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Abstract—Although large amounts of data on human behav-
ior can be sensed, owing to rapid progress in sensor devices, the
data collected are difficult to analyze and reuse. In a previous
paper, we proposed a new semantic similarity measure, called
Extended Linked Data Semantic Distance (Extended LDSD),
for more effective mining of human behavior data. Extended
LDSD can process various aspects of human behavior.

In this paper, we conducted preliminary experiments in order
to verify the previously proposed method. In the experiment,
artificial data, generated by our automated test data generator,
were used to simulate human behavior. T his study demon-
strated that our proposed similarity search method (Extended
LDSD) could provide higher similarity precision than the
original LDSD and the Levenstein distance.

Index Terms—Human Behavior Processes, Similarity Search,
Linked Data, Artificial Data.

I. I NTRODUCTION

RECENTLY,the use of various kinds of sensor de-
vices, such as motion and location sensors, has be-

come widespread. As a result of this rapid popularization,
huge amounts of data are being collected and analyzed for
application-oriented purposes using advanced sensor devices.
The sensor devices are currently used primarily to analyze
and visualize object movements. However, efficient reuse of
human behavior data is difficult, even when large amounts
of data have been detected and processed in databases. In
particular, when a certain behavior has been sensed, a human
behavior-based service, such as E-learning, and human task
support services have to be developed to search for behaviors
similar to the sensed behavior.

In our previous paper, we proposed a novel similarity
measure Extended LDSD [1] to obtain behaviors that are
similar to a given behavior. Because a human behavior is
complicated and needs to be represented from many aspects,
existing similarity measures, such as graph distance and
Euclid distance measures, cannot be directly used as a simi-
larity measure of human behaviors. To overcome this issue,
we previously extended an semantic distance calculation
method, Linked Data Semantic Distance, LDSD, [10]. Our
extended method, Extended LDSD, was developed to adapt
to the semantic measurement of human behaviors from three
standpoints: temporal, granularity, and content.

Although we compared our proposed extended method
with other similarity methods in our previous paper, the
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comparison was made using a small data set. It is neces-
sary to evaluate our method with more detailed quantita-
tive experiments to accurately evaluate the validity of the
proposed method. Therefore, in this paper, we provide a
detailed evaluation of our method using larger amounts of
test data. The following sections describe our experimental
conditions and procedure, demonstrate our results, and draw
conclusions. Because of the complexity of human behaviors,
it is difficult to use actual human behavior data for our
evaluation. Therefore, we generate a number of test data sets
using our automated test data generator that can simulate
many aspects of human behavior on the basis of our human
behavior process model, MLPM [4].

The rest of our paper is organized as follows: Section II
describes related work of our Extended LDSD. The Extended
LDSD is briefly described in the Section III. Section IV
and Section V give experiments and evaluation results of
Extended LDSD. Finally, Section VI concludes the paper
with future work.

II. RELATED WORK

Work related to our proposed measure falls into two
categories: behavior similarity and linked data distance. A
number of definitions have been proposed for behavior
similarity [2] [3]. Wang et. al. [3] proposed a similarity defi-
nition composed of two types of coupled similarities—intra-
coupled and inter-coupled similarities. They define Intra-
coupled Attribute Value Similarity (IaAVS) for the former,
and Inter-coupled Relative Similarity based on Interaction
Set (IRSI) for the latter. These similarities were primarily
developed for multivariate time series and objects with
multiple attributes. Therefore, these similarities cannot be
used for human behaviors, even though they can be used
as a component of similarity definitions for the behaviors,
because they are represented by complex structures.

Neumuth et al. proposed a similarity definition exclusively
for surgical process databases [2]. Their definition defines
independent types of similarities, specifically, granularity,
content, temporal, and transitional similarities, between two
surgical processes. However, they developed the similarity
metrics only for surgical process management. Further, they
provide no clear instructions on how to combine these four
independent metrics into a single similarity value. As regards
multimedia data, much research has been conducted on
similarity between both video data and audio data. One
such study used Principal Component Analysis (PCA) to
reduce dimensionality and extract independent aggregate
dimensions [7]. However, although the PCA approach is
effective for dimensionality reduction of multidimensional
data, the similarity cannot be applied to structural or linked
data, the predominant characteristics of human behaviors.
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Much research has also been conducted on similarity
definitions of linked data and graph-based data [5] [6] [8]
[9][10] throughout the past decade. The similarity definitions
are classified into two types: graph matching-based [5] [9]
and link-based [6] [8] [10]. In the graph matching-based
approach, the similarity between two pairs of sub-graph
nodes is first checked and then the similarity is calculated
using the number of pairs. Conversely, in the link-based
approach, the similarity between two nodes is calculated
using the number of links between the nodes. The point
of differentiation of the two approaches lies in whether the
similarity is calculated for nodes or sub-graph nodes in a
graph. Among the link-based similarity approaches, LDSD,
proposed by Passant [10], is appropriate for complex and
large linked data because it is simple to extend and easy to
calculate, unlike other similarity approaches. we had chosen
the method as our basic research.

III. EXTENDED LDSD [1]

A. Original LDSD [10]

Before introducing our proposed method called Extended
LDSD, we briefly describe here the original LDSD. The
objective of LDSD (Linked Data Semantic Distance) is to
define a semantic distance between two nodes in Linked
Data. As is well-known, Linked Data network can be ab-
stracted into a graph, which consists of nodes and directed
edges(Fig.1). Therefore, the LDSD actually calculates the
semantic distance between nodes in a digraph.

Calculation of the linked data from LDSD is carried
out as follows. A dataset is a graph G such asG =
(N,E,L), in which N = {N1, N2, ..., Nn} is a set of
nodes,E = {E1, E2, ..., , Em} is a set of typed links, and
L = {L1, L2, ..., Lp} is a set of instances of these links
between data nodes, such asEi =< Lj , Na, Nb >. In
this case, the semantic distance between nodesNa andNb,
LDSD(Na, Nb) is defined as follows.

LDSD(Na, Nb) =
1

1 + α+ β + γ + δ
(1)


α =

∑
i

Cd(Li,Na,Nb)
1+log(Cd(Li,Na,Nn))

β =
∑

i
Cd(Li,Nb,Na)

1+log(Cd(Li,Nb,Nn))

γ =
∑

i

Cii(Li,Na,Nb)

1+log(Cii(Li,Na,Nn))

δ =
∑

i

Cio(Li,Na,Nb)

1+log(Cio(Li,Na,Nn))

Cd is a function that computes the number of direct and
distinct links between nodes in a graph G.Cd(Li, Na, Nb)
is equal to one if there is an instance ofLi from a node
Na to a nodeNb, otherwise, it is zero.Cd can be used to
compute the total number of direct and distinct links from
Na to Nb, which is defined asCd(Ln, Na, Nb). Further, the
total number of distinct instances of linkLi from Na to any
node(Cd(Li, Na, Nn)) can be defined and calculated.
Cio andCii are functions that compute the number of indi-

rect and direct links, both outgoing and incoming, between
nodes in a graph, respectively.Cio(Li, Na, Nn) equals of
1 if there is a nodeNn that satisfy both< Li, Na, Nn >
and< Li, Nb, Nn >, 0 if not. Cii(Li, Na, Nb) equal 1 if
there is a nodeNn that satisfy both< Li, Nn, Na > and
< Li, Nn, Nb >, 0 if not.

Fig. 1. Linked Data Semantic Distance. [10]

B. Similarity of Human Behaviors

In order to describe our Extended LDSD, we need to
clear the characteristics of human behaviors. Human behav-
ior processes can be compared from various aspects, such
as content, granularity, and temporal relationship. content
relationship refers to the situation of the behavioral compo-
nents, including processes, tasks, and activities. Granularity
relationship refers to the level of the hierarchical structure
representing a specific process. Temporal relationship is
the relationship among the behavioral components in the
temporal dimension. The similarity of human behaviors can
be calculated using these aspects.

In our previous study [4], we proposed a Multi-Layered
Process Model (MLPM) that describes various people’s
behaviors and represents various kinds of processes in an
integrated manner. In MLPM, behaviors are decomposed
into three layers: process/task layer, activity layer, and action
layer. Using this layered architecture, the overall processes of
human behaviors, from the higher abstract level to the lower
actual motion level, can be described. A simple example of
MLPM is shown in Fig. 2.

As stated above, the human processes described by MLPM
can be represented as hierarchical as well as linked structures.
Specifically, a human process can be decomposed into activi-
ties, further decomposed into actions, and finally represented
by various kinds of expressions that can express detailed
contents of actions. Moreover, there are always associations
between behavioral components. Although various methods
to calculate the similarity of human processes exist, they
cannot express the above two important features defined in
our MLPM. Therefore, a more appropriate similarity search
method is needed and we proposed in the previous paper.

C. Human Behavior Similarity Search

It is assumed that human behavior can be represented by a
graphG such asG = (N,E,LN,LE). In this graph, N is a
set of typed nodesN = {N1, N2, ..., Nn} and is categorized
with node typesLN , such as Process, Task, Activity, and
Action [4]. Therefore,N = NT1∪NT2, ...,∪NTnLN , NTi∩
NTj ̸= 0, whereNTk is a subset of nodes whose node
type is LNk and nLN is the number of node types. E
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Fig. 2. MLPM example in intravenous injection process. [4]

is a set of typed linksE = {E1, E2, ..., Em} and is also
categorized with the abstract five link typesLE. The link
types are composed of the following link types: regular-link
RL, hierarchical-linkHL, temporal-link TL, spatial-link
SL, and virtual-content-linkV L. There are many concrete
link types for each abstract link type. We simplify each
concrete link type asLE = {Ll,k}, where l indicates the
abstract link type andk is the k-th link type in the abstract
link type Ll. An instanceEi of link type Ll,k in G is
represented by< Ll,k, Na, Nb >, whereNa andNb are the
starting node and the end node of the linkEi , respectively.

The similarity search of human behaviors is defined and
conducted to obtain the set of human behaviors similar to
a given human behavior. That is, given a nodeNq with
node typeLNk ∈ LN , and a similarity thresholdδ, find
similar nodesNS = {Ni ∈ N} to node typeLNk such
thatHBS(Nq, Ni) ≥ δ or HBD(Nq, Ni) ≤ δ. HBS and
HBD are the similarity and distance functions of two nodes
with the same node type. In order to calculateHBD, we
proposed extended LDSD.

D. Basic Concepts on Human Behavior Similarity

Using the concept of Linked Data network in [10], we
can build a human behavior linked data network comprising
nodes and the links between them. Based on MLPM, a
human behavior linked data network is defined with seven
kinds of nodes: process, task, entity, activity, action, mo-
tion, and expression. Human behaviors are first defined
into processes–the abstract view of human behaviors. The
processes are then decomposed in order to define the tasks
comprising each process. Then, entities appearing in the
behaviors are defined, followed by definition of activities.
Further, each activity is decomposed into a set of actions,
and each action decomposed into a set of motions. Finally,
nodes of expressions are constructed to represent concrete
motions.

There are also various kinds of links between the above
nodes in the network. For example, for each constructed
MLPM node, there are links between the process and its
activities, which can be classified hierarchically. Further,
each activity is composed of actions and can be described

by various kinds of expressions. Thus, it is clear that there
are many hierarchical links between the various types of
nodes, such as activity nodes and action expression nodes.
In addition, a kind of virtual-content-link is defined in our
extended LDSD. When two nodes both have a hierarchical-
link with one or some of the same nodes, they are linked
by a virtual-content-link that represents the deep association
between them in the content. In addition to these two kinds
of links, there are other kinds of links, such as temporal-
link, granularity-link, content-link, representing associations
between nodes.

E. Extensions to LDSD

As stated in the previous section, human behaviors can
be represented by a groupG = (N,E,LN,LE). In our
extended LDSD,N is a set of network nodesN =
{N1, N2, ..., Nn}, LN is a set of node types, specially in
our methodLN = {process, activity, expression}, E is a
set of linksE = {E1, E2, ..., Em}, and in our methodLE =
{hierarchical − link, temporal − link, granularity −
link, content−link, virtual−content−link}. An instance
Ei of link typeLl,k in G is represented by< Ll,k, Na, Nb, >,
whereNa andNb are the starting node and the end node for
link Ei, respectively. Further,T is defined as a set of possible
times or time intervals. For each nodeNi an effective time
or time intervalTi ∈ T is assigned.

The purpose of our extensions is to find the similarity
between entities such as processes, activities, actions. There
are three types of extended distance definitions: temporal ex-
tension, granularity extension, and content extension, which
all are extensions to the original LDSD. In original LDSD,
whether there is a link between two specific nodes or not
is concerned. But in our Extended LDSD, in each extension
we also concern the distance of each kind of links mentioned
above.
ExtendedLDSD(Na, Nb)is defined as follows.

ExtendedLDSD(Na, Nb) =
1

1 + α+ β + γ + δ + τ + χ+ ψ
(2)
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Fig. 3. Extended LDSD example. [1]

whereα, β, γ,andδ are defined in the previous section.τ, χ,
andψ are defined below.

1) Temporal extension to LDSD
In this extension, the distancesτ of temporal-link are
calculated using the time interval assigned to nodes.

τ = |TNa − TNb
|

2) Granularity extension to LDSD
In this extension, the distancesχ of granularity-link are
calculated by comparing the number of hierarchical-
link linked to nodes.

χ = |Cd(Ei, Na, Nn)− Cd(Ej , Nb, Nm)|
Cd(Ei, Na, Nn) is the total number of direct instances
of all hierarchical-link fromNa to any nodeNn.

3) Content extension to LDSD
According to the hierarchical structure of the human
behavior linked data network, we can build the virtual-
content-link on the network. For example, in Fig. 3,
nodeN4 and nodeN7 are not directly linked, but they
linked to the same nodeN10, thus it is considered that
there is an association between them.
Firstly, We define a valueω to describe the tightness of
this kind of association betweenNc andNd as follow.

ω = Cio(Ei, Nc, Nd)/Cio(Ei, Nc, Nn)
Secondly, we set a threshold valueΘ to check whether
a virtual-content-link can be constructed or not. That
is, if theω of two nodes is greater thanΘ which means
the indirectly association between them is strong , then,
a virtual-content-link will be constructed.
Finally, due to the increase of virtual-content-link, the
human behavior network can be rebuilt. The virtual
content distance between two upper lever nodesNe

andNf in this situation is defined as follow:
ψ =

∑
i

Cio(Ei,Ne,Nf )
1+log(Cio(Ei,Ne,Nn))

IV. EXPERIMENTS

A. Experiment conditions

In our experiments, artificial data instead of real human
data is used, because of the complexity of human behaviors.
In order to generate sufficient artificial data, we developed
an automated test data generator. As stated in the previous
section, human behaviors can be represented by MLPM

process model, which is consisted of nodes and links between
nodes. The automated test data generator can automatically
generate many artificial test data sets to simulate human
behavior according to the MLPM model.

We defined human behavior into tetrad groups, e.g., G-
tetrads, based on our MLPM. Many nodes and edges between
two nodes are generated according to these definitions. The
process nodes consist of an activity node, a content node,
and links between them. Processes in our data generator
are all stored in the form of independent text documents.
Characters or strings in the document represent activity and
context nodes. As the MLPM model is a graphical structure,
links between nodes are stored in the form of an adjacent
matrix, according to the documents. Our automated test data
generator consists of a series of function classes, such as
deformation, I/O, and link matrix refresh.

We implemented a method of deforming processes in
order to generate a large amount of data. Our data generator
inputs a collection of manually constructed processes. The
outputs are a series of varying data. In the deformation, some
predefined variation functions, such as add nodes, cut nodes,
and change nodes , are used. Moreover, the deformation
process can automatically and reproducibly be performed for
quantitative and subjective evaluations.

B. Experiment procedure

Our experimental procedure is composed of two stages:
the data selection stage and the evaluation stage. In the first
stage, our data generator creates multiple data sets, called
patterns. In the second stage, the similarities between two
processes are calculated for each pattern. The details of these
stages are described below.

C. Data selection experiment stage

In this stage, we prepare NP process nodes as the original
processes in each experiment. NP is the number of the orig-
inal processes, and it is set to four, through our experiments.
For each original process, 12 variations of processes are
generated using our data generator. Therefore, 12*NP (=48)
processes are totally generated as a test data set, called a
pattern. The number of nodes in one original process is set
to 260 (52 activity nodes, 208 content nodes).

We introduced three parameters to control the generator,
to generate various kinds of processes that are similar to the
original process. These three parameters are the degree of
similarity to the original process (P1), the deformation degree
(P2), and the number of deformations (P3). The ranges of
these three parameters are shown in Table I. P1 defines how
similar a given original process is to another given original
process on average. A larger P1 value increases the similarity
of the processes.

Our data generator has three types of variation functions:
cut, add, and change. We chose cut as the variation function
in this experiment. P2 defines what percentage of the nodes
should be removed from the original process: 1/2 means
to cut half of the nodes, and zero means to cut nothing.
P3 defines the number of times the deformation should
be conducted. For example, P2 = 1/2, P3 = 4 means the
deformation type‘ cut half’is conducted four times in the
deformation.
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TABLE I
RANGE OF PARAMETER

P1 P2 P3

Range 25%∼ 75% 0% ∼ 50% 0 ∼6

TABLE II
DATA SET

P1 P2 P2 P2 P2 P3

Pattern1 50% 0 1/32 1/16 1/8 3

Pattern2 75% 0 1/32 1/16 1/8 3

Pattern3 50% 0 1/32 1/8 1/4 3

Finally, we selected three data patterns as our evaluation
data, as shown in II.

D. Evaluation stage

As stated previously, our proposed method, Extended
LDSD, includes three extension types, temporal, granular,
and content . In order to clearly demonstrate the effect
of each extension on the results, four types of evaluation
experiments were conducted using the data sets selected
in the previous stage. Experiments for the three extensions
were independently conducted. The final experiment used
the combined extensions. We used the original LDSD and
the Levenshtein Distance as existing distance measures to
compare with Extended LDSD.

Using distance matrices, the data set, which included
48 processes, was classified into NP(=4) categories. The
classification precision of each method was calculated as an
evaluation measure. We used the classification precision to
reflect the precision of the similarity. Because of the high
classification precision and the simplicity of the operation,
we chose K-means as the experimental classification method.
In our experiment, accuracy is defined as (number of suc-
cessful classifications) / (number of classification trials). The
number of trials equals the number of processes in one test
data set.

Specific experimental steps are shown below.

1) In the temporal extension experiment, a time interval
was assigned to each process of the data set, according
to the definition in the previous section. Time intervals
are random data divided into four categories.

2) In the granularity extension experiment, the granu-
lar similarity between processes was evaluated. We
counted the number of links between processes and
activities and added them into the distance matrices.

3) In the content extension experiment, the relationships
between the activity and content were considered.
Using these relationships, the process constructions
were rebuilt. In our experiment, the activity-content
matrix was prepared beforehand in four categories.

4) In the combined experiment, we made a linear com-
bination of all the above extensions to discover the
impact of the combination precisely.

V. EVALUATION

In this section, we evaluate the extensions presented in the
previous section.

Fig. 4. Evaluation of temporal extension to LDSD

Fig. 5. Evaluation of granularity extension to LDSD

A. Evaluation of temporal extension to LDSD

The results of the temporal extension evaluation are shown
in Fig. 4. The temporal extension shows a significant im-
provement of about 10%.

B. Evaluation of granularity extension to LDSD

The results of the granularity extension evaluation are
shown in Fig. 5. The granularity extension has an 85%
average classification accuracy, which is better than the other
methods and very consistent.

C. Evaluation of content extension to LDSD

The results of the content extension evaluation are shown
in Fig. 6. The content extension shows a high classification
accuracy, particularly in Pattern 1.

D. Evaluation of extended LDSD

The results of the entire combination are shown in Fig. 7.
This shows that our proposed method, Extended LDSD, has
the highest classification accuracy with the combination of
temporal, granularity, and content extensions.
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Fig. 6. Evaluation of content extension to LDSD

Fig. 7. Evaluation of extended LDSD

E. Discussion

Through the above figures, we found that our proposed
extension has higher similarity precision in varying degrees,
and is superior to the other semantic similarity methods.
Because we joined the human behavior elements of time,
granularity, and content into the semantic similarity calcu-
lations, we also confirmed that our Extended LDSD shows
promise in its measurement of human behavior.

However, some issues were not clarified in our experiment.
Although we verified the superiority of the three extensions,
we found that the weights used to combine the extension
values in the combined experiment can have a significant
influence on the similarity precision. Further investigation is
required to clarify the association between the weights and
the similarity precision.

VI. CONCLUSION

In this paper, we presented the evaluation of our previ-
ously proposed human behavior similarity search method,
Extended LDSD. For the experiment, we developed an
automated test data generator to generate artificial data to
simulate human behavior processes. In addition, using data
sets created by the generator, we evaluated the validity of

each extension and their combination, and we compared the
results with other similarity methods. Finally, the evaluation
experiments showed the superiority of our method in terms
of similarity precision. Our future work will include more
experiments to improve our method and investigate its ap-
plication to real human activities.
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