Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18,2016, Hong Kong

The Hamiltonian Connectivity of Rectangular
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Abstract—A Hamiltonian path of a graph is a simple path popular hypercubes are Hamiltonian but are not Hamiltonian
which visits each vertex of the graph exactly once. The connected. However, many variants of hypercubes have been
Hamiltonian path problem is to determine whether a graph shown to be Hamiltonian connected [9], [12], [13], [23]. In

contains a Hamiltonian path. A graph is called Hamiltonian thi ill study the Hamiltoni ted "
connected if there exists a Hamiltonian path between any two 'S P@pEer, we will study the Ramilionian connected property

distinct vertices. In this paper, we will study the Hamiltonian Of rectangular supergrid graphs.

connectivity of rectangular supergrid graphs. Supergrid graphs The two-dimensional integer grid G*° is an infinite graph
were first introduced by us and include grid graphs and whose vertex set consists of all points of the Euclidean
triangular grid graphs as their subgraphs. The Hamiltonian  h1ane with integer coordinates and in which two vertices
path problem for grid graphs and triangular grid graphs . . . . .

was known to be NP-complete. Recently, we have proved /€ at_jjacent if and only if t_he (E_uclldez_:m) dlstanc_e between
that the Hamiltonian path problem for supergrid graphs is themis equal to 1. Thiavo-dimensional triangular grid 7>

also NP-complete. The Hamiltonian paths on supergrid graphs is an infinite graph obtained fro&>° by adding all edges
can be applied to compute the stitching traces of computer on the lines traced from up-left to down-right.gkid graph
sewing machines. Rectangular supergrid graphs form a popular is a finite, vertex-induced subgraph 6. For a nodev in

subclass of supergrid graphs, and they have strong structure. In L .
this paper, we will show that rectangular supergrid graphs are 1€ Plane with integer coordinates, let and v, represent

Hamiltonian connected except two trivial forbidden conditions. the = and y coordinates of node v, respectively, denoted
by v = (vs,vy). If v is a vertex in a grid graph, then its
Index Terms—Hamiltonian connected property, supergrid possible adjacent vertices 'nCIu‘j@’ Uy — 1)'.(”7«' - 171.)1/)’
graph, rectangular supergrid graph, computer sewing machine. (vz + 1,v), and(vs, v, +1). A triangular grid graph is a
finite, vertex-induced subgraph @f°. If v is a vertex in a
triangular grid graph, then its possible neighboring vertices
include (vg, vy, — 1), (v — L,vy), (Ve +1,0y), (Vg,vy + 1),
(vy —1,vy — 1), and(vy + 1, v, + 1). Thus, triangular grid
A Hamiltonian path in a graph is a simple path in whichgraphs contain grid graphs as subgraphs. Note that triangular
each vertex of the graph appears exactly once. dyid graphs defined above are isomorphic to the original
Hamiltonian cycle in a graph is a simple cycle with thetriangular grid graphs studied in the literature [7] but these
same property. Thelamiltonian path (resp.,cycle) problem  graphs are different when considered as geometric graphs.
involves deciding whether or not a graph contains a Hammy the same construction of triangular grid graphs from grid
tonian path (resp., cycle). A graph is callddmiltonianifit  graphs, we have proposed a new class of graphs, namely
contains a Hamiltonian cycle, and is said toHamiltonian  sypergrid graphs, in [10]. The two-dimensional supergrid
connected if for each pair of distinct vertices in it, there isgec s an infinite graph obtained fror> by adding all
a Hamiltonian path between them. Clearly, a Hamiltoniaéuges on the lines traced from up-right to down-left. A
connected graph contains many Hamiltonian cycles, angipergrid graph is a finite, vertex-induced subgraph .
hence, the sufficient conditions of Hamiltonian ConnectiVitYhe possib|e adjacent vertices of a vertex= (U$7Uy)
are stronger than those of Haml|t0n|CI'[y in a Supergrid graph includéﬂgﬂvy _ 1), (UJ; — 17Uy)1
The Hamiltonian path and cycle problems have numerogs, 4 1, vy)y (Ve vy + 1), (Ve — 1,0, — 1), (v + 1,0, + 1),
applications in different areas, including establishing trangp, +1,v, — 1), and(v, — 1,v, 4 1). Then, supergrid graphs
port routes, production launching, the on-line optimization @fontain grid graphs and triangular grid graphs as subgraphs.
flexible manufacturing systems [1], computing the perceptugbtice that grid and triangular grid graphs are not subclasses
boundaries of dot patterns [22], DNA physical mapping [8hf supergrid graphs, and the converse is also true: these
and fault-tolerant rOUting for 3D netWOfk-Oﬂ-Chip arChiteCc|asses of graphs have common elements (points) but in
tures [4]. It is well known that the Hamiltonian path angyeneral they are distinct since the edge sets of these graphs
cycle problems are NP-complete for general graphs [6], [1&lre different. Obviously, all grid graphs are bipartite [15] but
The same holds true for bipartite graphs [19], grid graphigangular grid graphs and supergrid graphs are not bipartite.
[15], triangular grid graphs [7], and supergrid graphs [10}he Hamiltonian cycle and path problems for grid graphs and
In the literature, there are many studies for the Hamiltoniafangular grid graphs were known to be NP-complete [7],
connectivity of interconnection networks [5], [9], [21]. The[15)]. Recently, we showed that the Hamiltonian path and cy-

. . cle problems on supergrid graphs are also NP-complete [10].
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supergrid graphs are always Hamiltonian connected except be two vertices inG. We write G — S for the subgraph
two trivial cases. induced byV — S. In general, we writeG — v instead of
The Hamiltonian related problems on supergrid graphs cah— {v}. If (u,v) is an edge inG, we say that: is adjacent
be applied to control the stitching trace of a computerized v andu, v areincident to edge(u, v). The notationu ~ v
sewing machine as stated in [10]. Previous related work®sp.u ~ v) means that vertices andv are adjacent (resp.,
are summarized as follows. Itef al. [15] showed that the non-adjacent). Edge; = (u1,v;) is said to beincident to
Hamiltonian path problem on grid graphs is NP-completedgee; = (us,v2) if (u; ~ uz andwvy ~ v2) or (u3 ~ vg
They also gave necessary and sufficient conditions foraadwv; ~ us). The notatiore; =~ e; means that edges and
rectangular grid graph having a Hamiltonian path between are incident. Aneighbor of v in G is any vertex that is
two given vertices. Note that rectangular grid graphs assljacent ta. We useNg (v) to denote the set of neighbors of
not Hamiltonian connected. Zamfires@ al. [26] gave v in G, and letNg[v] = Ng(v) U {v}. A path P of length
sufficient conditions for a grid graph having a Hamiltoniaf?| in G, denoted byv; — v2 — -+ = vp|—1 — Vp|,
cycle, and proved that all grid graphs of positive width havie a sequencév,, vz, --- ,vp|—1,v|p|) Of vertices such that
Hamiltonian line graphs. Later, Chest al. [3] improved (v;,v;11) € E for 1 < ¢ < |P|. The first and last vertices
the Hamiltonian path algorithm of [15] on rectangular gridisited by P are called thepath-start and path-end of P,
graphs and presented a parallel algorithm for the Hamiltonidenoted bystart(P) andend(P), respectively. We will use
path problem with two given endpoints in rectangular grid; € P to denote P visits vertexv;,” and use(v;,v;+1) € P
graphs. Also there is a polynomial-time algorithm for findingo denote P visits edge(v;, v;+1)”". A path fromv; to vy, is
Hamiltonian cycles in solid grid graphs [20]. In [25], Salmanienoted by(v;, v )-path. In addition, we us® to refer to the
introduced alphabet grid graphs and determined classessef of vertices visited by patF if it is understood without
alphabet grid graphs which contain Hamiltonian cycleambiguity. A pathP is a cycle if|V(P)| > 3 andend(P) ~
Keshavarz-Kohjerdi and Bagheri [17] gave necessary asthrt(P). Two paths (or cyclesp; and @, of graphG are
sufficient conditions for the existence of Hamiltonian pathsalled vertex-disjoint if and only it/ (Q1)NV (Q2) = 0. Two
in alphabet grid graphs, and presented linear-time algorithwesrtex-disjoint paths?, and P, can be concatenated into a
for finding Hamiltonian paths with two given endpointgath, denoted by, = Ps, if end(P1) ~ start(Pz).
in these graphs. Recently, Keshavarz-Kohjezdial. [18] Let S be the infinite graph whose vertex set consists of
presented a linear-time algorithm for computing the longeall points of the plane with integer coordinates and in which
path between two given vertices in rectangular grid graphsio vertices are adjacent if and only if the difference of
Reay and Zamfirescu [24] proved that all 2-connected, lineaheir 2 or y coordinates is not larger than 1. fpergrid
convex triangular grid graphs except one special case contgiaph is a finite, vertex-induced subgraph ¢f°. For a
Hamiltonian cycles. The Hamiltonian cycle (path) on triangwertexv in a supergrid graph, let, andv, denotez andy
lar grid graphs has been shown to be NP-complete [7]. Theyordinates of its corresponding point, respectively. We color
also proved that all connected, locally connected triangukagrtexv to bewhite if v, + v, = 0 (mod 2); otherwisey is
grid graphs (with one exception) contain Hamiltonian cyclesolored to beblack. Then there are eight possible neighbors
In addition, the Hamiltonian cycle problem on hexagonal grigf vertex v including four white vertices and four black
graphs has been shown to be NP-complete [14]. Recentlgrtices. Obviously, all grid graphs are bipartite [15] but
we prove that the Hamiltonian cycle and path problems @upergrid graphs are not bipartite.
supergrid graphs are NP-complete [10]. We also showedRectangular supergrid graphs first appeared in [10], in
that every rectangular supergrid graph always containswhich we tried to solve the Hamiltonian cycle problem.
Hamiltonian cycle. Very recently, we prove that linear-conveixet R(m,n) be the supergrid graph whose vertex set
supergrid graphs, which form a subclass of supergrid graphs(R(m,n)) = {v = (vz,vy)|1 < v, < m and1 < v, <
always contain Hamiltonian cycles [11]. n}. That is, R(m,n) containsm columns andn rows of
The rest of the paper is organized as follows. In Sectiarrtices inS>. A rectangular supergrid graph is a supergrid
Il, some notations and observations are given. Section ftaph which is isomorphic ta?(m,n) for some m and
discusses the Hamiltonian connectivity of smaller sized regt: Then m and n, the dimensions, specify a rectangular
angular supergrid graphs. In Section IV, we prove that rectagupergrid graph up to isomorphism. The size Rfm,n)
gular supergrid graphs are Hamiltonian connected except tigodefined to bemn, and R(m,n) is called n-rectangle.
forbidden conditions. That is, we can construct a HamiltoniaR(mn, n) is calledeven-sized if mn is even, and it is called
path between any two distinct vertices on a rectanguledd-sized otherwise. In this paper, without loss of generality
supergrid graph. Finally, we make some concluding remarkg assume that: > n.

in Section V. Let v = (vy,v,) be a vertex inR(m,n). The vertexv
is called theupper-left (resp.,upper-right, down-left, down-
Il. TERMINOLOGIES AND BACKGROUND RESULTS right) corner of R(m,n) if w, > v, andw, < v, (resp.,

In this section, we will introduce some terminologies and, < v, andw, < vy, w; = v, andw, > vy, Wy < Uy
symbols used in the paper. Some observations and premid w, > v,) for any vertexw = (w,,w,) € R(m,n).
ously established result on the Hamiltonian cycle problem the edge(u,v) is said to behorizontal (resp.,vertical) if
rectangular supergrid graphs are also presented. For graph= v, (resp.,u, = v.), and is callectrossed if it is neither
theoretic terminology not defined in this paper, the readerashorizontal nor a vertical edge. In the figures we assume that
referred to [2]. (1,1) are coordinates of the down-left corner in a rectangular

Let G = (V, E) be a graph with the vertex s&t(G) and supergrid graphR(m,n). There are four boundaries in a
the edge sel/(G). Let S be a subset of vertices @@, and let rectangular supergrid grapR(m,n) with m,n > 2. The
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Fig. 1. A rectangular supergrid gragR(10, 9).

three concatenated
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Fig. 2. A Hamiltonian cycle containing 3 concatenated boungeths as
a subpath for (a)?(8, 6) and (b) R(7, 5), where solid arrow lines indicate
the edges in the cycles. Note th&(8,6) and R(7,5) are even-sized and
odd-sized, respectively.

edge in the boundary aR(m,n) is called boundary edge.
The path is calletboundary of R(m, n) if it visits all vertices

of the same boundary iR(m, n). For example, Fig. 1 shows

a rectangular supergrid grapR(10,9) which is called 9-

rectangle and contairy9 + 8) = 34 boundary edges. Fig.

1 also indicates the types of edges and corners.
In our algorithm, we need to partition a rectangular sup

follows.

Definition 1. The cut operation of a rectangular supergri
graph R(m,n) is a partition of R(m,n) into two vertex
disjoint rectangular supergrid graptiy = R(m,n1) and
Ry = R(’I’I’LQ7 712) such tha’[(n =mi+mse andn; = nqg = n)
or (n = ny1+n9 andm; = me = m). A cut is calledvertical

if n; = ne = n, and is callechorizontal if m; = mq = m.

For example, the bold dashed line in Fig. 1 depicts a

vertical cut of R(10, 11) which partition it intoR(4,11) and
R(6,11).

In the past, we showed that rectangular supergrid gra 1
always contain Hamiltonian cycles except 1-rectangles. TRE

P

P,
PN PN TSN i
7z N 7 N 7 N
4 N 4 N 4 N
/ LI\ / \ /7 u\ H
! 1 S \ ! 1 U,
CG Ygdt oo Y 1 G :
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\ / \ / \ /
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Fig. 3. A schematic diagram for (a) Proposition 2, (b) Profasi3, (c)
Proposition 4, and (d) Proposition 5, whegerepresents the destruction of
an edge while constructing a cycle or a path.

the boundary edges on the three sides of the rectangular su-
pergrid graph. This shows that for any rectangular supergrid
graph R(m,n) with m,n > 2, we can always construct

a Hamiltonian cycle such that it contains all the boundary
edges except one side &f(m, n).

Let (R(m,n), s,t) denote the rectangular supergrid graph
R(m,n) with two specified distinct verticesand¢. Without
loss of generality, we will assume that, < t,. We
denote a Hamiltonian path betweerandt in R(m,n) by
HP(R(m,n),s,t). We say thatd P(R(m,n), s,t) exists if
there is a Hamiltonian path betweenand ¢ in R(m,n).
From Lemma 1, we know thalf P(R(m,n), s,t) exists if
m,n > 2 and(s,t) is an edge in the constructed Hamiltonian
cycle of R(m,n).

We next give some observations on the relations among
cycle, path, and vertex. These propositions can be used in
verifying our results. Let”; andCs be two vertex-disjoint
cycles of a grapld:. If there exist two edges; = (u1,v1) €

e 1 4
grid graph into two disjoint parts. The partition is defined agl ande; = (up, v) € C, such thate, = e, thenC) and

> can be concatenated into a cycle(@f Thus we have the
following proposition.

dProposition 2. Let ¢y and C; be two vertex-digoint cycles

of a graph G. If there exist two edges e; € Cy and e; € Cy
such that e; = eo, then C; and C5 can be combined into a
cycle of G. (see Fig. 3(a))

Let C; be a cycle and leP, be a path in a grapti such
that V(Cy) NV (Py) = 0. If there exist two edges; € C4
des € P; such thate; e2, then C; and P; can be
combined into a pat of G with start(P) = start(P;) and
ehnsd(P) = end(Py). Fig. 3(b) depicts such a construction,
d hence the following proposition holds true.

~
~

following lemma states such a result concerning the Hamiroposition 3. Let C; and P, be a cycle and a path,

tonicity of rectangular supergrid graphs.

Lemma 1. (See [10]) Let R(m,n) be a rectangular super-
grid graph with m,n > 2. Then, R(m,n) hasa Hamiltonian
cycle which contains at least three concatenated boundary
paths as its subpath.

Fig. 2 shows a Hamiltonian cycle for an even-sized

odd-sized rectangular supergrid graph found in Lemma

respectively, of a graph G such that V(Cy) NV (P) = 0.
If there exist two edges e; € Cy and e; € P; such that
e1 = ey, then Cy and P; can be combined into a path of G.
(see Fig. 3(b))

The above observation can be extended to a vertex

where P, = z, as depicted in Fig. 3(c), and we then have
c{be following proposition.

Each Hamiltonian cycle found by this lemma contains aRroposition 4. Let C; be a cycle (path) of a graph G and let
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Fig. 4. Rectangular supergrid graph in which there is no Hamién path (a) (b (©)
betweens andt, where the solid lines indicate the longest path between
andz. Fig. 5. The Hamiltonian pattid P(R(m, 2), s,t) when (R(m, 2), s, t)

does not satisfy condition (F2), where (&) = t., (b) sz < t; and
sy = ty, and (C)sy < tz andsy # ty,.

x be avertexin G — V(Ch). If there exists an edge (u1,v1)

in Oy such that u; ~ z and v, ~ z, then C; and x can be 3. & 3 S 3

combined into a cycle (path) of G. (see Fig. 3(c)) I %w I % [ F} I Q/
Let P, and P, be two vertex-disjoint paths of a graph z

G. If there exists one edge6ui,v;) € P, such that @ ® © @

up ~ start(Py) andwv; ~ end(P,), then P, and P, can N s s s
be combined into a pat® of G with start(P) = start(P;) P !
andend(P) = end(P). Hence, the following observation is |t f
true. © ® @ ()

Proposition 5. Let P, and P, be two paths of a graph Fig. 6. The Hamiltonian patiif P(R(3, 3), s, t), where solid lines indicate
. . . 9 b s7 ’
G such that V(P1) N V(P,) = 0. If there exists one edge e constructed Hamiltonian path.

(u1,v1) € Py or (ug,vz) € Py such that (uy ~ start(Ps)
and v1 ~ end(Pz)) or (ug ~ start(Py) and vy ~ end(Py)),
then P, and P, can be combined into a path of G. (see Fig.
3(d))

Proof: Without loss of generality, assume that < .
There are two cases:
Case 1: s, = t,. In this case,(s,t) is a vertical edge
I1l. THE HAMILTONIAN CONNECTED PROPERTIES OF  jn R(m,?2). Since(R(m,?2),s,t) does not satisfy condition
1-RECTANGLE, 2-RECTANGLE, AND 3-RECTANGLE (F2), (s,t) is a boundary edge. Then, we can construct a

In this section, we will discuss the Hamiltonianti@miltonian(s,¢)-path as shown in Fig. 5(a).
connectivity of 1-, 2-, and 3-rectangles. We first observe €8s 2: s, < t,. SUPpOSes, = t,. Lets’' ~ s andt’ ~ ¢
two conditions forH P(R(m,n), s,t) with n = 1 or n =2 Such thats, # s, andt, # t,. We can make a path, from
does not exist. We then prove thBtP(R(m, 3), s,t) does * 1O s’ and a path?, from ¢ to ¢’ as shown in Flg. 5(b), and
exist, i.e., any3-rectangle always contains a Hamiltoniadl€n connect’ to ¢" by a pathP;. Note that ifs ~ ¢ then
path between any two distinct vertices. Consider ¥ ~1t'-Then,Pi = P3 = P, is a HP(R(m,2),s,t). The

rectangle (R(m, 1), s,t). The following condition implies Case ofs, # t, can be proved similarly (see Fig. 5(c)).
HP(R(m,1),s,t) does not exist. It follows from the above two cases that

HP(R(m,2),s,t) does exist wherfR(m, 2), s,t) does not
(F1) R(m,n) is a 1-rectangle, and either or ¢ is not a satisfy condition (F2). Thus, the lemma holds true. =
corner vertex (see Fig. 4(a)). The conditions of (F1) and (F2) are calléarbidden for
(R(m,n), s, t). In the rest of the paper, we will prove that
Obviously, if (R(m,1),s,¢) does not satisfy condition /£ (R(m,n),s.t) exists if (R(m,n), s,t) does not satisfy
(F1), thenH P(R(m, 1), s,) does exist and hence the fol-the forbidden conditions. We first considéR(m, 3), s, )
lowing lemma holds true. and prove thatd P(R(m, 3), s,t) does exist as follows.

Lemma 8. Let R(m,3) be a 3-rectangle with m > 3
and let s,t be any two distinct vertices in R(m,3). Then,
HP(R(m,3),s,t) does exist and it contains at least one
boundary edge in each boundary of R(m, 3).

Lemma 6. Let R(m,1) be a 1-rectangle with m > 2 and
let s,t beits two distinct vertices. Then, HP(R(m, 1), s,t)
does exist if (R(m, 1), s,t) does not satisfy condition (F1).

Next, we consider(R(m,2),s,t) with m > 2. By

inspection, the following condition implies the graph_ Progf: Le“é): @zaﬁy) beha VE”‘ZX 'nR(IW;{ 3) such f
R(m. 2) has no Hamiltoniar(s, {)-path. thatw, = m andw, = 2. Note that the down-left corner o

R(m,3) is coordinated a¢1,1). We claim that there exists

a Hamiltonian pathP betweens and ¢ in R(m,3) such

that (w, z) € P, (w,z) is a vertical and boundary edge of

R(m,3), and P visits at least one boundary edge in each

boundary ofR(m, 3). Then, the lemma holds true.

We prove this claim by induction om. Initially, let m =

By symmetry, the possible relative locationssadndt are
shown in Fig. 6. Fig. 6 also depicts the desired Hamiltonian

Lemma 7. Let R(m,2) be a 2-rectangle with m > 2 and (s, t)-path of R(3,3). Thus, the claim holds whem = 3.

let s, t be two distinct vertices of it. Then, HP(R(m, 2), s,t) Now, assume that the claim holds true when= &, & > 3.

does exist if (R(m,2),s,t) does not satisfy condition (F2).  Then, R(k,3) contains a Hamiltonian patR’ between any

(F2) R(m,n) is a 2-rectangle, ands, t) is a vertical edge
but is not a boundary edge &(m,n) (see Fig. 4(b)).

When (R(m, 2), s,t) does not satisfy condition (F2), we
will prove HP(R(m,2), s,t) to be existent as the following 3
lemma. :
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two verticess’ and ¢’ such thatw’ = (k,2), (v’,2') € P/, of R(k+1,3).

(w',2") is a vertical and boundary edge &%, 3), and P’ Case 3: s,t € Ry,. Depending on whether ~ ¢, we have
visits at least one boundary edge in each boundaR(éf3). the following two subcases:
Note thatz’ = (k, 1) or (k,3). Consider thatn = k+ 1. Let Case 3.1:s ~ t. In this subcases, t € {(k+1,1), (k+

s,t be any two distinct vertices adR(k + 1, 3). Without loss 1,2)} or s,t € {(k + 1,2),(k + 1,3)}. Consider thats =
of generality, assume that, < ,. We first make a vertical w = (k+1,2) andt = (k+1,3). Letz = (k+1,1), s’ =
cut on R(k + 1, 3) for partitioning it into B, = R(k,3) and (k,2), and lett’ = (k,3). Then,s’ ~ z andt’ ~ t. By the
Ry = R(1,3). Depending on the locations af and ¢, we induction hypothesis, there exists a Hamilton{ah ¢’)-path
consider the following three cases: P, of R(k,3) such thatP; visits at least one boundary edge
Casel:s,t € Ry. Letw = (k+1,2),z= (k+1,1),and in each boundary oR(k,3). LetP =s — z — P, — t.
Z = (k+1,3) be the vertices of?,. Let P, = z — w — z. Then,P is the desired Hamiltoniafs, t)-path of R(k+1, 3).
Then, P, is the Hamiltonian path oRs with start(P;) = z The other cases can be proved similarly.
andend(P;) = Z. By the induction hypothesis, there exists Case 3.2:s « t. In this subcases, t € {(k+1,1), (k+
a Hamiltonian (s, t)-path P, of R; = R(k,3) such that 1,3)}. Without loss of generality, assume that= z =
(w',2") € P, and Py visits at least one boundary edge ifk+1,1) andt = (k+1,3). Letw = (k+1,2), s’ = (k, 1),
each boundary oR(k, 3), wherew’ = (k,2) andz’ = (k,1) and lett’ = (k,2). Then,s’ ~ w andt’ ~ t. By the
or (k,3). By the structure of rectangular supergrid graph#duction hypothesis, there exists a Hamilton{ah ¢')-path
z(= start(Py)) ~ 2’ and z2(= end(P,)) ~ w', or = ~ w’ P; of R(k,3) such thatP; visits at least one boundary edge
and z ~ z’. By Proposition 5,P, and P, can be combined in each boundary oR(k,3). Let P = s — w — P, — .
into a Hamiltonian(s, t)-path P of R(k + 1,3) such that Then,P is the desired Hamiltoniafs, t)-path of R(k+1, 3).
(w,z) € P. Since P, visits at least one boundary edge in We have considered any case for constructing a Hamilto-
each boundary oR(k, 3), P also visits at least one boundarynian(s, t)-path P of R(k+1, 3) such thatP visits at least one

edge in each boundary @t(k + 1, 3). boundary edge in each boundary®fk+1,3) and(w, z) €
Case 2: s € R; andt € R,. Consider the position of. P, wherew = (k+1,2) andz € {(k+1,1),(k + 1,3)}.
There are two subcases: Thus, the claim holds true when = k& + 1. By induction,
Case2.1:t = (k+1,2). Letw = t. Depending on the the claim holds true form > 3. This completes the proof of
location of s, we have the following three subcases: the lemma. u

Case 2.1.1:s = (k,2). Lett' = (k, 1), 2’ = (k,3), We have proved the Hamiltonian connectivity &F
p = (k+1,3), and letz = (k + 1,1). By the induc- rectangles. Inthe next section, we will verify the Hamiltonian
tion hypothesis, there exists a Hamiltonian ¢')-path P,  connectivity of R(m, n) for m,n > 3.
of R(k,3) such that(s,z’) € P, and P, visits at least
one boundary edge in each boundary Rfk, 3). Clearly, IV. THE HAMILTONIAN CONNECTIVITY OF
(s,t') & Pp. Sincep ~ s, p ~ 2/, and (s,2') € Py, by RECTANGULAR SUPERGRID GRAPHS
Proposition 4P; and p can be combined into a patR] By Lemma 8,H P(R(m, 3), s, t) does exist forn > 3 and
with start(P{) = s andend(P]) = t'. Let P, = z — t. any two distinct vertices, t. In this section, we assume that
Sincet’(= end(P])) ~ z(= start(P2)), P{ = P forms a a rectangular supergrid gragh(m, n) satisfiesm > n > 3.
Hamiltonian (s, ¢)-path P of R(k + 1, 3) such thatP visits We will construct a Hamiltonians, t)-path of R(m,n), and
at least one boundary edge in each boundar®@f+ 1,3) henceH P(R(m,n), s, t) does exist. Following the technique

and (w, z) € P. used in [3], [15], [18], we will develop an algorithm for
Case 2.1.2:s = (k,1) or (k,3). Without loss finding a Hamiltonian(s, t)-path of R(m,n). The algorithm
of generality, assume that = (k,1). Let ' = (k,2), uses the divide-and-conquer technique and is outlined in the

z' = (k,3),p=(k+1,3), and letz = (k + 1,1). By the following steps:
same construction in Case 2.1.1, we can construct a desiredtep 1: Partiton R(m,n) into five disjoint rectangular

Hamiltonian(s, t)-path P of R(k + 1,3). supergrid subgraphB;—R; by a peeling operation

Case 2.1.3:s5 ¢ {(k,1),(k,2),(k,3)}. Let ¢’ = such thats,t € Rs, where a peeling operation
(k,2). By the induction hypothesis, there exists a Hamilto- consists of two vertical and two horizontal cuts on
nian (s,t')-path P, of R(k,3) such that(t,z’) € P, and R(m,n) and is defined later;

P, visits at least one boundary edge in each boundary ofStep 2: Construct Hamiltonian cycles &f —Ry;
R(k,3), wherez’ = (k,1) or (k,3). Let p be the vertex  Step 3: Construct a Hamiltoniafs, t)-path or a longest

of R, such that(p, z) is a horizontal edge iR(k + 1, 3), (s,t)-path of Rs;

and letz € {(k+1,1),(k + 1,3)} — {p}. Then, the same Step 4: Combine all constructed Hamiltonian cycles and
construction in Case 2.1.1 can be used to obtain the desired the Hamiltonian (longest) path into a Hamiltonian
Hamiltonian path ofR(k + 1, 3). (s,t)-path of R(m,n).

Case 2.2:t = (k+1,1) or (k + 1,3). Without loss Before giving the peeling operation in Step 1, we first
of generality, assume that= (k + 1,1). Let w = (k + introduce the following notation:
1,2),z=(k+1,3),and letP, = z - w — t. If s =
(k,2), then lett’ = (k, 3); otherwise, lett’ = (k,2). By the
induction hypothesis, there exists a Hamilton{ant’)-path
P, of R(k,3) such thatP; visits at least one boundary edg
in each boundary oRR(k,3). Sincet' (= end(Py)) ~ z(=
start(Pz)), P1 = P» is the desired Hamiltonia(s, ¢)-path The peeling operation in Step 1 is then defined as follows:

Definition 2. Two verticesu and v in R(m,n) are called
antipodes if

1) min{u,, v, } < 2 andmax{u,,v,} >m — 1, and

2) min{u,, v, } < 2 andmax{u,,v,} > n — L.
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Fig. 8. A Hamiltonian (s, t)-path of R(11,9) combined from all
constructed Hamiltonian cycles ét;—R4 and the Hamiltoniar(s, t)-path

of Rs, where bold dashed lines indicate the cuts in a peeling operation,
solid lines indicate the constructed Hamiltonian path, @ncepresents the
destruction of an edge under construction.

Fig. 7. A schematic diagram for a peeling operation (&(m, n), s, t)
whens; < t; andsy < ty.

Definition 3. For (R(m,n),s,t), a peeling on R(m,n)

consists of two vertical and two horizontal cuts to partitior R 2

R(m,n) into five disjoint rectangular supergrid subgraphs or Ror Do . N

Ry, Rs, R3, Ry, R5 as illustrated in Fig. 7, which satisfy I . =

(1) s,t € R; and are antipodes iRs;

(2) each ofRy, Rs, R3, R4 is either a rectangular supergrid

graphR(m/,n’) with m’,n’ > 1, or empty;

(3) Ry = 0 (resp.,Re = 0, R3 = 0, Ry = 0) if and only 7

if 1 <min{s,;,t,} <2 (resp.,m — 1 < max{s,,t,} < m, R ‘

n—1 < max{sy, t,} <n, 1 <min{s,,t,} < 2). 5 5
© @

(a) (b)

Rs R

o Rs=R(m, 1)o R, [o—elo Rs=R(m 1)-of

Usually the two vertical cuts of a peeling operation are
performed before the two horizontal cuts. Fig. 7 depictsRig. 9. The possible cases féts = R(m’, 1), where (a)s, t are corners
schematic diagram for the relations amoRg—Rs, s and ©f Bs, (b)s,t are not corners 035, (c) s is a corner but is not a corner
. . of Rs, and (d)¢ is a corner buts is not a corner ofRs.
t whens, < t, ands, > t,. After performing a peeling
operation on(R(m,n), s, t), we construct four Hamiltonian
cycles of Ri—R4 by Lemma 1, one Hamiltonian or longest
(s, t)-path of Rs, and then combine them into a Hamiltoniarthe neighboring rectangular supergrid subgraphs R;’s (1 <
(s,t)-path of R(m,n) by Propositions 2-5. In Step 4, wej < 5 and j # ).
first combine the Hamiltonian cycles dt;—R,4 to a larger In the following, we will show how to construct a
cycle and then combine it with the Hamiltonian or Iongeﬁllamiltonian(s,t)—path of R(m, n). For (R(m,n), s, ) with
path of 5. For example, Fig. 8 depicts the construction of, > n >4, wlo.g., assume that, < t, ands, > t,. Let
HP(R(11,9),5,t), wheres = (4,6) andt = (7,4). Forthe - p(, 1y pe partitioned into five disjoint rectangular super-
case oft, > s,, we can prove the Hamiltonian connectivityyriq subgraphs?,—Rs by a peeling operation. Depending on
of R(m,n) by the same arguments in proving the case @fe size ofR;, we make the following four claims:
sy 2 ty. From now on, we assume that < , ands, > f, Claim 1: If Rs = R(m',n’) is a l-rectangle, then
for (R(m,n),s,t). Letu, andu, be the upper-left corner HP(R(;)n n), 5,1) dc7)e3 exist '
and down-right corner of?5, respectively. Since andt are Claim 2: If R T }B(m’ ) is ;a 2-rectangle, then
antipodes inRs, s € Ng,[u,] andt € Ng,[u,]. HP(R(m,n), ,1) d(;es exist. '
(

By the definition of a peeling operation ¢&(m,n), s, t), Claim 3: If R R(m/,n') is a 3-rectangle, then

R; = R(m;,n;), 1 < i < 4, is a rectangular supergrid HP(R(m n: s.1) does exist.
graph withm;,n; > 2, or empty. By Lemma 1R has  claim 4: If Ry = R(m’,n’) satisfiesm’,n’ > 4, then
a Hamiltonian cycleC; which contains three concatenated HP(R(m,n),s,t) does exist.

boundary paths as its subpathfif # (). We can make such . .
o0 We can prove the above four claims by constructing a
a Hamiltonian cycle”; of R; suph tha.t the boundary paths of|__| miltonianp(s t)-path of R(m, n). For examgle, in proving
C; are placed to face the neighboring rectangular superg&(?aim 1 we C(;I’]Sidel’ the pos,sible cases as follows:
subgraphs?;’s (1 < j < 5 andj # ¢). For example, Fig. 8 '

) ) . Case 1: s andt are corners ofRs.
shows these Hamiltonian cyclég’s of R;'s for 1 < i < 4. ) 5a . 5
. Case 2: neithers nor t is a corner ofRs.
Thus, we have the following lemma.

Case 3: eithers or ¢ is a corner ofRs.

Lemma 9. Let R, = R(m;,n;), 1 < i < 4, be arectangular The above cases are depicted in Fig. 9. We then construct
supergrid graph for a peeling operation on (R(m,n),s,t). HP(R(m,n),s,t) for each case as shown in Fig. 10.

If R; # (), then there exists a Hamiltonian cycle C; of R; Due to the space limitation, we omit the proofs of these
such that the three boundary paths of C; are placed to face four claims. It immediately follows from Lemma 8 and
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&-0- -

Fig. 10. The construction off P(R(m,n),s,t) for Rs = R(m’/, 1)
under (a)s, t are not corners of?s and R3, R4 # 0, and (b)s is a corner
but ¢ is not a corner ofRs and Ry, R3, Ry # 0, whereC;, i = 1, 3,4,
is a Hamiltonian cycle of?; and ® represents the destruction of an edge
under the construction.

(23]

Claims 1-4 that the following theorem holds true.

Theorem 1. Let R(m,n) be a rectangular supergrid graph
with m,n > 3, and let s,¢ be two distinct vertices in
R(m,n). Then, HP(R(m,n), s,t) does exist.

[15]

Combining Lemmas 6-7 with Theorem 1, we conclude
the following theorem.

Theorem 2. Let R(m, n) be a rectangular supergrid graph
with mn > 2, and let s, t be two distinct verticesin R(m,n).
If (R(m,n),s,t) does not satisfy forbidden conditions (F1)
and (F2), then HP(R(m,n), s,t) does exist.

[29]

V. CONCLUDING REMARKS

[20]

The Hamiltonian cycle and Hamiltonian path problems for

supergrid graphs were known to be NP-complete. Decidir[g]
where a supergrid graph is Hamiltonian connected is hence

a NP-complete problem. The Hamiltonian cycle and path
problems for rectangular supergrid graphs are easy to sol
In this paper, we provide a constructive proof to show

that rectangular supergrid graphs are Hamiltonian connected
except two trivial forbidden conditions. It is interesting td??!

see whether the Hamiltonian related problems for the other

subclasses of supergrid graphs, including solid and localB#
connected, are polynomial solvable. We would like to po§5]

it as an open problem to interested readers.

[26]
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