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Abstract—This paper is concerned with the generalized
Wigner system, which models quantum mechanical (charged)
particles-transport under the influence of a Hartree-type non-
linearity. In three dimensions, existence and uniqueness of the
local mild solution are established on weighted-L2 space. The
main difficulty in establishing mild solution is to derive a priori
estimates on the Hartree-type nonlinearity. The proof is based
on semigroup theory and splitting the singular kernel 1

|x|α
with 0 < α ≤ 1. This result generalizes the previous result
by Manzini [14], which dealt with the solution with α = 1.

Index Terms—Wigner system, Hartree-type nonlinearity,
semigroup theory, singular kernel.

I. INTRODUCTION

THE following Hartree (generalized Schrödinger) equa-
tions

ih̄ψt(t, x) = − h̄2

2
∆ψ(t, x) + V (t, x)ψ(t, x), x ∈ Rn, (1)

V (t, x) =
λ

|x|α ∗x ρ(t, x), 0 < α < n (2)

have arisen in quantum mechanics and been studied by
many researchers in the recent years, see [7], [12] and
therein for more details. This model describes the time-
evolution of a complex-valued wave function ψ(t, x), under
the influence of a Hartree-type nonlinearity (see [9], [17] for
a broader introduction). Above, λ

|x|α denotes a given real-
valued interaction kernel, and ∗ denotes the convolution.
Where x ∈ Rn is the position, t is the time, h̄ denotes
the Planck constant and λ ∈ R. The macroscopic density
ρ = ρ(t, x) is now given by the zeroth order moment in the
kinetic variable v, i.e., by the physical observables from both
the wave function ψ and the Winger function w, namely,

ρ(t, x) = |ψ|2 =
∫

Rn

w(t, x, v)dv. (3)

The Wigner transform of ψ(t, x) is

w(t, x, v) =
1

(2π)n

∫

Rn

ψ(t, x− h̄

2
y)ψ(t, x +

h̄

2
y) exp(iv · y)dy (4)

where ψ denotes the complex conjugate of ψ. A direct
calculation by applying the Wigner transform (4) to the gen-
eralized Schrödinger equations (1)-(2) shows that w(t, x, v)
satisfies the so-called Wigner equation, see e.g. [13], [19],

wt + (v · ∇x)w −Θh̄[V ]w = 0. (5)
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Where the Wigner function w = w(t, x, v) is a probabilistic
quasi-distribution function of particles at time t ≥ 0, located
at x ∈ Rn with velocity v ∈ Rn. The operator Θh̄[V ]w in
the equation (5) is a pseudo-differential operator, as in [3],
[4], [10], formally defined by

Θh̄[V ]w(t, x, v) =
i

(2π)nh̄

∫

Rn

∫

Rn

δ[V ](t, x, η)w(t, x, v′)ei(v−v′)ηdv′dη, (6)

δ[V ](t, x, η) = V

(
t, x +

h̄η

2

)
− V

(
t, x− h̄η

2

)
.

It is clear that the equations (5)-(6) coupled with (2) contain
the Wigner-Poisson equation (e.g., n = 3, α = 1). Over the
past years, there have been many mathematical studies of
mild or classical solution for the Wigner-Poisson equation,
which models the charge transport in a semiconductor device
under the Poisson potential. For instance, it has been studied
in the whole space R3

x × R3
v (see [11] and the references

therein), in a bounded spatial domain with periodic [5], or
absorbing [1], or time-dependent inflow [14], [15], boundary
conditions, and on a discrete lattice [8], [18].

The present paper is devoted to investigating the system
(5)-(6) coupled (2) and establishing certain mathematical
results on the existence and uniqueness of the mild solution,
with the following initial boundary conditions

w(t, 0, x2, x3, v) = w(t, v, l, x2, x3), (7)
w(t, x1, 0, x3, v) = w(t, x1, l, x3, v), (8)
w(t, x1, x2, 0, v) = w(t, x1, x2, l, v), (9)

w(t = 0, x, v) = w0(x, v), l > 1, (10)

which is very difficult: first, the function V (t, x) does not
satisfy ∆xV = ρ as in Wigner-Poisson equation (see [15]
and so on); and the second is to derive priori estimates on
the nonlinear operators Θh̄[V ]w. Therefore, the mathematical
analysis must be done on the some new methods such as
splitting the singular kernel 1

|x|α with 0 < α ≤ 1.
On the other hand, the natural choice of the functional set-

ting for the study of the Wigner-Poisson or Wigner-Poisson-
Fokker-Planck problem is the Hilbert space L2(Rn

x × Rn
v ),

see [6], [13]. However, it can be immediately observed that
the density ρ(t, x), given by (3), is not well-defined for
any w(t, x, v) belonging to this space. In other words, the
nonlinear term Θh̄[V ]w is not defined pointwise in t on the
state space of the Wigner function. Therefore, in Section II
we introduce a Hilbert space X = L2([0, l]3 × R3

v, (1 +
|v|2)2dxdv) (see also [3], [5], [15]), such that, the existence
of the density ρ(t, x) is granted for any w ∈ X .

With the above notations, the main result of this paper can
be described as the following theorem:

Theorem 1 Let 0 < α ≤ 1, for every w0 ∈ X , the
equations (5)-(6) coupled with the equation (2), with initial
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boundary conditions (7)-(10), has a unique mild solution w ∈
C([0, tmax), X).

Remark 1 It is straightforward to extend our results to
the high dimensional case (n > 3) with 0 < α ≤ n− 2.

Our paper is structured as follows: In section II we
introduce a weighted space for the Wigner function w that
allows to define the nonlinear term Θh̄[V ]w. In section III,
we obtain a local-in-time mild solution on the weighted
L2 space via the the Lumer-Phillips theorem [16] in three
dimensions.

II. THE FUNCTIONAL SETTING AND PRELIMINARIES

In this section we shall discuss the functional analytic
preliminaries for studying the nonlinear Wigner equations
(5)-(6) coupled (2). Or more accurately, we shall introduce
an appropriate state space for the Wigner function w which
allows to control the nonlinear term Θh̄[V ]w, which will
be considered as a perturbation of the generator A defined
in (19). This is one of the key ingredients for proving the
Theorem 1.

We would show that the pseudo-differential operator
Θh̄[V ]w is (local) bounded in the weighted L2 space, in
symbols:

X := L2(Ix ×R3
v, (1 + |v|2)2dxdv), Ix = [0, l]3x, (11)

endowed with the following scalar product

〈f, g〉X :=
∫

I

∫

R3
v

f(x, v) · g(x, v)(1 + v2)2dvdx, (12)

for f, g ∈ X . In our calculations, we shall use the following
equivalent norm:

||f ||2X := ||f ||2L2 +
3∑

i=1

||v2
i f ||2L2 , (13)

The following proposition motivates our choice of the space
X for the analysis.

Lemma 1 Let w ∈ X and ρ(t, x) defined in (3), for all
x ∈ I , then ρ belongs to L2(I) and satisfies

||ρ||L2(I) ≤ C||w||X , (14)

ρ also belongs to L1(I) and satisfies

||ρ||L1(I) ≤ C||w||X . (15)

Moreover, for every p ∈ [1, 2], ρ belongs to Lp(I) and
satisfies

||ρ||Lp(I) ≤ C||w||X . (16)

Proof The first assertion follows directly by using
Cauchy-Schwartz inequality in v-integral, see also [14], [15].
On the other hand, by Hölder inequality, we have

‖ρ‖L1(I) ≤
∫

I

∣∣∣∣∣
∫

R3
v

w(t, x, v)dv

∣∣∣∣∣ dx ≤

[∫

I

12dx

] 1
2




∫ 1

0

∣∣∣∣∣
∫

R3
v

w(t, x, v)dv

∣∣∣∣∣

2

dx




1
2

≤ C‖w‖X .

Using the interpolation inequality, we get

‖ρ‖Lp(I) ≤ ‖ρ‖θ
L2(I)‖ρ‖1−θ

L1(I) ≤ C‖w‖X .

Remark 2 The choice of the |v|2 weight was already
seen to be convenient to control the L2-norm of the density
on the whole space R3

x [3] and therein, and a bounded or
periodic spatial domain [14], [15]. However, the choice of the
space X as the state space for our analysis is not optimal, see
[15], in the sense that we could obtain an estimate analogous
to the (14) even under decreased regularity assumption on the
function Fv→ηw. Precisely, we could assume w ∈ L2(Rn

x ×
Rn

v , (1 + |v|2)k)dxdv) with k > 2n.
Next, we consider the Lipschitz properties of the pseudo-

differential operator Θh̄[V ]w defined by (6). But by the
definition of it, the w have to be 0-extended to R3

x. We will
show indeed that this operator is well defined from the space
X to itself. Moreover, we can state the following results:

Lemma 2 Let 0 < α ≤ 1, for all w ∈ X , the operator
Θh̄ [V ]w maps X into itself and there exists C > 0 such
that

||Θh̄ [V ]w||X ≤ C||w||2X . (17)

Proof Indeed, the operator Θh̄[V ]w can be rewritten in
a more compact form as,

Fv→η(Θh̄ [V ]w)(x, η) =
i

h̄
δV (x, η)F−1

η→vw(x, η), (18)

where the symbol ∗v is the partial convolution with respect
to the variable v, Fv→η is the Fourier transformation with
respect to the variable v and F−1

η→v its inverse:

Fv→η[f(x, ·)](η) =
∫

Rn

f(x, v)eiv·ηdv,

F−1
η→v[g(x, ·)](v) =

1
(2π)n

∫

Rn

g(x, v)e−iv·ηdη

for suitable functions f and g. Then one has

‖Θh̄ [V ]w‖L2 ≤ C‖δV (x, η)F−1
η→vw‖L2 ≤

C‖V ‖L∞‖F−1
η→vw‖L2 ≤ C‖V ‖L∞‖w‖L2 .

Let k(·) = 1
|·|α , k1 = k(·)||·|≤1 and k2 = k(·)||·|>1, so,

k(·) = k1 + k2 with k1 ∈ Lp(R3) for all p ∈ [1, 3
α ) and

k2 ∈ Lq(R3) for all q ∈ ( 3
α ,+∞]. On the other hand, since

V = 1
|·|α ∗ ρ, using Hölder’s inequality we have

‖k1 ∗ ρ‖L∞(B) ≤ C‖k1‖L2(B)‖ρ‖L2(B) ≤
C‖ρ‖L2(B) ≤ C‖ρ‖L2(I),

where B is the three dimensional unit ball. Likewise, outside
B we get

‖k2 ∗ ρ‖L∞(R3\B) ≤ C‖k2‖L∞(R3\B)‖ρ‖L1(I\B) ≤
C‖ρ‖L1(I\B) ≤ C‖ρ‖L1(I).

By Lemma 1, we can get

‖Θh̄ [V ]w‖L2 ≤ C‖V ‖L∞‖w‖L2 ≤ C‖w‖2X .

On the other hand, by [3],

v2
i Θh̄ [V ]w =

1
4
Θh̄

[
∂2

i V
]
w + Θh̄ [V ] v2

i w + Ωh̄ [∂iV ]w

with the pseudo-differential operator

Ωh̄[ϕ]w =
i

(2π)nh̄

∫

Rn

∫

Rn

κ[ϕ]w(t, x, v′)ei(v−v′)ηdv′dη,

κ[ϕ] = ϕ

(
t, x +

h̄η

2

)
+ ϕ

(
t, x− h̄η

2

)
.
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In the sequel we use the abreviation ∂i = ∂xi
, and get

‖v2
i Θh̄ [V ]w‖L2 ≤

1
4
‖Θh̄

[
∂2

i V
]
w‖L2 + ‖Ωh̄ [∂iV ]w‖L2 + ‖Θh̄ [V ] v2

i w‖L2 .

The first two terms can be estimated as follows:

‖Θh̄

[
∂2

i V
]
w‖L2 ≤ C‖δ(∂2

i V )Fv→ηw‖L2 ≤
C‖∂2

i V ‖L2(R3)‖Fv→ηw‖L2(I;L∞(R3
η)) ≤

C‖|x|−2−α ∗x ρ‖L2(R3)‖(1 + |v|2)w‖L2 ≤
C(‖ 1

|x|2+α
∗x ρ‖L2(B) + ‖ 1

|x|2+α
∗x ρ‖L2(R3\B))‖w‖X ≤

C(‖ρ‖L2(I) + ‖ρ‖L1(I))‖w‖X ≤ C‖w‖2X

by applying Hölder’s inequality, 3
2+α < 2 with 0 < α ≤

1 and the Sobolev imbedding Fv→ηw ∈ W 2,2(R3
η) ↪→

L∞(R3
η).

‖Ωh̄ [∂iV ]w‖L2 ≤ C‖δ(∂iV )∂ηi
Fv→ηw‖L2 ≤

C‖∂iV ‖L4(R3)‖∂ηi
Fv→ηw‖L2(I;L4(R3

η)) ≤
C‖|x|−1−α ∗x ρ‖L4(R3)‖(1 + |vi|2)w‖L2 ≤

C(‖ 1
|x|1+α

∗x ρ‖L4(B) + ‖ 1
|x|1+α

∗x ρ‖L4(R3\B))‖w‖X ≤

C‖ 1
|x|1+α

‖
L

7
5 (B)

‖ρ‖
L

28
15 (B)

‖w‖X +

C‖ 1
|x|1+α

‖L4(R3\B)‖ρ‖L1(I\B)‖w‖X ≤
C(‖ρ‖

L
28
15 (B)

+ ‖ρ‖L1(I\B))‖w‖X ≤ C‖w‖2X

by the Sobolev imbedding ∂ηi
Fv→ηw ∈ W 1,2(R3

η) ↪→
L4(R3

η), 3
1+α > 7

5 and 3
1+α < 4 with 0 < α ≤ 1, and

Lemma 1. We also get

‖Θh̄ [V ] v2
i w‖L2 ≤ C‖V ∂2

ηi
Fv→ηw‖L2 ≤

C‖V ‖L∞(R3)‖∂2
ηi
Fv→ηw‖L2 ≤

C(‖ 1
|x|α ∗x ρ‖L∞(B) + ‖ 1

|x|α ∗x ρ‖L∞(R3\B))‖w‖X ≤

C‖ 1
|x|α ‖L2(B)‖ρ‖L2(B)‖w‖X +

C‖ 1
|x|α ‖L∞(R3\B)‖ρ‖L1(I\B)‖w‖X ≤

C(‖ρ‖L2(B) + ‖ρ‖L1(I\B))‖w‖X ≤ C‖w‖2X

by applying Hölder’s inequality and Lemma 1. This con-
cludes the proof of result.

Lemma 3 Let 0 < α ≤ 1, for all w ∈ X , the operator
Θh̄ [V ]w is of class C∞ in X , and satisfies

‖Θh̄ [V1]w1 −Θh̄ [V2]w2‖X ≤
C(‖w1‖X + ‖w2‖X)‖w1 − w2‖X .

Proof For all wi ∈ X, i = 1, 2, setting Π =
Θh̄ [V1]w1−Θh̄ [V2]w2, Π1 = Θh̄ [V1]w1−Θh̄ [V1]w2 and
Π2 = Θh̄ [V1]w2 −Θh̄ [V2]w2, we have

‖Π‖X ≤ ‖Π1‖X + ‖Π2‖X

with

‖Π1‖X = ‖Θh̄ [V1] (w1 − w2)‖X ≤

‖Θh̄ [V1] (w1 − w2)‖L2 +
3∑

i=1

‖v2
i Θh̄ [V1] (w1 − w2)‖L2 ≤

C‖δV [w1]Fv→η(w1 − w2)‖L2 +

C
3∑

i=1

‖δ∂2
i V [w1])Fv→η(w1 − w2)‖L2 +

C
3∑

i=1

‖δ(∂iV [w1])∂ηi
Fv→η(w1 − w2)‖L2 +

C
3∑

i=1

‖δV [w1]∂2
ηi
Fv→η(w1 − w2)‖L2 ≤

C‖V [w1]‖L∞‖w1 − w2‖L2 +

C
3∑

i=1

‖∂2
i V [w1]‖L2‖F [w1 − w2]‖L2(I;L∞(R3

η)) +

C
3∑

i=1

‖∂iV [w1]‖L4‖∂ηi
F [w1 − w2]‖L2(I;L4(R3

η)) +

C
3∑

i=1

‖V [w1]‖L∞‖∂2
ηi
F [w1 − w2]‖L2 ≤

C‖w1‖L2‖w1 − w2‖X ;
‖Π2‖X = ‖Θh̄ [V1 − V2]w2‖X ≤

‖Θh̄ [V1 − V2]w2‖L2 +
3∑

i=1

‖v2
i Θh̄ [V1 − V2]w2‖L2 ≤

C‖δV [w1 − w2]Fv→ηw2‖L2 +

C

3∑

i=1

‖δ∂2
i V [w1 − w2])Fv→ηw2‖L2 +

C
3∑

i=1

‖δ(∂iV [w1 − w2])∂ηi
Fv→ηw2‖L2 +

C

3∑

i=1

‖δV [w1 − w2]∂2
ηi
Fv→ηw2‖L2 ≤

C‖V [w1 − w2]‖L∞‖w2‖L2 +

C
3∑

i=1

‖∂2
i V [w1 − w2]‖L2‖Fw2‖L2(I;L∞(R3

η)) +

C
3∑

i=1

‖∂iV [w1 − w2]‖L4‖∂ηi
Fw2‖L2(I;L4(R3

η)) +

C
3∑

i=1

‖V [w1 − w2]‖L∞‖∂2
ηi
Fv→ηw2‖L2 ≤

C‖w2‖X‖w1 − w2‖L2 ,

and the assertion is proved.

III. PROOF OF THEOREM 1

In this section, we will prove the main result of the paper.
Let we may rewrite the Wigner equation as

wt = Aw + Θh̄[V ]w, t > 0, (19)
w(t = 0) = w0, (20)
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where linear operator A : D(A) → X by

Af = −v · ∇xw

and its domain

D(A) = {w ∈ X|v · ∇xw ∈ X,

w(0, x2, x3) = w(l, x2, x3),
w(x1, 0, x3) = w(x1, l, x3),

w(x1, x2, 0) = w(x1, x2, l), l > 1}.
Proof of Theorem 1 Indeed, the A generates a C0 group

of isometries {S(t), t ∈ R} on X , given by S(t)w(x, v) =
w(x − vt, v), see also [2]. Next, we consider Θh̄[V ]w as
a bounded perturbation of the generator A. Since Θh̄[V ]w
is locally Lipschitz continuous (see Lemmas 2 and 3 for
detail), Theorem 6.1.4 of [16] shows that the problem (19)-
(20) coupled with (2) has a unique mild solution for every
w0 ∈ X on some time interval [0, tmax), where tmax denotes
the maximal existence time of the mild solution. Moreover,
if tmax < ∞, then

lim
t→tmax

‖w‖X = ∞.

This concludes the proof of result.
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