotes the maximal existence time of the mild solution. Moreover, if $t_{\max} < \infty$, then

$$\lim_{t \to t_{\max}} \|w\|_X = \infty.$$

This concludes the proof of result.

REFERENCES

- A. Arnold, "On absorbing boundary conditions for quantum transport equations", *RAIRO*, *Modélisation Math. Anal. Numér*, 853-872, 28(7), 1994.
- [2] A. Arnold, "The relaxation-time Wigner equation", Pitman Research Notes in Mathematics Series, 105-117, 340, 1995.
- [3] A. Arnold, E. Dhamo, C. Manzini, "The Wigner-Poisson-Fokker-Planck system: global-in-time solution and dispersive effects", *Annales de l'Institut Henri Poincaré (C) Non Linear Analysis*, 645-676, 24(4), 2007.
- [4] A. Arnold, I. Gamba, M. P. Gualdani, et al., "The Wigner-Fokker-Planck equation: stationary states and large time behavior", *Math. Mod. Meth. Appl. Sci.*, 1250034-1250065, 22(11), 2012.
- [5] A. Arnold, C. Ringhofer, "An operator splitting method for the Wigner-Poisson problem", *SIAM J. Numer. Anal.*, 1622-1643, 33(4), 1996.
- [6] L. Barletti, "A mathematical introduction to the Wigner formulation of quantum mechanics", B. Unione Mat. Ital., 693-716, 6B(8), 2003.
- [7] R. Carles, L. Mouzaoui, "On the Cauchy problem for Hartree equation in the Wiener algebra", *arXiv preprint arXiv:1205.3615*, 2012.
- [8] P. Degond, P.A. Markowich, "A mathematical analysis of quantum transport in three-dimensional crystals", Ann. Mat. Pura Appl. IV Ser., 171-191, 160, 1991.
- [9] J. Giannoulis, A. Mielke, C. Sparber, "High-frequency averaging in semi-classical Hartree-type equations", *Asymptotic Analysis*, 87-100, 70(1), 2010.
- [10] R. Illner, H. Lange, P. Zweifel, "Global existence, uniqueness, and asymptotic behaviour of solutions of the Wigner-Poisson and Schrödinger systems", *Math. Meth. Appl. Sci.*, 349-376, 17, 1994.
- [11] R. Illner, "Existence, uniqueness and asymptotic behavior of Wigner-Poisson and Vlasov-Poisson systems: a survey", *Transport Theory Stat. Phys.*, 195-207, 26(1/2), 1997.
- [12] L. Mouzaoui, "High-frequency averaging in the semi-classical singular Hartree equation", *Asymptotic Analysis*, 229-245, 84(3), 2013.
 [13] P.A. Markowich, "On the equivalence of the Schröinger and the
- [13] P.A. Markowich, "On the equivalence of the Schröinger and the quantum Liouville equations", *Math. Meth. Appl. Sci.*, 459-469, 11, 1989.
- [14] C. Manzini, "The three dimensional Wigner-Poisson problem with inflow boundary conditions", J. Math. Anal. Appl., 184-196, 313(1), 2006.
- [15] C. Manzini, L. Barletti, "An analysis of the Wigner-Poisson problem with timedependent, inflow boundary conditions", *Nonlin. Anal.*, 77-100, 60(1), 2004.
- [16] A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations", Springer, Berlin, 1983.
 [17] C. Sulem, P. L. Sulem, "The nonlinear Schrödinger equation", Springer
- [17] C. Sulem, P. L. Sulem, "The nonlinear Schrödinger equation", Springer Series on Applied Math., Sciences 139, Springer, 1999.

- [18] H. Steinrück, "The Wigner-Poisson problem in a crystal: existence, uniqueness, semiclassical limit in the one-dimensional case", Z. Angew. Math. Mech., 93-102, 72(2), 1992.
- [19] E. Wigner, "On the quantum correction for the thermodynamic equilibrium", *Phys. Rev.*, 749-759, 40, 1932.