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Abstract—It is known that learning methods of fuzzy in-
ference systems using vector quantization (VQ) and steepest
descend method (SDM) are superior in terms of the number
of rules. However, they need a great deal of learning time.
The cause could be that both of VQ and SDM perform only
local searches. On the other hand, it has been shown that a
learning method of radial basis function (RBF) networks using
VQ and generalized inverse method (GIM) is much fast. In this
paper, we propose a new learning method using VQ, GIM and
SDM. The method iterates three stages in the outer loop of the
algorithm. The first stage adjust the fuzzy rule arrangement
by using VQ, the second one determines the weights of fuzzy
rules by using GIM, and the third one updates both of the
rule arrangement and the weights. In order to demonstrate
the validity of the proposed method, numerical simulations for
function approximation and pattern classification problems are
performed. Specifically, it is shown that the proposed method
reduces the learning time to about one-tenth compared to
conventional methods in function approximation problem.

Index Terms—Fuzzy Inference Systems, Vector Quantiza-
tion, Neural Gas, Generalized Inverse Method, Appearance
frequency.

I. INTRODUCTION

Many studies on self-tuning fuzzy systems have been
made [1]–[3]. Their aim is to construct automatically fuzzy
systems from learning data. Although most of the methods
are based on steepest descend method (SDM), the obvious
drawbacks of the method are its large time complexity and
getting stuck in a shallow local minimum. Further, there
is difficulty for learning with high dimensional spaces [4]–
[6]. In order to overcome them, some novel methods have
been developed, which 1) create fuzzy rules one by one
starting from any number of rules, or delete fuzzy rules
one by one starting from a sufficiently large number of
rules [7], 2) use GA (Genetic Algorithm) and PSO (Particle
Swarm Optimization) to determine the structure of the fuzzy
model [8], 3) use fuzzy inference systems composed of small
number of input rule modules, such as SIRMs (Single Input
Rule Modules) and DIRMs (Double Input Rule Modules)
methods [10], [11], and 4) use a self-organization or a vector
quantization technique to determine the initial assignment
[9], [12], [13]. Specifically, learning methods using VQ and
SDM are superior in the number of rules, but they need a
great deal of learning time [17]. The cause could be that both
of VQ and SDM perform only local searches. On the other
hand, it has been shown that a learning method of radial basis
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function (RBF) networks using VQ and generalized inverse
method (GIM) is much fast [3].

In this paper, we propose a new learning method using VQ,
GIM and SDM. The method consists of three stages iterated
in the outer loop of the algorithm. Each of three stages utilize
either VQ, GIM or SDM for tuning the fuzzy inference
system. The first stage adjusts the fuzzy rule arrangement
by using VQ, the second one adjusts the weights of fuzzy
rules by using GIM, and the last one adjusts both of the rule
arrangement and the weights. In order to demonstrate the
validity of the proposed method, numerical simulations for
function approximation and pattern classification problems
are performed. Specifically, it is shown that the proposed
method reduces the learning time to about one-tenth com-
pared to conventional methods in function approximation
problem.

II. PRELIMINARIES

A. The conventional fuzzy inference model

The conventional fuzzy inference model using SDM is de-
scribed [1]–[3]. Let Zj = {1, · · · , j} and Z∗

j = {0, 1, · · ·, j}
for the positive integer j. Let R be the set of real numbers.
Let x = (x1, · · · , xm) and yr be input and output data,
respectively, where xi∈R for i ∈ Zm and yr∈R. Then the
rule of simplified fuzzy inference model is expressed as

Rj : if x1 is M1j and · · · and xm is Mmj then y is wj ,
(1)

where j ∈ Zn is a rule number, i ∈ Zm is a variable number,
Mij is a membership function of the antecedent part, and wj

is the weight of the consequent part.
A membership value of the antecedent part µj for input

x is expressed as

µi =
m∏
j=1

Mij(xj). (2)

Let cij and bij denote the center and the width values of
Mij , respectively. If Gaussian membership function is used,
then Mij is expressed as follow:

Mij(xj) = exp

(
−1

2

(
xj − cij

bij

)2
)
. (3)

The output y∗ of fuzzy inference is calculated by Eq.(4).

y∗ =

∑n
i=1 µj · wi∑n

i=1 µj
. (4)

In order to construct the effective model, the conventional
learning is introduced. The objective function E is deter-
mined to evaluate the inference error between the desirable
output yr and the inference output y∗.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I, 
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016



���������

���

�� � �

�

����	�� � ��

� � �


�	���
���	�
���

��

� �

��

��

�


��������


����	������
�������	�� 	

�

�


�

�

�����������	��


�

�

�

�������	����

��

� ��

��

� ��

�

��������������������� ��

!���	���

��

��

��

��

�

�

� � �

�������	������ �������"��

� � � �� � �

���

�

�#$

� � � 	 �

� � � 	 �

� � �

� � � 	 �

%��

%��

%��

#�

#�

#�

Fig. 1. The flowchart of the conventional learning algorithm

In this section, we describe the conventional learning
algorithm [3].

Let D = {(xp
1, · · · , xp

m, yrp)|p ∈ ZP } and D∗ =
{(xp

1, · · ·, xp
m)|p∈ZP } be the set of learning data and the set

of input data of D, respectively. The objective of learning is
to minimize the following mean square error (MSE):

E =
1

P

P∑
p=1

(y∗p − yrp)
2. (5)

In order to minimize the objective function E, each
parameter α ∈ {cij , bij , wj} is updated based on SDM as
follows [1]–[3]:

α(t+ 1) = α(t)−Kα
∂E

∂α
(6)

where t is iteration time and Kα is a constant. When the
Gaussian membership function is used as the membership
function, the following relation holds.

∂E

∂cij
=

µj∑n
j=1 µj

· (y∗ − yr) · (wj − y∗) · xj − cij
b2ij

(7)
∂E

∂bij
=

µj∑n
j=1 µj

· (y∗ − yr) · (wj − y∗) · (xj − cij)
2

b3ij
(8)

∂E

∂wj
=

µj∑n
j=1 µj

· (y∗ − yr) (9)

The conventional learning algorithm is shown as Fig.1 [1]–
[3], where θ and Tmax are threshold and the maximum
number of learning, respectively. Note that the method is
generative one. The method is called learning algorithm A.

B. Neural gas and K-means methods

Vector quantization techniques encode a data space, e.g., a
subspace V ⊆Rm, utilizing only a finite set C = {ci|i∈Zr}
of reference vectors (also called cluster centers), where m
and r are positive integers.

Let the winner vector ci(v) be defined for any vector v∈V
as follows:

i(v) = arg min
i∈Zr

||v − ci|| (10)
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Fig. 2. Neural Gas method

From the finite set S,V is portioned as follows:

V i = {v∈V |||v − ci||≤||v − cj || for j∈Zr} (11)

The evaluation function for the partition is defined as follows:

E =
r∑

i=1

∑
v∈V i

||v − ci(v)||2 (12)

For neural gas method [14], the following method is used:
Given an input data vector v, we determine the

neighborhood-ranking cik for k∈Z∗
r−1, being the reference

vector for which there are k vectors cj with

||v − cj || < ||v − cik || (13)

If we denote the number k associated with each vector ci
by ki(v,ci), then the adaption step for adjusting the ci’s is
given by

△ci = ε·hλ(ki(v, c))·(v − ci) (14)
hλ(ki(v, c)) = exp(−ki(v, c)/λ) (15)

where ε∈[0, 1] and λ > 0. The number λ is called decay
constant.

If λ→0, Eq.(14) becomes equivalent to the K-means
method [14]. Otherwise, not only the winner ci0 but the
second, third nearest reference vector ci1 , ci2 , etc., are also
updated.

Let p(v) be the probability distribution of data vectors for
V . The flowchart of the conventional neural gas algorithm
is shown as Fig.2 [14], where εint, εfin, θ and Tmax are
learning constants, threshold and the maximum number of
learning, respectively. The method is called learning algo-
rithm NG.

If the data distribution p(v) is not given in advance, a
stochastic sequence of input data v(1),v(2), · · · which is
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based on p(v) is given [14].

By using Learning Algorithm NG, learning method of
fuzzy systems is shown as follows [13] : In this case, assume
that the distribution of learning data D∗ is discrete uniform
one. Let n0 be the initial number of rules.
Learning Algorithm B
Step B1 : For learning data D∗, Learning Algorithm NG
is performed by using D∗ as the set V . As a result, the set
c of inference vectors for D∗ is made, where |c| = n0.
Step B2 : Each initial value cij is set to a reference vector.
Let

bij =
1

mi

∑
xk∈Ci

(cij − xkj)
2, (16)

where Ci and mi are set of element and the number of
learning data belonging to the i-th cluster Ci. Each initial
weight wi is selected randomly. Further, Step A1 of Learning
Algorithm A is performed.
Step B3 : The Steps A3 to A9 of learning algorithm A are
performed.

C. Determination of weights using the generalized inverse
method

Let us explain fuzzy inference systems and interpolation
problem using the generalized inverse method [3]. This
problem can be stated mathematically as follows:

Given P points {xp = (xp
1, · · ·, xp

m) |p∈ZP } and P real
numbers {yrp|p∈ZP }, find a function f : Rm→R such that
the following conditions are satisfied :

f(xp) = yrp p∈ZP (17)

In the case of fuzzy inference system, this problem is
solved as follows:

yp = f(xp) =
n∑

i=1

wiϕpi(||xp − ci||) (18)

ϕpi(||xp − ci||) =
µi∑n
i=1 µi

(19)

That is,

Φw = y, (20)

where

Φ =


ϕ11 ϕ12 · · · ϕ1n

ϕ21 ϕ22 · · ·
...

...
...

. . .
...

ϕP1 ϕP2 · · · ϕPn

 (21)

Let P = n and xi = ci. The width parameters are
determined by Eq.(19). Then, if ϕi(·) is suitably selected as
Gaussian function, then the solution of weights w is obtained
as

w = Φ−1y (22)

Let us consider the case n < P . This is the realistic case.
The optimal solution w∗ that minimizes E = ||yr − Φw||2
can be obtained as follows :

w+ = ΦTy and Emin = ||(I −Ψ)y||2, (23)

where Φ+≜[ΦTΦ]−1ΦT , Ψ≜ΦΦT and I is identify matrix
of P×P .
Φ+ is called the generalized inverse of Φ. The method

using Φ+ to determine the weights is called the generalized
inverse method (GIM) [3].

D. The appearance frequency of input data based on the rate
of change of output

Learning Algorithm B is a method that determines the
initial assignment of fuzzy rules by vector quantization using
the set D∗ of input for learning data. In this case, the set of
output in learning data D is not used to determine the initial
assignment of fuzzy rules. In the previous paper, Kishida
proposed a method considering both input and output data
to determine the initial assignment of fuzzy rules [12].

Based on the literature [12], the appearance frequency is
defined as follows : Let D and D∗ be the sets of learning
data defined in 2.1.
Calculation Algorithm for the appearance frequency
Step 1 : Give an input data xi∈D∗, we determine the
neighborhood-ranking (xi0 ,xi1 , · · ·,xik , · · ·,xiP−1) of the
vector xi with xi0 = xi, xi1 being closest to xi and
xik (k = 0, · · ·, P − 1) being the vector xi for which there
are k vectors xj with ||xi − xj || < ||xi − xik ||.
Step 2 : Determine H(xi) which shows the degree of change
of inclination of the output around output data to input data
xi, by the following equation:

H(xi) =

M∑
l=1

∣∣∣∣ yi − yil

||xi − xil ||

∣∣∣∣ , (24)

where xil for l∈ZM means the l-th neighborhood-ranking
of xi, i∈ZP and yi and yil are output for input xi and xil ,
respectively. The number M means the range considering
H(x).
Step 3 : Determine the appearance frequency pM (xi) for xi

by normalizing H(xi).

pM (xi) =
H(xi)∑P
j=1 H(xj)

(25)

Learning algorithm C using the appearance frequency is
shown as follow [12]:
Learning Algorithm C
Step 1 : θ, T 0

max, Tmax, n and M0 for 1≤M0 are set. Initial
value of cij , bij and wi are set randomly. Let M←M0. The
appearance frequency pM (xi) for xi∈D∗ is computed.
Step 2 : Select a data (xp, yp) based on pM (xp, yp) for
1≤p≤P .
Step 3 : Update cij by Eq.(14).
Step 4 : If t < T 0

max, go to Step 2 with t←t+1, otherwise
go to Step 5 with t←1.
Step 5 : Determine bij by Eq.(16).
Step 6 : Let p← 1.
Step 7 : Given a data (xp, yrp)∈D.
Step 8 : Calculate µi and y∗ by Eqs.(2) and (4).
Step 9 : Update parameters cij , bij and wij by Eqs.(7), (8)
and (9).
Step 10 : If p < P then go to Step 7 with p←p+ 1.
Step 11 : If E > θ and t < Tmax then go to Step 7 with
t←t + 1, where E is computed as Eq.(5), and if E < θ
then the algorithm terminate, otherwise go to Step 7 with
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n←n+1 and initial value of cij , bij and wi are set randomly,
M←M0 and the appearance frequency pM (xi) for xi∈D∗

is computed.

III. THE PROPOSED METHOD

It is shown that learning method C using VQ and SDM
is effective in accuracy and the number of rules to other
methods. However, it needs a great deal of learning time. The
cause could be that both of VQ and SDM are local search
methods. On the other hand, it has been shown that a learning
method of RBF networks using VQ and GIM is much
fast compared to other learning methods [3]. Specifically,
the method using GIM seems to be effective compared to
methods using SDM, because the method is not local search.
However, the method using only VQ and GIM is not always
effective [15]. Therefore, we propose a new learning method
composed of three stages using VQ, GIM and SDM. The
three stages are iterated in the outer loop of the algorithm.
The first stage adjusts the center and width parameters by
using VQ, the second one updates the weight parameters by
using GIM, and the last one adjusts all three parameters by
using SDM. With iterating processes, parameters of the result
of SDM are set to ones of the next process if the inference
error is improved.

The proposed method is shown as follows:
Learning Algorithm E
Step 1 : θ, T 0

max, Tmax, M0, Mmax and β for 1≤Mmax

and β < P are set. Let M←M0. Initial values of cbestij , bbestij

and wbest
i are set randomly. Let Ebest be the MSE for fuzzy

inference system with cbestij , bbestij and wbest
i . Let n←n0.

(Stage 1: Learning by VQ)
Step 2 : Let cij←cbestij , bij←bbestij , wi←wbest

i and t = 1.
Step 3 : Select a data (xp, yp) based on pM (xp, yp) for
1≤p≤P .
Step 4 : Update cij by Eq.(14).
Step 5 : If t < T 0

max, go to Step 3 with t←t+1, otherwise
go to Step 6 with t←1.
Step 6 : Determine bij by Eq.(16).
(Stage 2: Learning by GIM)
Step 7 : Determine wi by Eq.(23).
(Stage 3: Learning by SDM)
Step 8 : Let p← 1.
Step 9 : Given a data (xp, yrp)∈D.
Step 10 : Calculate µi and y∗ by Eqs.(2) and (4).
Step 11 : Update parameters cij , bij and wij by Eqs.(7),
(8) and (9).
Step 12 : If p < P then go to Step 8 with p←p+ 1.
Step 13 : If E(t) > θ and t < Tmax then go to Step 9 with
t←t+ 1, where E is computed as Eq.(5).
Step 14 : If E(t) < Ebest then cbestij ←cij , bbestij ←bij ,
wbest

i ←wi and Ebest←E(t).
Step 15 : If E(t) > θ and M < Mmax then go to Step
2 with M←M + β, else if E(t) < θ, then the algorithm
terminates, otherwise go to Step 2 with n←n+ 1, M←M0

and cbestij , bbestij and wbest
i are set randomly.

In order to compare the proposed method with conven-
tional ones, the following methods are used (See Fig.3):
(A) Method A is one based on the algorithm of Fig.1 [1],
[2]. Initial parameters of c, b and w are set randomly and all
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Fig. 3. Concept of conventional and proposed algorithms, where SDM and
NG mean Steepest Descent Method and Neural Gas method, and the mark
∗1 means that initial values of w are selected randomly.

parameters are updated using SDM until the inference error
become sufficiently small.
(B) Method B is known as learning method of RBF networks
[3], [9], [13]. Initial values of c are determined using D∗ by
VQ and b is computed by Eq.(16). Weight parameters w are
randomly selected. Further, all parameters are updated using
SDM until the inference error become sufficiently small.
(C) Method C is proposed in Ref. [9]. Initial values of
c are determined using D by VQ and b is computed by
Eq.(16). Weight parameters are randomly selected. Further,
all parameters are updated using SDM until the inference
error become sufficiently small.

Note that the difference between Methods B and C is that
learning data D or D∗ is used in algorithm.
(D) Method D is proposed in Ref. [17]. It is learning method
composed of iterating two stages. The center parameters
c are determined using D by VQ and b is computed by
Eq.(16). Weight parameters w is set to the results of SDM,
where the initial values of w are set randomly. Further, all
parameters are updated using SDM for the definite number
of learning time. With iterating processes, parameters of the
result of SDM are set to ones of the next process. Outer
iterating process is repeated until the inference error become
sufficiently small.
(E) Method E is the proposed one. It is learning method
composed of iterating three stages. It starts by breaking the
method into three stages: learning in the first stage, inter-
mediate stage of adjusting the center and width parameters,
and the next stage of updating the weight parameters using
GIM. As for the final stage, three parameters are updated
using SDM for the definite number of learning time. With
iterating processes, parameters of the result of SDM are set
to ones of the next process.

IV. NUMERICAL SIMULATIONS

In order to show the effectiveness of Learning Algorithm
E, simulations of function approximation and classification
problems are performed.

A. Performance of initial assignment of parameters
In this simulation, performance of initial assignment of

parameters for Methods A, B and E∗, where E∗ means
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TABLE I
CONDITIONS OF ALGORITHMS FOR NUMERICAL SIMULATION OF

FUNCTION APPROXIMATION

A B C D E
Kcij 0.01 0.01 0.01 0.01 0.01
Kbij 0.01 0.01 0.01 0.01 0.01
Kwi 0.1 0.1 0.1 0.1 0.1

εinit ���� 0.1 0.1 0.1 0.1

εfin ���� 0.01 0.01 0.01 0.01

λ
���� 0.7 0.7 0.7 0.7

TABLE II
THE RESULTS FOR FUNCTION APPROXIMATION

MSE for Learning(×10−4) 0.10
A MSE of Test(×10−4) 1.63

t 438.1
MSE of Learning(×10−4) 0.10

B MSE of Test(×10−4) 1.86
t 106.7

MSE of Learning(×10−4) 0.10
E MSE of Test(×10−4) 2.04

t 90.3

that the method E without outer iterating process and with
iterating process of SDM until the inference error becomes
sufficiently small.

The system is identified by fuzzy inference systems. This
simulation uses four systems specified by the following
functions with 4-dimensional input space [0, 1]4, and one
output with the range [0, 1]:

y =
(2x1 + 4x2

2 + 0.1)2

37.21

× (4 sin(πx3) + 2 cos(πx4) + 6)

12
(26)

The numbers M , M0, β, Mmax and the number of rules n
are 200, 200, 0, 200 and 20, respectively. The threshold θ is
1.0×10−4. Note that the number of rules is fixed. The results
are average from ten trials. The results show that appropriate
initial assignment of parameters results in a fast learning
method.

B. Function approximation problems

In order to show the effectiveness of Learning Algo-
rithm E, numerical simulations of function approximation
are performed. The systems are identified by fuzzy infer-
ence systems. This simulation uses four systems specified
by the following functions with 4-dimensional input space
[0, 1]4(Eqs.(27) and (28)) and [−1, 1]4((29) and (30)), and
one output with the range [0, 1];

y =
(2x1 + 4x2

2 + 0.1)2

37.21

× (4 sin(πx3) + 2 cos(πx4) + 6)

12
(27)

y =
(sin(2πx1)× cos(x2)× sin(πx3)× x4 + 1.0)

2.0
(28)

y =
(2x1 + 4x2

2 + 0.1)2

74.42

+
(3e3x3 + 2e−4x4)−0.5 − 0.077

4.68
(29)

TABLE III
CONDITIONS OF ALGORITHMS FOR NUMERICAL SIMULATION OF

FUNCTION APPROXIMATION PROBLEMS

A B C D E
Tmax 50000 50000 50000 5000 50
Kcij 0.01 0.01 0.01 0.01 0.01
Kbij 0.01 0.01 0.01 0.01 0.01
Kwi 0.1 0.1 0.1 0.1 0.1

εinit ���� 0.1 0.1 0.1 0.1

εfin ���� 0.01 0.01 0.01 0.01

λ
���� 0.7 0.7 0.7 0.7

TABLE IV
INITIAL PARAMETERS OF NUMERICAL SIMULATION FOR FUNCTION

APPROXIMATION PROBLEMS OF EQS.(27), (28), (29) AND (30)

θ 1.0× 10−4

M 200
M0 200
β 50

Mmax 400
♯ Learning data 512
♯ Test data 6400

y =
(2x1 + 4x2

2 + 0.1)2

74.42

+
(4 sin(πx3) + 2 cos(πx4) + 6)

446.52
(30)

Tables III and IV show the initial conditions for sim-
ulations. In Table III, A, B, C, D and E mean Learning
Algorithms A, B, C, D and E. Table V shows the results
for simulations. In Table V, the number of rules, MSE’s
for learning and test, and learning time(second) are shown,
where the number of rules means one when the threshold
θ = 1.0×10−4 of inference error is achieved in learning. The
result of simulation is the average value from twenty trials.
As a result, the proposed method E reduces the learning time
to about one-tenth compared to other methods.

C. Classification problems

Iris, Wine and BCW data from UCI database shown in
Table VI are used for numerical simulation [16]. In this

TABLE V
THE RESULTS FOR FUNCTION APPROXIMATION PROBLEMS

Eq(27) Eq(28) Eq(29) Eq(30)
The number of rules 4.2 13.6 7.2 5.1

A MSE Learning 0.40 0.71 0.43 0.28
(×10−4) Test 0.52 1.09 1.00 0.49

Learning time (s) 254.9 2617.5 777.9 365.7
The number of rules 5.6 14.9 5.2 3.7

B MSE Learning 0.18 0.77 0.49 0.33
(×10−4) Test 0.27 1.42 1.11 0.48

Learning time (s) 624.5 6766.1 513.0 255.5
The number of rules 4.8 15.6 5.5 4.0

C MSE Learning 0.21 0.72 0.54 0.88
(×10−4) Test 0.34 1.33 0.69 0.53

Learning time (s) 350.2 3125.0 447.6 210.0
The number of rules 3.0 8.4 4.0 3.0

D MSE Learning 0.28 0.69 0.66 0.21
(×10−4) Test 0.35 1.25 0.76 0.23

Learning time (s) 268.5 1673.3 425.9 267.0
The number of rules 3.0 8.0 8.6 5.5

E MSE Learning 0.30 0.88 0.84 0.75
(×10−4) Test 0.39 1.25 1.15 1.02

Learning time (s) 10.3 45.3 51.9 25.4
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TABLE VI
THE DATASET FOR PATTERN CLASSIFICATION

Iris Wine BCW
The number of data 150 178 683
The number of input 4 13 9
The number of class 3 3 2

TABLE VII
CONDITIONS OF ALGORITHMS FOR NUMERICAL SIMULATION OF

PATTERN CLASSIFICATION

A B C D E
Tmax 50000 50000 50000 5000 50
Kcij 0.001 0.001 0.001 0.001 0.001
Kbij 0.001 0.001 0.001 0.001 0.001
Kwi 0.05 0.05 0.05 0.05 0.05

εinit ���� 0.1 0.1 0.1 0.1

εfin ���� 0.01 0.01 0.01 0.01

λ
���� 0.7 0.7 0.7 0.7

simulation, 5-fold cross-validation is used. Tables VII and
VIII show the initial conditions for simulations and Table
IX shows the result of classification for each algorithm. In
Table IX, the number of rules, RM’s for learning and test, and
learning time(second) are shown, where RM means the rate
of misclassification. It is shown that the proposed method E
is realized with high accuracy in a short time compared with
other methods.

V. CONCLUSION

In this paper, we proposed a new learning method com-
posed of iterating three stages. It started by breaking the
method into three stages: learning in the first stage, inter-
mediate stage adjusting the center and width parameters,
and the next stage of updating the weight parameters using
the generalized inverse method (GIM). As the final stage,
three parameters were updated by learning based on SDM.
In order to demonstrate the effectiveness of the proposed
method, numerical simulations for function approximation
and pattern classification problems were performed. It was
shown that the proposed method reduces the learning time
to about one-tenth compared to other methods in function
approximation and is realized with high accuracy in a short
time compared with other methods in classification problem.

In the future work, we will propose faster learning algo-
rithm using VQ and the generalized inverse method com-
pared to other methods.
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