
 

  
Abstract—The objective of this paper will propose four types 

of copulas on the CUSUM control chart when observations are 
exponential distribution. We use the Monte Carlo simulation to 
investigate the value of Average Run Length (ARL).  The 
dependence of random variables are used and measured by 
Kendall’s tau in each copula. The numerical results show that 
negative dependence Normal copula is better than the others. 
For positive dependence, in the case of two parameter shifts, 
Normal copula is better than others and Gumbel copula is 
better than others in the case of one parameters shift. 
 

Index Terms—Copula, Average run length, CUSUM chart, 
Monte Carlo simulation 
 

I. INTRODUCTION 

TATISTICAL Process Control (SPC) is a method for 
monitoring, controlling and improving quality of 
production in many areas of applications. These areas 

are in industry, finance and economics, health care, 
environment sciences and other fields. Control charts are 
statistical and visual tools designed to detect shifts in a 
process and they are designed and evaluated under the 
assumption that the observations are from processes are 
independent and identically distributed (i.i.d.). A Univariate 
control chart is devised to monitor the quality of a single 
process characteristic [1]. However, modern process often 
monitor more than one quality characteristic and they are 
referred to as multivariate statistical process control charts.  
     Multivariate statistical process control (MSPC) is one of 
the most rapidly developing sections of statistical process 
control [2] and lead to an interest in the simultaneous 
inspection of several related quality characteristics [3, 4].  
There are multivariate extensions for all kinds of univariate 
control charts, such as multivariate Shewhart control chart, 
multivariate exponentially weighted moving average control 
chart (MEWMA) and multivariate cumulative sum control  
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chart (MCUSUM) [5]. Multivariate Shewhart control chart 
is used to detect large shifts in the mean vectors. The 
MEWMA and MCUSUM are commonly used to detect 
small or moderate shifts in the mean vectors [6]. 

     Most of multivariate detection procedures are based on a 
multi-normality assumption and independence but many 
processes are often non-normality and correlated. Many 
multivariate control charts are the lack of the related joint 
distribution and copula can specify this property. Copulas 
introduced by Sklar [7], are useful devices which give a 
representation of a multivariate distribution function in terms 
of its univariate marginal distribution [8]. The copula 
approach has become a popular tool for modeling 
nonlinearity, asymmetricality and tail dependence in several 
fields [9] and it can be used in the study of dependence or 
association between random variables. Copulas modeling 
can estimate joint distribution of nonlinear outcomes and 
explain the dependence structure among variables through 
the joint distribution by eliminating the effect of univariate 
marginals. A bivariate copula is the simplest case for the 
description of dependent random variables and it can apply 
to control chart.  
     Recently, several papers use copula in control chart such 
as, copula based on bivariate ZIP control chart [10, 11],  
copula Markov CUSUM chart [12], Shewhart control charts 
for autocorrelated and normal data [13], new control chart 
based on a nonparametric Kendall’s tau statistics [14], non-
normal multivariate cases for the Hotelling 2T  control chart 
[15] and bivariate copula on the Shewhart control chart [16]. 
     This paper presents the work on the CUSUM control 
chart when observations are exponential distribution with the 
means shifts and use a bivariate copula function for 
specifying dependence between random variables. 

II.  THE MULTIVARIATE CUMULATIVE SUM CONTROL CHART 

    The multivariate cumulative sum (MCUSUM) control 
chart is the multivariate extension of the univariate 
cumulative sum (CUSUM) chart. The MCUSUM chart was 
initially proposed by Crosier [17]. The MCUSUM chart may 
be expressed as follows: 
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with 0,t =S  the reference value 0k >  and a  is the aim 

point or target value for the mean vector [18]. The control 
chart statistics for MCUSUM chart is 
 

                    1/2,  [ ]   1,  2,  3,t t t tY ′ …= =∑ -1
S S                 (3) 

 

The signal gives an out-of-control if  tY h>   where h  is the 

control limit [19]. 

III.  COPULA FUNCTION 

According to Sklar’s theorem for a bivariate case, let X  
and Y  be continuous random variables with joint distribution 
function H  and marginal cumulative distribution ( )F x  and 

(y)F , respectively. Then ( )( , ) ( ), ( );H x y C F x F y θ=  with 

a copula [ ] [ ]2
: 0,1 0,1C →  where θ  is a parameter of the 

copula called the dependence parameter, which measures 
dependence between the marginals. For the purposes of 
statistical method it is desirable to parameterize the copula 
function. Let θ  denote the association parameter of the 
bivariate distribution and there exists a copula .C  Then 

( ) ,  F x u= ( )F y v=  where u  and v  are uniformly 

distributed variates [20]. This paper focuses on Normal 
copula and three types of Archimedean copulas which are 
Clayton, Frank and Gumbel [21]. 

A. Normal copula 
1 1( , ;  ) = ( ( ), ( );  )NC u v u vθ θ− −Φ Φ Φ ;  1 1θ− ≤ ≤ ,         (4) 

 

where ( , )N u vΦ  is the cumulative probability distribution 

function of the bivariate normal distribution, 1( )u−Φ  and 
1( )v−Φ  are the inverse of the cumulative probability 

function of the univariate normal distribution. 

B. Archimedean copulas 

 Let a class Φ  of functions [ ] [ ]: 0,1 0,φ → ∞  with 

continuous, strictly decreasing, such that (1) 0,  ( ) 0tφ φ ′= <  

and ( ) 0tφ ′′ >  for all 0 1t< <  [21-23]. Archimedean 

copulas of three types and these types are generated as 
follow: 

 

Clayton copula 

    
1/
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Frank copula 
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Gumbel copula 

    1/( , ; ) exp( [(  u) (  v) ] )C u v ln lnθ θ θθ = − − + − ,                (7) 

where     ( ) [ ( )]  ;   [1, )t ln t θφ θ= − ∈ ∞ . 

 
 

IV.  DEPENDENCE MEASURES FOR DATA 

Generally, a parametric measure of the linear dependence 
between random variables is correlation coefficient and 
nonparametric measures of dependence are Spearman’s rho 
and Kendall’s tau. According to the earlier literature, the 
copulas can be used in the study of dependence or 
association between random variables and the values of 
Kendall’s tau are easy to calculate so this measure is used 
for observation dependencies. 

Let X  and Y  be continuous random variables whose 
copula is C   then Kendall’s tau  for X  and Y  is given by 

4 ( , ) ( , ) - 1 c C u v dC u vτ = ∫∫ 2I
 where cτ  is Kendall’s tau of 

copula C  and the unit square 2Ι is the product Ι× Ι  where 

[ ]0,1Ι =   and the expected value of the function ( , )C u v  of 

uniform (0,1) random variables U and V whose joint 
distribution function is ,C  i.e., 4 [ ( , )] 1c E C U Vτ = −  [22]. 

Genest and McKay [21] considered Archimedean copula 

C  generated by φ , then 
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′∫   where Archτ  

is Kendall’s tau of Archimedean copula .C  
 

TABLE I 
KENDALL ’S TAU OF COPULA  FUNCTION 

Copula Kendall’s tau Parameter space of θ   

Normal ( ) / ( / 2)arcsinθ π  [ 1,1]−  

Clayton / ( 2)θ θ +  [ 1, ) \ {0}− ∞  

Frank t
0

1 t
1 4        dt  -1  /

e 1

θ

θ
θ

 
+   − 

∫  ( , ) \ {0}−∞ ∞  

Gumbel ( 1) /θ θ−  [1, )∞  

 

V. AVERAGE RUN LENGTH 

The basic characteristics that describe the performance of 
control charts is the Average Run Length (ARL ).  ARL  is 
classified into 0ARL  and 1ARL , where 0ARL  is the Average 

Run Length when the process is in control  and 1ARL  is the 

Average Run Length when the process is out-of-control [24].  
Theoretically, an acceptable 0ARL  should be enough large 

when the process is in control and 1ARL  should be small 

when the process is out-of-control. The copula approach 
focus on four types:  the Normal, Clayton, Frank and 
Gumbel. These copulas are implemented in the R statistical 
software [25-27] with the number of simulation runs 50,000. 
Observations were from exponential distribution with 
parameter (α ) equal to 1 for in control process (0 1µ = ) 

and the shifts of the process level (δ ) by 0µ µ δ= + . The 

shifts in process mean are equal to 1, 2 and 3, and sample 
size is 1,000.   

The simulation experiments carried out to assess the 
performance of CUSUM control chart. Copula estimations 
are restricted to the cases of dependence (positive and 
negative dependence). For all copula models, setting θ  
correspondes with Kendall’s tau. The level of dependence is 
measured by Kendall’s tau values (1 1τ− ≤ ≤ ). For 
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moderate and strong dependence, Kendall’s tau values are 
defined to 0.5 and 0.8, respectively. 

VI.  SIMULATION RESULTS 

The results from simulation experiments are presented in 
Table VΙΙ −  for the different values of Kendall’s tau and 
denote 1µ  for the variables X  and 2µ  for the variables .Y  

The CSUM control chart was chosen by setting the desired 

0ARL = 370 for each copulas. Table ΙΙ  and ΙΙΙ  show 

positive dependence( 0)τ >  and Table VΙ  and V  show 

negative dependence ( 0)τ < . For example, Table ΙΙ  shows 

moderate and strong positive dependence when the shifts in 
one of exponential parameters. In the case of moderate 
dependence( 0.5)τ = , for small shifts 1 2( 2, 2)µ µ= = , the 

1ARL  values of Normal copula are less than the other copula. 

For moderate and large shifts 1 2(3 4,  3 4)µ µ≤ ≤ ≤ ≤ , the 

Gumbel values for 1ARL  are less than the other copula. In 

the case of strong positive dependence ( 0.8)τ = , for all 

shifts 1 2(2 4,  2 4)µ µ≤ ≤ ≤ ≤ , the 1ARL  values of Gumbel 

copula are less than the other copula. For example, Table ΙΙΙ  
shows moderate and strong positive dependence and the 
same shifts in two of exponential parameters, the Normal 
copula give smaller values of 1ARL  than the other copula for 

almost all shifts.   
 

TABLE ΙΙ   
ARL  OF CUSUM CONTROL CHART WITH KENDALL’S TAU VALUES EQUAL TO 

0.5 AND 0.8 FOR THE CASE OF ONE OF EXPONENTIAL PARAMETERS SHIFT. 

Parameters 0ARL  and 1ARL  
τ  

1µ   2µ  Normal Clayton Frank Gumbel 

0.5 1 1 370.017 370.047 370.016 370.197 

 1 2 41.357 42.626 42.433 42.246 

 1 3 12.203 13.216 12.807 12.076 

 1 4 5.724 6.325 6.058 5.613 

 2 1 41.243 42.613 42.851 42.166 

 3 1 12.191 13.100 12.834 12.036 

 4 1 5.779 6.265 6.109 5.602 

0.8 1 1 369.860 370.041 370.129 370.059 

 1 2 25.383 38.588 36.230 24.583 

 1 3 6.387 10.622 9.336 6.116 

 1 4 2.779 4.720 4.074 2.654 

 2 1 25.372 38.869 36.091 24.921 

 3 1 6.360 10.643 9.335 6.129 

 4 1 2.752 4.691 4.045 2.668 

 
 
 
 
 
 
 
 

TABLE ΙΙΙ   
ARL  OF CUSUM CONTROL CHART WITH KENDALL’S TAU VALUES EQUAL TO 

0.5 AND 0.8 FOR THE CASE OF TWO OF EXPONENTIAL PARAMETERS SHIFT. 

Parameters 0ARL  and 1ARL  
τ  

1µ   2µ  Normal Clayton Frank Gumbel 

0.5 1 1 370.017 370.047 370.016 370.197 

 2 2 22.482 21.785 22.500 24.425 

 3 3 6.232 6.309 6.441 6.697 

 4 4 2.442 2.507 2.560 2.654 

0.8 1 1 369.860 370.041 370.129 370.059 

 2 2 27.655 30.540 31.957 28.758 

 3 3 7.911 9.762 10.005 8.263 

 4 4 3.304 4.419 4.513 3.547 

 
TABLE VΙ   

ARL  OF CUSUM CONTROL CHART WITH KENDALL’S TAU VALUES EQUAL TO 

-0.5 AND -0.8 FOR THE CASE OF ONE OF EXPONENTIAL PARAMETERS SHIFT. 

Parameters 0ARL  and 1ARL  
τ  

1µ   2µ  Normal Clayton Frank 

-0.5 1 1 370.098 369.858 369.961 

 1 2 40.574 45.504 42.004 

 1 3 12.449 13.960 12.654 

 1 4 5.914 6.621 6.083 

 2 1 40.302 45.344 41.924 

 3 1 12.410 13.947 12.870 

 4 1 5.947 6.651 6.117 

-0.8 1 1 369.840 370.073 369.898 

 1 2 44.554 47.062 45.447 

 1 3 12.724 14.110 13.109 

 1 4 5.758 6.455 5.956 

 2 1 44.329 47.452 44.831 

 3 1 12.670 13.940 13.162 

 4 1 5.770 6.377 6.004 

 
TABLE V  

ARL  OF CUSUM CONTROL CHART WITH KENDALL’S TAU VALUES EQUAL TO 

-0.5 AND -0.8 FOR THE CASE OF TWO OF EXPONENTIAL PARAMETERS SHIFT. 

Parameters 0ARL  and 1ARL  
τ  

1µ   2µ  Normal Clayton Frank 

-0.5 1 1 370.098 369.858 369.961 

 2 2 20.317 22.194 21.139 

 3 3 5.513 5.913 5.670 

 4 4 2.084 2.129 2.101 

-0.8 1 1 369.840 370.073 369.898 

 2 2 28.865 28.945 29.362 

 3 3 8.110 8.041 8.190 

 4 4 3.053 2.968 3.079 
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VII.  CONCLUSION 

Dependence measures of two or more variables can be 
investigated in term of various copulas. In this paper show 
CUSUM control chart for four types of copulas and level of 
dependence are measured by Kendall’s tau values. Table VΙ  
summarize from Table VΙΙ −  which show that for negative 
dependence Normal copula is better than the others and for 
positive dependence, in the case of the shift in two of 
parameters, Normal copula is better than the others and in the 
case of the shift in one of parameters, Gumbel copula is 
better than the others. 
 

TABLE VΙ  
EFFICIENCY OF COPULA DEPENDS ON POSITIVE AND NEGATIVE DEPENDENCES 

Positive Dependence Negative Dependence 
Parameters shifts 

moderate strong moderate strong 

one parameter Normal Normal Normal Clayton 

two parameters Gumbel Gumbel Normal Normal 
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