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The Wigner System Coupled with Hartree-type
Nonlinearity

Bin Li, Jieqiong Shen

Abstract—This paper is concerned with the generalized
Wigner system, which models quantum mechanical (charged)
particles-transport under the influence of a Hartree-type non-
linearity. In three dimensions, existence and uniqueness of the
local mild solution are established on weighted-L? space. The
main difficulty in establishing mild solution is to derive a priori
estimates on the Hartree-type nonlinearity. The proof is based
on semigroup theory and splitting the singular kernel ﬁ
with 0 < o < 1. This result generalizes the previous result
by Manzini [14], which dealt with the solution with o = 1.

Index Terms—Wigner system, Hartree-type nonlinearity,
semigroup theory, singular kernel.

I. INTRODUCTION

HE following Hartree (generalized Schrodinger) equa-
tions

2
thp(t,x) = —%Ai{)(t, z)+ V(t,z)(t,z), x € R", (1)

V(t,a) = ke pltiz), 0<a<n ()

A
||
have arisen in quantum mechanics and been studied by
many researchers in the recent years, see [7], [12] and
therein for more details. This model describes the time-
evolution of a complex-valued wave function (¢, x), under
the influence of a Hartree-type nonlinearity (see [9], [17] for
a broader introduction). Above, ﬁ denotes a given real-
valued interaction kernel, and * denotes the convolution.
Where x € R"™ is the position, ¢ is the time, & denotes
the Planck constant and A € R. The macroscopic density
p = p(t,z) is now given by the zeroth order moment in the
kinetic variable v, i.e., by the physical observables from both
the wave function ¢ and the Winger function w, namely,

pltoa) = v = [

The Wigner transform of (¢, x) is

w(t, z,v)dv. 3)

n

w(t,z,v) =

ho— h
(Qi)n /Rn btz = Sy)d(t e+ Gy)expliv-y)dy  (4)

where 1) denotes the complex conjugate of 1. A direct
calculation by applying the Wigner transform (4) to the gen-
eralized Schrodinger equations (1)-(2) shows that w(t, z,v)
satisfies the so-called Wigner equation, see e.g. [13], [19],

w4+ (v Vz)w — Op[V]w = 0. )
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Where the Wigner function w = w(t, z,v) is a probabilistic
quasi-distribution function of particles at time ¢ > 0, located
at € R™ with velocity v € R™. The operator ©4[V]w in
the equation (5) is a pseudo-differential operator, as in [3],
[4], [10], formally defined by

On[V]w(t, z,v) =
g | [ et e, ©

S[V](t, z,m) V<t,:z:+h277> V<t,zh2n>.

It is clear that the equations (5)-(6) coupled with (2) contain
the Wigner-Poisson equation (e.g., n = 3, = 1). Over the
past years, there have been many mathematical studies of
mild or classical solution for the Wigner-Poisson equation,
which models the charge transport in a semiconductor device
under the Poisson potential. For instance, it has been studied
in the whole space R3 x R3 (see [11] and the references
therein), in a bounded spatial domain with periodic [5], or
absorbing [1], or time-dependent inflow [14], [15], boundary
conditions, and on a discrete lattice [8], [18].

The present paper is devoted to investigating the system
(5)-(6) coupled (2) and establishing certain mathematical
results on the existence and uniqueness of the mild solution,
with the following initial boundary conditions

w<t,0,$2,$3,’0) = 'U)(t,U,Z,fL'Q,.’Eg), (7)
'LU(t,,Il,O,,Z‘g,’U) = 'lU(t,l'l,l,Ig,’U), (8)
w(t7xlax270av) = ’ll)(t,l'l,]}Q,l,’U), (9)

w(t =0,z,v) = wo(z,v), I >1, (10)

which is very difficult: first, the function V' (¢,z) does not
satisfy A,V = p as in Wigner-Poisson equation (see [15]
and so on); and the second is to derive priori estimates on
the nonlinear operators O [V ]w. Therefore, the mathematical
analysis must be done on the some new methods such as
splitting the singular kernel ﬁ with 0 < o < 1.

On the other hand, the natural choice of the functional set-
ting for the study of the Wigner-Poisson or Wigner-Poisson-
Fokker-Planck problem is the Hilbert space L*(R? x R?),
see [6], [13]. However, it can be immediately observed that
the density p(t,z), given by (3), is not well-defined for
any w(t,z,v) belonging to this space. In other words, the
nonlinear term O [V]w is not defined pointwise in ¢ on the
state space of the Wigner function. Therefore, in Section II
we introduce a Hilbert space X = L2([0,1]> x R3,(1 +
|v]?)2dxdv) (see also [3], [5], [15]), such that, the existence
of the density p(t, z) is granted for any w € X.

With the above notations, the main result of this paper can
be described as the following theorem:

Theorem 1 Let 0 < o < 1, for every wy € X, the
equations (5)-(6) coupled with the equation (2), with initial
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boundary conditions (7)-(10), has a unique mild solution w €
C([Oa tmax)a X)

Remark 1 It is straightforward to extend our results to
the high dimensional case (n > 3) with 0 < a <n — 2.

Our paper is structured as follows: In section II we
introduce a weighted space for the Wigner function w that
allows to define the nonlinear term O [V]w. In section III,
we obtain a local-in-time mild solution on the weighted
L? space via the the Lumer-Phillips theorem [16] in three
dimensions.

II. THE FUNCTIONAL SETTING AND PRELIMINARIES

In this section we shall discuss the functional analytic
preliminaries for studying the nonlinear Wigner equations
(5)-(6) coupled (2). Or more accurately, we shall introduce
an appropriate state space for the Wigner function w which
allows to control the nonlinear term ©p[V]w, which will
be considered as a perturbation of the generator A defined
in (19). This is one of the key ingredients for proving the
Theorem 1.

We would show that the pseudo-differential operator
On[V]w is (local) bounded in the weighted L? space, in
symbols:

X = L*(I, x R, (1 + [v]*)?dzdv), I, = [0,1)2, (11)

endowed with the following scalar product
(f.9)x = // f(z,v) - g(z,v)(1 +v?)dvdz, (12)
1JR3

for f,g € X. In our calculations, we shall use the following
equivalent norm:

3
1115 = 11F 1172 + D llof £z, (13)
i=1
The following proposition motivates our choice of the space
X for the analysis.
Lemma 1 Let w € X and p(t, ) defined in (3), for all

x € I, then p belongs to L?(I) and satisfies

pllz2(ry < Cllwllx, (14)
p also belongs to L'(I) and satisfies
ol ) < Cllwl|x. (15)

Moreover, for every p € [1,2], p belongs to LP(I) and
satisfies

llollLe(ry < Cllwl|x. (16)

Proof The first assertion follows directly by using
Cauchy-Schwartz inequality in v-integral, see also [14], [15].
On the other hand, by Holder inequality, we have

||P||L1(1)S// w(t, z,v)dv
I R3

] |[

/ w(t, z,v)dv
B

Using the interpolation inequality, we get

dr <

de| < C|w|x.

el zitry < Cllwllx.

lplleey < ||P||L2
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Remark 2 The choice of the |v|? weight was already
seen to be convenient to control the L2-norm of the density
on the whole space Ri [3] and therein, and a bounded or
periodic spatial domain [14], [15]. However, the choice of the
space X as the state space for our analysis is not optimal, see
[15], in the sense that we could obtain an estimate analogous
to the (14) even under decreased regularity assumption on the
function F,_.,,w. Precisely, we could assume w € L?(R” x
R™, (14 |v]?)*)dzdv) with k > 2n.

Next, we consider the Lipschitz properties of the pseudo-
differential operator ©[V]w defined by (6). But by the
definition of it, the w have to be O-extended to R3. We will
show indeed that this operator is well defined from the space
X to itself. Moreover, we can state the following results:

Lemma 2 Let0 < «a <1, for all w € X, the operator
Oy, [V]w maps X into itself and there exists C' > 0 such
that

10 [V]w||x < C||wll%- (17)

Proof Indeed, the operator ©[V]w can be rewritten in
a more compact form as,

w)(x,n) =

where the symbol x,, is the partial convolution with respect
to the variable v, F,_., is the Fourier transformation with

respect to the variable v and fniv its inverse:

Foon (O [V] 75V(a: nF L (18)

71—>'U

w(z,n),

fv—w}[f(x? )}(77) = f(xav)eivhndvv

R”L
— 1 —iv-n
fﬂ—lm[g(xa )](U) = W /n g(z,v)e dTl

for suitable functions f and g. Then one has

18 [V]wllz2 < Cl16V (z,m)F, 2

n—uv
CIV L= F, 2 pwllze < ClIV ]|z |lw]l 2
Let k(1) = =,

e ko= E()lj<1 and ko = E(-)||.|>1, so,
k(-) = k1 + k2 with k; € LP(R3) for all p € [1,2) and
ko € LI(R?) for all g € (2,+00]. On the other hand, since
V= ﬁ * p, using Holder’s inequality we have

wHLz <

[k1* pll oo 5y < Cllkllz2m) llpll 2By <
Cllpllc2s) < Cllpllzay,

where B is the three dimensional unit ball. Likewise, outside
B we get

[ p||L°°(R3\B) < Cllk2llze=ro\mylloll L1 (nB) <
Clipllzr sy < CllpllL -
By Lemma 1, we can get
1©r [VIwlLz < CIVI|ze [wlz2 < Cllwl-
On the other hand, by [3],
1
020y [V]w = i@h [02V]w+ Oy [V]viw + Q [0;V]w

with the pseudo-differential operator

@ e [
m[g@}:@(t,x—Ff;)—Fw(t,x—f;ﬁ).

Qnlplw w(t,z,v")e" V) d d,
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In the sequel we use the abreviation 0; = 0,,,, and get with
[0 [V]w]| L2 < [ x = 1©s [Vi] (w1 — wa)|x <
1 3
1en [0V]wllez + 119 (V] wllze + 106 [VIviwlize: |05 [Vi] (wy —wa)llze + Y 0704 [Vi] (w1 — wa) 12 <
i1
The first two terms can be estimated as follows: C|loV w1 Fy—n(wi — wa)||r2 +
3
105 [02V] w2 < ClIS(O2V)Fyy]| 2 < C Y 1607V ws]) Foyon(wr — ws)|| 2 +
ClOV L2 rey | Fomnwll L2 rinoe (r2)) < ;7
Ol %z pllzacas) | (1 + [o*)wl|z2 < C Y 1180V [wi]) Dy, Foon(wr — w2) | 12 +
1 1 i=1
C(HW 2 pllz2(B) + ”W 2 pllL2(ra\B)) lwlx < 3
C SV w1102 Fyosp(wy — w <
Cllpllzs + ol wlx < Cllwl 2 IOV Inl0 Fomylior = w2l

ClIV[ws]||Le|wr — wzl[2 +

by applying Holder’s inequality, 57~ < 2 with 0 < a < 5
. ) 2,2/ p3
Loy Seveley imoedding Fum € W) = O3 108V ol | Fln = wall s 1wy +
3). i=1
3
19 [0:V] w2 < Cll6(8:V) 0, Fosqw 12 < CZ [10:V (w1l 4|10y, Flwi — wo]|lL2(r;z4(r2)) +
ClOV N La(re)[10n, Fomywll L2(r;ns(rz)) < i=1 ,
—l-a 2
Clll| *g f|\L4(R3)H(1+|Ui| Jw|[rz < C Y Vw107, Flwr — wo]|| g2 <
Ol —2 &, L < i=1
(” |x‘1+(x * p||L4(B) + || |$|1+o¢ * pHL4(R3\B))Hw”X — CleHL2Hw1 _ w2HX7
1 — _
Ol oy Il 8 g vl + Ml = 116n V2 = V] wellx <
1 1©r [Vi — Vo] wal| L2 +
<

Clli=zllzae\p ol sy llwlx < 2
|z [+ ] > [vF0n Vi — Vo] wal|z2 <

Cllell Lz ) F ol nm)liwlx < Cllwllx i=1
C”(SV[’lUl - w2}ﬂ)—>nw2||L2 +

by the Sobolev imbedding 9, F,—,w € W'*(R}) — 3 )
LYR), 2 > T and 2= < 4 with 0 < a < 1, and C;IICS@V[wl — wa]) Fopwa L2 +

Lemma 1. We also get

3
C > I6(0;V [wy — wa])Oy, Foywall 2 +

105 [V]viwl| > < C|IVO;, Fyyw| L2 <

ClV [z () 107, Fomsyol| 2

IN A

3
C> 0V wr — w07, Fopwall 2 <

IA

1 1
C(”W %z pllLe(B) + ”W %2 pllLe (ro\B)) W]l x

i=1
1 Cl[VIwy — wo]||zee [wel L2 +
C”WHLZ(B)||p||L2(B)||w||X + S
1 CZ 107V [wy — w2]||L2||7:w2||L2(I;Loo(Rg)) +
C”WHL‘”(RS\B)HPHLl(I\B)Hw“X < S
Cllpl2s) + ol sy lwlx < Cllwlk C> N0V [wy = ws)|| £+ 10y Frwa|| L2112 (r3)) +
i=1
by applying Holder’s inequality and Lemma 1. This con- 3 )
cludes the proof of result. Cz [VIwr — wa]l| Lo |07, Fomnwz 2 <
Lemma 3 Let0 < «a <1, for all w € X, the operator i=1
O [V]w is of class C* in X, and satisfies Cllwalx[lwy — wallzz,

100 [Vi] w1 — O [Va] ws|x < and the assertion is proved.
hIVi]wr — O Vo] walx =

C(||lw + [|w wy, — w .
(” 1||X ” 2||X)|| ! 2||X III. PROOF OF THEOREM 1

Proof For all w; € X,72 = 1,2, setting II = In this section, we will prove the main result of the paper.
O [Vi]wy — Oy, [Va] we, Iy = O [Vi]wy — O, [Vi]we and  Let we may rewrite the Wigner equation as
Iy = Oy [Vi] we — Oy, [Va] we, we have

wy = Aw + O [V]w, t >0, (19)
1T x < [Tl x + T2l x w(t = 0) = w, (20)
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where linear operator A : D(A) — X by [18] H. Steinriick, “The Wigner-Poisson problem in a crystal: existence,
uniqueness, semiclassical limit in the one-dimensional case”, Z.
Af = —v-Vyw Angew. Math. Mech., 93-102, 72(2), 1992.
[19] E. Wigner, ”On the quantum correction for the thermodynamic equi-
and its domain librium”, Phys. Rev., 749-759, 40, 1932.

D(A)={we X|v-V,w e X,
w(oa :U27x3) = w<l,2727$3),
w(xlv Oa $3) = 'LU(Lﬂl, l7 x3);

w(zy, x2,0) = w(xy, x2,1),1 > 1}.

Proof of Theorem 1 Indeed, the A generates a Cy group
of isometries {S(¢),t € R} on X, given by S(t)w(x,v) =
w(z — vt,v), see also [2]. Next, we consider ©[V]w as
a bounded perturbation of the generator A. Since O[V]w
is locally Lipschitz continuous (see Lemmas 2 and 3 for
detail), Theorem 6.1.4 of [16] shows that the problem (19)-
(20) coupled with (2) has a unique mild solution for every
wo € X on some time interval [0, tyayx ), Where ¢,,x denotes
the maximal existence time of the mild solution. Moreover,
if tmax < 00, then

imJullx = oc.

This concludes the proof of result.

REFERENCES

[1] A. Arnold, "On absorbing boundary conditions for quantum transport
equations”, RAIRO, Modélisation Math. Anal. Numér, 853-872, 28(7),
1994.

[2] A. Arnold, "The relaxation-time Wigner equation”, Pitman Research
Notes in Mathematics Series, 105-117, 340, 1995.

[31 A. Armnold, E. Dhamo, C. Manzini, "The Wigner-Poisson-Fokker-
Planck system: global-in-time solution and dispersive effects”, Annales
de U'Institut Henri Poincaré (C) Non Linear Analysis, 645-676, 24(4),
2007.

[4] A. Arnold, I. Gamba, M. P. Gualdani, et al., "The Wigner-Fokker-
Planck equation: stationary states and large time behavior”, Math.
Mod. Meth. Appl. Sci., 1250034-1250065, 22(11), 2012.

[5] A. Amold, C. Ringhofer, "An operator splitting method for the
Wigner-Poisson problem”, SIAM J. Numer. Anal., 1622-1643, 33(4),
1996.

[6] L. Barletti, A mathematical introduction to the Wigner formulation
of quantum mechanics”, B. Unione Mat. Ital., 693-716, 6B(8), 2003.

[7]1 R. Carles, L. Mouzaoui, "On the Cauchy problem for Hartree equation
in the Wiener algebra”, arXiv preprint arXiv:1205.3615, 2012.

[8] P. Degond, P.A. Markowich, ”A mathematical analysis of quantum
transport in three-dimensional crystals”, Ann. Mat. Pura Appl. 1V Ser.,
171-191, 160, 1991.

[9] J. Giannoulis, A. Mielke, C. Sparber, "High-frequency averaging in
semi-classical Hartree-type equations”, Asymptotic Analysis, 87-100,
70(1), 2010.

[10] R. Illner, H. Lange, P. Zweifel, “Global existence, uniqueness,
and asymptotic behaviour of solutions of the Wigner-Poisson and
Schrodinger systems”, Math. Meth. Appl. Sci., 349-376, 17, 1994.

[11] R. Illner, “Existence, uniqueness and asymptotic behavior of Wigner-
Poisson and Vlasov-Poisson systems: a survey”, Transport Theory Stat.
Phys., 195-207, 26(1/2), 1997.

[12] L. Mouzaoui, "High-frequency averaging in the semi-classical singular
Hartree equation”, Asymptotic Analysis, 229-245, 84(3), 2013.

[13] P.A. Markowich, ”On the equivalence of the Schréinger and the
quantum Liouville equations”, Math. Meth. Appl. Sci., 459-469, 11,
1989.

[14] C. Manzini, "The three dimensional Wigner-Poisson problem with
inflow boundary conditions”, J. Math. Anal. Appl., 184-196, 313(1),
2006.

[15] C. Manzini, L. Barletti, ”An analysis of the Wigner-Poisson problem
with timedependent, inflow boundary conditions”, Nonlin. Anal., 77-
100, 60(1), 2004.

[16] A. Pazy, ”Semigroups of Linear Operators and Applications to Partial
Differential Equations”, Springer, Berlin, 1983.

[17] C. Sulem, P. L. Sulem, The nonlinear Schrédinger equation”, Springer
Series on Applied Math., Sciences 139, Springer, 1999.

ISBN: 978-988-19253-9-8 IMECS 2015
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)





