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Abstract—A Hamiltonian path of a graph is a simple path
which visits each vertex of the graph exactly once. The
Hamiltonian path problem is to determine whether a graph
contains a Hamiltonian path. A graph is called Hamiltonian
connected if there exists a Hamiltonian path between any two
distinct vertices. In this paper, we will study the Hamiltonian
connectivity of rectangular supergrid graphs. Supergrid graphs
were first introduced by us and include grid graphs and
triangular grid graphs as their subgraphs. The Hamiltonian
path problem for grid graphs and triangular grid graphs
was known to be NP-complete. Recently, we have proved
that the Hamiltonian path problem for supergrid graphs is
also NP-complete. The Hamiltonian paths on supergrid graphs
can be applied to compute the stitching traces of computer
sewing machines. Rectangular supergrid graphs form a popular
subclass of supergrid graphs, and they have strong structure. In
this paper, we will show that rectangular supergrid graphs are
Hamiltonian connected except two trivial forbidden conditions.

Index Terms—Hamiltonian connected property, supergrid
graph, rectangular supergrid graph, computer sewing machine.

I. I NTRODUCTION

A Hamiltonian path in a graph is a simple path in which
each vertex of the graph appears exactly once. A

Hamiltonian cycle in a graph is a simple cycle with the
same property. TheHamiltonian path (resp.,cycle) problem
involves deciding whether or not a graph contains a Hamil-
tonian path (resp., cycle). A graph is calledHamiltonian if it
contains a Hamiltonian cycle, and is said to beHamiltonian
connected if for each pair of distinct vertices in it, there is
a Hamiltonian path between them. Clearly, a Hamiltonian
connected graph contains many Hamiltonian cycles, and,
hence, the sufficient conditions of Hamiltonian connectivity
are stronger than those of Hamiltonicity.

The Hamiltonian path and cycle problems have numerous
applications in different areas, including establishing trans-
port routes, production launching, the on-line optimization of
flexible manufacturing systems [1], computing the perceptual
boundaries of dot patterns [22], DNA physical mapping [8],
and fault-tolerant routing for 3D network-on-chip architec-
tures [4]. It is well known that the Hamiltonian path and
cycle problems are NP-complete for general graphs [6], [16].
The same holds true for bipartite graphs [19], grid graphs
[15], triangular grid graphs [7], and supergrid graphs [10].
In the literature, there are many studies for the Hamiltonian
connectivity of interconnection networks [5], [9], [21]. The
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popular hypercubes are Hamiltonian but are not Hamiltonian
connected. However, many variants of hypercubes have been
shown to be Hamiltonian connected [9], [12], [13], [23]. In
this paper, we will study the Hamiltonian connected property
of rectangular supergrid graphs.

The two-dimensional integer grid G∞ is an infinite graph
whose vertex set consists of all points of the Euclidean
plane with integer coordinates and in which two vertices
are adjacent if and only if the (Euclidean) distance between
them is equal to 1. Thetwo-dimensional triangular grid T∞

is an infinite graph obtained fromG∞ by adding all edges
on the lines traced from up-left to down-right. Agrid graph
is a finite, vertex-induced subgraph ofG∞. For a nodev in
the plane with integer coordinates, letvx and vy represent
the x and y coordinates of node v, respectively, denoted
by v = (vx, vy). If v is a vertex in a grid graph, then its
possible adjacent vertices include(vx, vy − 1), (vx − 1, vy),
(vx + 1, vy), and(vx, vy + 1). A triangular grid graph is a
finite, vertex-induced subgraph ofT∞. If v is a vertex in a
triangular grid graph, then its possible neighboring vertices
include(vx, vy − 1), (vx − 1, vy), (vx +1, vy), (vx, vy + 1),
(vx − 1, vy − 1), and(vx + 1, vy + 1). Thus, triangular grid
graphs contain grid graphs as subgraphs. Note that triangular
grid graphs defined above are isomorphic to the original
triangular grid graphs studied in the literature [7] but these
graphs are different when considered as geometric graphs.
By the same construction of triangular grid graphs from grid
graphs, we have proposed a new class of graphs, namely
supergrid graphs, in [10]. The two-dimensional supergrid
S∞ is an infinite graph obtained fromT∞ by adding all
edges on the lines traced from up-right to down-left. A
supergrid graph is a finite, vertex-induced subgraph ofS∞.
The possible adjacent vertices of a vertexv = (vx, vy)
in a supergrid graph include(vx, vy − 1), (vx − 1, vy),
(vx +1, vy), (vx, vy +1), (vx − 1, vy − 1), (vx +1, vy +1),
(vx+1, vy−1), and(vx−1, vy+1). Then, supergrid graphs
contain grid graphs and triangular grid graphs as subgraphs.
Notice that grid and triangular grid graphs are not subclasses
of supergrid graphs, and the converse is also true: these
classes of graphs have common elements (points) but in
general they are distinct since the edge sets of these graphs
are different. Obviously, all grid graphs are bipartite [15] but
triangular grid graphs and supergrid graphs are not bipartite.
The Hamiltonian cycle and path problems for grid graphs and
triangular grid graphs were known to be NP-complete [7],
[15]. Recently, we showed that the Hamiltonian path and cy-
cle problems on supergrid graphs are also NP-complete [10].
Rectangular supergrid graphs first appeared in [10], in which
we solved the Hamiltonian cycle problem. The rectangular
supergrid graphR(m,n) is a subgraph ofS∞ induced by
vertex setV (R(m,n)) = {v = (vx, vy)|1 6 vx 6 m and
1 6 vy 6 n}. In this paper, we will show that rectangular
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supergrid graphs are always Hamiltonian connected except
two trivial cases.

The Hamiltonian related problems on supergrid graphs can
be applied to control the stitching trace of a computerized
sewing machine as stated in [10]. Previous related works
are summarized as follows. Itaiet al. [15] showed that the
Hamiltonian path problem on grid graphs is NP-complete.
They also gave necessary and sufficient conditions for a
rectangular grid graph having a Hamiltonian path between
two given vertices. Note that rectangular grid graphs are
not Hamiltonian connected. Zamfirescuet al. [26] gave
sufficient conditions for a grid graph having a Hamiltonian
cycle, and proved that all grid graphs of positive width have
Hamiltonian line graphs. Later, Chenet al. [3] improved
the Hamiltonian path algorithm of [15] on rectangular grid
graphs and presented a parallel algorithm for the Hamiltonian
path problem with two given endpoints in rectangular grid
graphs. Also there is a polynomial-time algorithm for finding
Hamiltonian cycles in solid grid graphs [20]. In [25], Salman
introduced alphabet grid graphs and determined classes of
alphabet grid graphs which contain Hamiltonian cycles.
Keshavarz-Kohjerdi and Bagheri [17] gave necessary and
sufficient conditions for the existence of Hamiltonian paths
in alphabet grid graphs, and presented linear-time algorithms
for finding Hamiltonian paths with two given endpoints
in these graphs. Recently, Keshavarz-Kohjerdiet al. [18]
presented a linear-time algorithm for computing the longest
path between two given vertices in rectangular grid graphs.
Reay and Zamfirescu [24] proved that all 2-connected, linear-
convex triangular grid graphs except one special case contain
Hamiltonian cycles. The Hamiltonian cycle (path) on triangu-
lar grid graphs has been shown to be NP-complete [7]. They
also proved that all connected, locally connected triangular
grid graphs (with one exception) contain Hamiltonian cycles.
In addition, the Hamiltonian cycle problem on hexagonal grid
graphs has been shown to be NP-complete [14]. Recently,
we prove that the Hamiltonian cycle and path problems on
supergrid graphs are NP-complete [10]. We also showed
that every rectangular supergrid graph always contains a
Hamiltonian cycle. Very recently, we prove that linear-convex
supergrid graphs, which form a subclass of supergrid graphs,
always contain Hamiltonian cycles [11].

The rest of the paper is organized as follows. In Section
II, some notations and observations are given. Section III
discusses the Hamiltonian connectivity of smaller sized rect-
angular supergrid graphs. In Section IV, we prove that rectan-
gular supergrid graphs are Hamiltonian connected except two
forbidden conditions. That is, we can construct a Hamiltonian
path between any two distinct vertices on a rectangular
supergrid graph. Finally, we make some concluding remarks
in Section V.

II. T ERMINOLOGIES AND BACKGROUND RESULTS

In this section, we will introduce some terminologies and
symbols used in the paper. Some observations and previ-
ously established result on the Hamiltonian cycle problem in
rectangular supergrid graphs are also presented. For graph-
theoretic terminology not defined in this paper, the reader is
referred to [2].

Let G = (V,E) be a graph with the vertex setV (G) and
the edge setE(G). LetS be a subset of vertices inG, and let

u, v be two vertices inG. We writeG− S for the subgraph
induced byV − S. In general, we writeG − v instead of
G−{v}. If (u, v) is an edge inG, we say thatu is adjacent
to v andu, v areincident to edge(u, v). The notationu ∼ v

(resp.,u ≁ v) means that verticesu andv are adjacent (resp.,
non-adjacent). Edgee1 = (u1, v1) is said to beincident to
edgee2 = (u2, v2) if (u1 ∼ u2 and v1 ∼ v2) or (u1 ∼ v2
andv1 ∼ u2). The notatione1 ≈ e2 means that edgese1 and
e2 are incident. Aneighbor of v in G is any vertex that is
adjacent tov. We useNG(v) to denote the set of neighbors of
v in G, and letNG[v] = NG(v) ∪ {v}. A pathP of length
|P | in G, denoted byv1 → v2 → · · · → v|P |−1 → v|P |,
is a sequence(v1, v2, · · · , v|P |−1, v|P |) of vertices such that
(vi, vi+1) ∈ E for 1 6 i < |P |. The first and last vertices
visited by P are called thepath-start and path-end of P ,
denoted bystart(P ) andend(P ), respectively. We will use
vi ∈ P to denote “P visits vertexvi” and use(vi, vi+1) ∈ P

to denote “P visits edge(vi, vi+1)”. A path from v1 to vk is
denoted by(v1, vk)-path. In addition, we useP to refer to the
set of vertices visited by pathP if it is understood without
ambiguity. A pathP is a cycle if|V (P )| > 3 andend(P ) ∼
start(P ). Two paths (or cycles)P1 andQ2 of graphG are
called vertex-disjoint if and only ifV (Q1)∩V (Q2) = ∅. Two
vertex-disjoint pathsP1 andP2 can be concatenated into a
path, denoted byP1 ⇒ P2, if end(P1) ∼ start(P2).

Let S∞ be the infinite graph whose vertex set consists of
all points of the plane with integer coordinates and in which
two vertices are adjacent if and only if the difference of
their x or y coordinates is not larger than 1. Asupergrid
graph is a finite, vertex-induced subgraph ofS∞. For a
vertexv in a supergrid graph, letvx andvy denotex andy
coordinates of its corresponding point, respectively. We color
vertexv to bewhite if vx + vy ≡ 0 (mod 2); otherwise,v is
colored to beblack. Then there are eight possible neighbors
of vertex v including four white vertices and four black
vertices. Obviously, all grid graphs are bipartite [15] but
supergrid graphs are not bipartite.

Rectangular supergrid graphs first appeared in [10], in
which we tried to solve the Hamiltonian cycle problem.
Let R(m,n) be the supergrid graph whose vertex set
V (R(m,n)) = {v = (vx, vy)|1 6 vx 6 m and 1 6 vy 6

n}. That is,R(m,n) containsm columns andn rows of
vertices inS∞. A rectangular supergrid graph is a supergrid
graph which is isomorphic toR(m,n) for some m and
n. Then m and n, the dimensions, specify a rectangular
supergrid graph up to isomorphism. The size ofR(m,n)
is defined to bemn, and R(m,n) is called n-rectangle.
R(m,n) is calledeven-sized if mn is even, and it is called
odd-sized otherwise. In this paper, without loss of generality
we assume thatm > n.

Let v = (vx, vy) be a vertex inR(m,n). The vertexv
is called theupper-left (resp.,upper-right, down-left, down-
right) corner of R(m,n) if wx > vx andwy 6 vy (resp.,
wx 6 vx andwy 6 vy, wx > vx andwy > vy, wx 6 vx
and wy > vy) for any vertexw = (wx, wy) ∈ R(m,n).
The edge(u, v) is said to behorizontal (resp.,vertical) if
uy = vy (resp.,ux = vx), and is calledcrossed if it is neither
a horizontal nor a vertical edge. In the figures we assume that
(1, 1) are coordinates of the down-left corner in a rectangular
supergrid graphR(m,n). There are four boundaries in a
rectangular supergrid graphR(m,n) with m,n > 2. The
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n = 9

m = 10
boundary
edges

down-right
corner

vertical edge

horizontal edge

crossed edge

boundary patha vertical cut
(1, 1)

Fig. 1. A rectangular supergrid graphR(10, 9).

(b)(a)

three concatenated
boundary paths

Fig. 2. A Hamiltonian cycle containing 3 concatenated boundary paths as
a subpath for (a)R(8, 6) and (b)R(7, 5), where solid arrow lines indicate
the edges in the cycles. Note thatR(8, 6) andR(7, 5) are even-sized and
odd-sized, respectively.

edge in the boundary ofR(m,n) is calledboundary edge.
The path is calledboundary of R(m,n) if it visits all vertices
of the same boundary inR(m,n). For example, Fig. 1 shows
a rectangular supergrid graphR(10, 9) which is called 9-
rectangle and contains2(9 + 8) = 34 boundary edges. Fig.
1 also indicates the types of edges and corners.

In our algorithm, we need to partition a rectangular super-
grid graph into two disjoint parts. The partition is defined as
follows.

Definition 1. The cut operation of a rectangular supergrid
graph R(m,n) is a partition ofR(m,n) into two vertex
disjoint rectangular supergrid graphsR1 = R(m1, n1) and
R2 = R(m2, n2) such that (m = m1+m2 andn1 = n2 = n)
or (n = n1+n2 andm1 = m2 = m). A cut is calledvertical
if n1 = n2 = n, and is calledhorizontal if m1 = m2 = m.

For example, the bold dashed line in Fig. 1 depicts a
vertical cut ofR(10, 11) which partition it intoR(4, 11) and
R(6, 11).

In the past, we showed that rectangular supergrid graphs
always contain Hamiltonian cycles except 1-rectangles. The
following lemma states such a result concerning the Hamil-
tonicity of rectangular supergrid graphs.

Lemma 1. (See [10]) Let R(m,n) be a rectangular super-
grid graph with m,n > 2. Then, R(m,n) has a Hamiltonian
cycle which contains at least three concatenated boundary
paths as its subpath.

Fig. 2 shows a Hamiltonian cycle for an even-sized or
odd-sized rectangular supergrid graph found in Lemma 1.
Each Hamiltonian cycle found by this lemma contains all

(a)

u1

v1

u2

v2

C1 C2

(b)

u1

v1

u2

v2

C1

P1

u1

v1

xC1

P2

u1

v1

P1

(c) (d)

Fig. 3. A schematic diagram for (a) Proposition 2, (b) Proposition 3, (c)
Proposition 4, and (d) Proposition 5, where⊗ represents the destruction of
an edge while constructing a cycle or a path.

the boundary edges on the three sides of the rectangular su-
pergrid graph. This shows that for any rectangular supergrid
graph R(m,n) with m,n > 2, we can always construct
a Hamiltonian cycle such that it contains all the boundary
edges except one side ofR(m,n).

Let (R(m,n), s, t) denote the rectangular supergrid graph
R(m,n) with two specified distinct verticess andt. Without
loss of generality, we will assume thatsx 6 tx. We
denote a Hamiltonian path betweens and t in R(m,n) by
HP (R(m,n), s, t). We say thatHP (R(m,n), s, t) exists if
there is a Hamiltonian path betweens and t in R(m,n).
From Lemma 1, we know thatHP (R(m,n), s, t) exists if
m,n > 2 and(s, t) is an edge in the constructed Hamiltonian
cycle ofR(m,n).

We next give some observations on the relations among
cycle, path, and vertex. These propositions can be used in
verifying our results. LetC1 andC2 be two vertex-disjoint
cycles of a graphG. If there exist two edgese1 = (u1, v1) ∈
C1 ande2 = (u2, v2) ∈ C2 such thate1 ≈ e2, thenC1 and
C2 can be concatenated into a cycle ofG. Thus we have the
following proposition.

Proposition 2. Let C1 and C2 be two vertex-disjoint cycles
of a graph G. If there exist two edges e1 ∈ C1 and e2 ∈ C2

such that e1 ≈ e2, then C1 and C2 can be combined into a
cycle of G. (see Fig. 3(a))

Let C1 be a cycle and letP1 be a path in a graphG such
that V (C1) ∩ V (P1) = ∅. If there exist two edgese1 ∈ C1

and e2 ∈ P1 such thate1 ≈ e2, then C1 and P1 can be
combined into a pathP of G with start(P ) = start(P1) and
end(P ) = end(P1). Fig. 3(b) depicts such a construction,
and hence the following proposition holds true.

Proposition 3. Let C1 and P1 be a cycle and a path,
respectively, of a graph G such that V (C1) ∩ V (P1) = ∅.
If there exist two edges e1 ∈ C1 and e2 ∈ P1 such that
e1 ≈ e2, then C1 and P1 can be combined into a path of G.
(see Fig. 3(b))

The above observation can be extended to a vertexx,
whereP1 = x, as depicted in Fig. 3(c), and we then have
the following proposition.

Proposition 4. Let C1 be a cycle (path) of a graph G and let
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(a)

s t

(b)

s

t

Fig. 4. Rectangular supergrid graph in which there is no Hamiltonian path
betweens and t, where the solid lines indicate the longest path betweens

and t.

x be a vertex in G− V (C1). If there exists an edge (u1, v1)
in C1 such that u1 ∼ x and v1 ∼ x, then C1 and x can be
combined into a cycle (path) of G. (see Fig. 3(c))

Let P1 and P2 be two vertex-disjoint paths of a graph
G. If there exists one edges(u1, v1) ∈ P1 such that
u1 ∼ start(P2) and v1 ∼ end(P2), then P1 and P2 can
be combined into a pathP of G with start(P ) = start(P1)
andend(P ) = end(P1). Hence, the following observation is
true.

Proposition 5. Let P1 and P2 be two paths of a graph
G such that V (P1) ∩ V (P2) = ∅. If there exists one edge
(u1, v1) ∈ P1 or (u2, v2) ∈ P2 such that (u1 ∼ start(P2)
and v1 ∼ end(P2)) or (u2 ∼ start(P1) and v2 ∼ end(P1)),
then P1 and P2 can be combined into a path of G. (see Fig.
3(d))

III. T HE HAMILTONIAN CONNECTED PROPERTIES OF

1-RECTANGLE, 2-RECTANGLE, AND 3-RECTANGLE

In this section, we will discuss the Hamiltonian
connectivity of 1-, 2-, and 3-rectangles. We first observe
two conditions forHP (R(m,n), s, t) with n = 1 or n = 2
does not exist. We then prove thatHP (R(m, 3), s, t) does
exist, i.e., any3-rectangle always contains a Hamiltonian
path between any two distinct vertices. Consider 1-
rectangle(R(m, 1), s, t). The following condition implies
HP (R(m, 1), s, t) does not exist.

(F1) R(m,n) is a 1-rectangle, and eithers or t is not a
corner vertex (see Fig. 4(a)).

Obviously, if (R(m, 1), s, t) does not satisfy condition
(F1), thenHP (R(m, 1), s, t) does exist and hence the fol-
lowing lemma holds true.

Lemma 6. Let R(m, 1) be a 1-rectangle with m > 2 and
let s, t be its two distinct vertices. Then, HP (R(m, 1), s, t)
does exist if (R(m, 1), s, t) does not satisfy condition (F1).

Next, we consider(R(m, 2), s, t) with m > 2. By
inspection, the following condition implies the graph
R(m, 2) has no Hamiltonian(s, t)-path.

(F2) R(m,n) is a 2-rectangle, and(s, t) is a vertical edge
but is not a boundary edge ofR(m,n) (see Fig. 4(b)).

When (R(m, 2), s, t) does not satisfy condition (F2), we
will prove HP (R(m, 2), s, t) to be existent as the following
lemma.

Lemma 7. Let R(m, 2) be a 2-rectangle with m > 2 and
let s, t be two distinct vertices of it. Then, HP (R(m, 2), s, t)
does exist if (R(m, 2), s, t) does not satisfy condition (F2).

s t

s t

s' t'

s' t'

P1 P2

P1 P2

s

t

s

t

s'

t'

s'

t'

P1 P2

P1 P2

(b) (c)

s

t

s

t

(a)

Fig. 5. The Hamiltonian pathHP (R(m, 2), s, t) when (R(m, 2), s, t)
does not satisfy condition (F2), where (a)sx = tx, (b) sx < tx and
sy = ty , and (c)sx < tx and sy 6= ty .

s t s t

(a) (b)

s

t

(f)

s

t

(g)

w

s

t

(h)

z

s

t

(c)

s

t

(d)

s

t

(e)

Fig. 6. The Hamiltonian pathHP (R(3, 3), s, t), where solid lines indicate
the constructed Hamiltonian path.

Proof: Without loss of generality, assume thatsx 6 tx.
There are two cases:

Case 1: sx = tx. In this case,(s, t) is a vertical edge
in R(m, 2). Since(R(m, 2), s, t) does not satisfy condition
(F2), (s, t) is a boundary edge. Then, we can construct a
Hamiltonian(s, t)-path as shown in Fig. 5(a).

Case 2: sx < tx. Supposesy = ty. Let s′ ∼ s and t′ ∼ t

such thats′y 6= sy andt′y 6= ty. We can make a pathP1 from
s to s′ and a pathP2 from t to t′ as shown in Fig. 5(b), and
then connects′ to t′ by a pathP3. Note that ifs ∼ t then
s′ ∼ t′. Then,P1 ⇒ P3 ⇒ P2 is a HP (R(m, 2), s, t). The
case ofsy 6= ty can be proved similarly (see Fig. 5(c)).

It follows from the above two cases that
HP (R(m, 2), s, t) does exist when(R(m, 2), s, t) does not
satisfy condition (F2). Thus, the lemma holds true.

The conditions of (F1) and (F2) are calledforbidden for
(R(m,n), s, t). In the rest of the paper, we will prove that
HP (R(m,n), s, t) exists if (R(m,n), s, t) does not satisfy
the forbidden conditions. We first consider(R(m, 3), s, t)
and prove thatHP (R(m, 3), s, t) does exist as follows.

Lemma 8. Let R(m, 3) be a 3-rectangle with m > 3
and let s, t be any two distinct vertices in R(m, 3). Then,
HP (R(m, 3), s, t) does exist and it contains at least one
boundary edge in each boundary of R(m, 3).

Proof: Let w = (wx, wy) be a vertex inR(m, 3) such
thatwx = m andwy = 2. Note that the down-left corner of
R(m, 3) is coordinated as(1, 1). We claim that there exists
a Hamiltonian pathP betweens and t in R(m, 3) such
that (w, z) ∈ P , (w, z) is a vertical and boundary edge of
R(m, 3), andP visits at least one boundary edge in each
boundary ofR(m, 3). Then, the lemma holds true.

We prove this claim by induction onm. Initially, let m =
3. By symmetry, the possible relative locations ofs andt are
shown in Fig. 6. Fig. 6 also depicts the desired Hamiltonian
(s, t)-path ofR(3, 3). Thus, the claim holds whenm = 3.

Now, assume that the claim holds true whenm = k, k > 3.
Then,R(k, 3) contains a Hamiltonian pathP ′ between any
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two verticess′ and t′ such thatw′ = (k, 2), (w′, z′) ∈ P ′,
(w′, z′) is a vertical and boundary edge ofR(k, 3), andP ′

visits at least one boundary edge in each boundary ofR(k, 3).
Note thatz′ = (k, 1) or (k, 3). Consider thatm = k+1. Let
s, t be any two distinct vertices ofR(k+1, 3). Without loss
of generality, assume thatsx 6 tx. We first make a vertical
cut onR(k + 1, 3) for partitioning it intoR1 = R(k, 3) and
R2 = R(1, 3). Depending on the locations ofs and t, we
consider the following three cases:

Case 1: s, t ∈ R1. Let w = (k+1, 2), z = (k+1, 1), and
z̃ = (k + 1, 3) be the vertices ofR2. Let P2 = z → w → z̃.
Then,P2 is the Hamiltonian path ofR2 with start(P2) = z

and end(P2) = z̃. By the induction hypothesis, there exists
a Hamiltonian(s, t)-path P1 of R1 = R(k, 3) such that
(w′, z′) ∈ P1 and P1 visits at least one boundary edge in
each boundary ofR(k, 3), wherew′ = (k, 2) andz′ = (k, 1)
or (k, 3). By the structure of rectangular supergrid graphs,
z(= start(P2)) ∼ z′ and z̃(= end(P2)) ∼ w′, or z ∼ w′

and z̃ ∼ z′. By Proposition 5,P1 andP2 can be combined
into a Hamiltonian(s, t)-path P of R(k + 1, 3) such that
(w, z) ∈ P . SinceP1 visits at least one boundary edge in
each boundary ofR(k, 3), P also visits at least one boundary
edge in each boundary ofR(k + 1, 3).

Case 2: s ∈ R1 and t ∈ R2. Consider the position oft.
There are two subcases:

Case 2.1: t = (k+1, 2). Let w = t. Depending on the
location ofs, we have the following three subcases:

Case 2.1.1:s = (k, 2). Let t′ = (k, 1), z′ = (k, 3),
p = (k + 1, 3), and let z = (k + 1, 1). By the induc-
tion hypothesis, there exists a Hamiltonian(s, t′)-path P1

of R(k, 3) such that(s, z′) ∈ P1 and P1 visits at least
one boundary edge in each boundary ofR(k, 3). Clearly,
(s, t′) 6∈ P1. Since p ∼ s, p ∼ z′, and (s, z′) ∈ P1, by
Proposition 4P1 and p can be combined into a pathP ′

1

with start(P ′
1) = s and end(P ′

1) = t′. Let P2 = z → t.
Since t′(= end(P ′

1)) ∼ z(= start(P2)), P ′
1 ⇒ P forms a

Hamiltonian(s, t)-pathP of R(k + 1, 3) such thatP visits
at least one boundary edge in each boundary ofR(k+1, 3)
and (w, z) ∈ P .

Case 2.1.2: s = (k, 1) or (k, 3). Without loss
of generality, assume thats = (k, 1). Let t′ = (k, 2),
z′ = (k, 3), p = (k + 1, 3), and letz = (k + 1, 1). By the
same construction in Case 2.1.1, we can construct a desired
Hamiltonian(s, t)-pathP of R(k + 1, 3).

Case 2.1.3: s 6∈ {(k, 1), (k, 2), (k, 3)}. Let t′ =
(k, 2). By the induction hypothesis, there exists a Hamilto-
nian (s, t′)-path P1 of R(k, 3) such that(t′, z′) ∈ P1 and
P1 visits at least one boundary edge in each boundary of
R(k, 3), where z′ = (k, 1) or (k, 3). Let p be the vertex
of R2 such that(p, z′) is a horizontal edge inR(k + 1, 3),
and letz ∈ {(k + 1, 1), (k + 1, 3)} − {p}. Then, the same
construction in Case 2.1.1 can be used to obtain the desired
Hamiltonian path ofR(k + 1, 3).

Case 2.2: t = (k + 1, 1) or (k + 1, 3). Without loss
of generality, assume thatt = (k + 1, 1). Let w = (k +
1, 2), z = (k + 1, 3), and letP2 = z → w → t. If s =
(k, 2), then lett′ = (k, 3); otherwise, lett′ = (k, 2). By the
induction hypothesis, there exists a Hamiltonian(s, t′)-path
P1 of R(k, 3) such thatP1 visits at least one boundary edge
in each boundary ofR(k, 3). Sincet′(= end(P1)) ∼ z(=
start(P2)), P1 ⇒ P2 is the desired Hamiltonian(s, t)-path

of R(k + 1, 3).
Case 3: s, t ∈ R2. Depending on whethers ∼ t, we have

the following two subcases:
Case 3.1:s ∼ t. In this subcase,s, t ∈ {(k+1, 1), (k+

1, 2)} or s, t ∈ {(k + 1, 2), (k + 1, 3)}. Consider thats =
w = (k + 1, 2) and t = (k + 1, 3). Let z = (k + 1, 1), s′ =
(k, 2), and lett′ = (k, 3). Then,s′ ∼ z and t′ ∼ t. By the
induction hypothesis, there exists a Hamiltonian(s′, t′)-path
P1 of R(k, 3) such thatP1 visits at least one boundary edge
in each boundary ofR(k, 3). Let P = s → z → P1 → t.
Then,P is the desired Hamiltonian(s, t)-path ofR(k+1, 3).
The other cases can be proved similarly.

Case 3.2:s ≁ t. In this subcase,s, t ∈ {(k+1, 1), (k+
1, 3)}. Without loss of generality, assume thats = z =
(k+1, 1) andt = (k+1, 3). Let w = (k+1, 2), s′ = (k, 1),
and let t′ = (k, 2). Then, s′ ∼ w and t′ ∼ t. By the
induction hypothesis, there exists a Hamiltonian(s′, t′)-path
P1 of R(k, 3) such thatP1 visits at least one boundary edge
in each boundary ofR(k, 3). Let P = s → w → P1 → t.
Then,P is the desired Hamiltonian(s, t)-path ofR(k+1, 3).

We have considered any case for constructing a Hamilto-
nian(s, t)-pathP of R(k+1, 3) such thatP visits at least one
boundary edge in each boundary ofR(k+1, 3) and(w, z) ∈
P , wherew = (k + 1, 2) and z ∈ {(k + 1, 1), (k + 1, 3)}.
Thus, the claim holds true whenm = k + 1. By induction,
the claim holds true form > 3. This completes the proof of
the lemma.

We have proved the Hamiltonian connectivity of3-
rectangles. In the next section, we will verify the Hamiltonian
connectivity ofR(m,n) for m,n > 3.

IV. T HE HAMILTONIAN CONNECTIVITY OF

RECTANGULAR SUPERGRID GRAPHS

By Lemma 8,HP (R(m, 3), s, t) does exist form > 3 and
any two distinct verticess, t. In this section, we assume that
a rectangular supergrid graphR(m,n) satisfiesm > n > 3.
We will construct a Hamiltonian(s, t)-path ofR(m,n), and
henceHP (R(m,n), s, t) does exist. Following the technique
used in [3], [15], [18], we will develop an algorithm for
finding a Hamiltonian(s, t)-path ofR(m,n). The algorithm
uses the divide-and-conquer technique and is outlined in the
following steps:

Step 1: PartitionR(m,n) into five disjoint rectangular
supergrid subgraphsR1–R5 by a peeling operation
such thats, t ∈ R5, where a peeling operation
consists of two vertical and two horizontal cuts on
R(m,n) and is defined later;

Step 2: Construct Hamiltonian cycles ofR1–R4;
Step 3: Construct a Hamiltonian(s, t)-path or a longest

(s, t)-path ofR5;
Step 4: Combine all constructed Hamiltonian cycles and

the Hamiltonian (longest) path into a Hamiltonian
(s, t)-path ofR(m,n).

Before giving the peeling operation in Step 1, we first
introduce the following notation:

Definition 2. Two verticesu and v in R(m,n) are called
antipodes if
(1) min{ux, vx} 6 2 andmax{ux, vx} > m− 1, and
(2) min{uy, vy} 6 2 andmax{uy, vy} > n− 1.

The peeling operation in Step 1 is then defined as follows:
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s

t

R R m' n'5 = ( , )R1 R2

R3

R4

uL

uR

Fig. 7. A schematic diagram for a peeling operation on(R(m, n), s, t)
whensx 6 tx andsy 6 ty .

Definition 3. For (R(m,n), s, t), a peeling on R(m,n)
consists of two vertical and two horizontal cuts to partition
R(m,n) into five disjoint rectangular supergrid subgraphs
R1, R2, R3, R4, R5 as illustrated in Fig. 7, which satisfy
(1) s, t ∈ R5 and are antipodes inR5;
(2) each ofR1, R2, R3, R4 is either a rectangular supergrid
graphR(m′, n′) with m′, n′ > 1, or empty;
(3) R1 = ∅ (resp.,R2 = ∅, R3 = ∅, R4 = ∅) if and only
if 1 6 min{sx, tx} 6 2 (resp.,m − 1 6 max{sx, tx} 6 m,
n− 1 6 max{sy, ty} 6 n, 1 6 min{sy, ty} 6 2).

Usually the two vertical cuts of a peeling operation are
performed before the two horizontal cuts. Fig. 7 depicts a
schematic diagram for the relations amongR1–R5, s and
t when sx 6 tx and sy > ty. After performing a peeling
operation on(R(m,n), s, t), we construct four Hamiltonian
cycles ofR1–R4 by Lemma 1, one Hamiltonian or longest
(s, t)-path ofR5, and then combine them into a Hamiltonian
(s, t)-path of R(m,n) by Propositions 2–5. In Step 4, we
first combine the Hamiltonian cycles ofR1–R4 to a larger
cycle and then combine it with the Hamiltonian or longest
path ofR5. For example, Fig. 8 depicts the construction of
HP (R(11, 9), s, t), wheres = (4, 6) andt = (7, 4). For the
case ofty > sy, we can prove the Hamiltonian connectivity
of R(m,n) by the same arguments in proving the case of
sy > ty. From now on, we assume thatsx 6 tx andsy > ty
for (R(m,n), s, t). Let u

L
andu

R
be the upper-left corner

and down-right corner ofR5, respectively. Sinces andt are
antipodes inR5, s ∈ NR5

[u
L
] and t ∈ NR5

[u
R
].

By the definition of a peeling operation on(R(m,n), s, t),
Ri = R(mi, ni), 1 6 i 6 4, is a rectangular supergrid
graph with mi, ni > 2, or empty. By Lemma 1,Ri has
a Hamiltonian cycleCi which contains three concatenated
boundary paths as its subpath ifRi 6= ∅. We can make such
a Hamiltonian cycleCi of Ri such that the boundary paths of
Ci are placed to face the neighboring rectangular supergrid
subgraphsRj ’s (1 6 j 6 5 and j 6= i). For example, Fig. 8
shows these Hamiltonian cyclesCi’s of Ri’s for 1 6 i 6 4.
Thus, we have the following lemma.

Lemma 9. Let Ri = R(mi, ni), 1 6 i 6 4, be a rectangular
supergrid graph for a peeling operation on (R(m,n), s, t).
If Ri 6= ∅, then there exists a Hamiltonian cycle Ci of Ri

such that the three boundary paths of Ci are placed to face

s

t

R1 R2R3

R5

R4

boundary
paths

C1 C2

C3

C4

Fig. 8. A Hamiltonian (s, t)-path of R(11, 9) combined from all
constructed Hamiltonian cycles ofR1–R4 and the Hamiltonian(s, t)-path
of R5, where bold dashed lines indicate the cuts in a peeling operation,
solid lines indicate the constructed Hamiltonian path, and⊗ represents the
destruction of an edge under construction.

tR1 R2

R3

R4

s

(a)

tR1 R2

R3

R4

s

(b)

tR1 R2

R3

R4

s

(c)

tR1 R2

R3

R4

s

(d)

f
R R m'5 = ( , 1) R R m'5 = ( , 1)

R R m'5 = ( , 1) R R m'5 = ( , 1)

= f=

f=f=

Fig. 9. The possible cases forR5 = R(m′, 1), where (a)s, t are corners
of R5, (b) s, t are not corners ofR5, (c) s is a corner butt is not a corner
of R5, and (d)t is a corner buts is not a corner ofR5.

the neighboring rectangular supergrid subgraphs Rj’s (1 6

j 6 5 and j 6= i).

In the following, we will show how to construct a
Hamiltonian(s, t)-path ofR(m,n). For (R(m,n), s, t) with
m > n > 4, w.l.o.g., assume thatsx 6 tx andsy > ty. Let
R(m,n) be partitioned into five disjoint rectangular super-
grid subgraphsR1–R5 by a peeling operation. Depending on
the size ofR5, we make the following four claims:

Claim 1: If R5 = R(m′, n′) is a 1-rectangle, then
HP (R(m,n), s, t) does exist.

Claim 2: If R5 = R(m′, n′) is a 2-rectangle, then
HP (R(m,n), s, t) does exist.

Claim 3: If R5 = R(m′, n′) is a 3-rectangle, then
HP (R(m,n), s, t) does exist.

Claim 4: If R5 = R(m′, n′) satisfiesm′, n′ > 4, then
HP (R(m,n), s, t) does exist.

We can prove the above four claims by constructing a
Hamiltonian(s, t)-path ofR(m,n). For example, in proving
Claim 1 we consider the possible cases as follows:

Case 1: s and t are corners ofR5.
Case 2: neithers nor t is a corner ofR5.
Case 3: eithers or t is a corner ofR5.
The above cases are depicted in Fig. 9. We then construct

HP (R(m,n), s, t) for each case as shown in Fig. 10.
Due to the space limitation, we omit the proofs of these

four claims. It immediately follows from Lemma 8 and
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C1

(a)

t

C3

C4

s

(b)

t

C3

C4

s
R R m'5 = ( , 1) R R m'5 = ( , 1)

Fig. 10. The construction ofHP (R(m, n), s, t) for R5 = R(m′, 1)
under (a)s, t are not corners ofR5 andR3, R4 6= ∅, and (b)s is a corner
but t is not a corner ofR5 andR1, R3, R4 6= ∅, whereCi, i = 1, 3, 4,
is a Hamiltonian cycle ofRi and⊗ represents the destruction of an edge
under the construction.

Claims 1–4 that the following theorem holds true.

Theorem 1. Let R(m,n) be a rectangular supergrid graph
with m,n > 3, and let s, t be two distinct vertices in
R(m,n). Then, HP (R(m,n), s, t) does exist.

Combining Lemmas 6–7 with Theorem 1, we conclude
the following theorem.

Theorem 2. Let R(m,n) be a rectangular supergrid graph
with mn > 2, and let s, t be two distinct vertices in R(m,n).
If (R(m,n), s, t) does not satisfy forbidden conditions (F1)
and (F2), then HP (R(m,n), s, t) does exist.

V. CONCLUDING REMARKS

The Hamiltonian cycle and Hamiltonian path problems for
supergrid graphs were known to be NP-complete. Deciding
where a supergrid graph is Hamiltonian connected is hence
a NP-complete problem. The Hamiltonian cycle and path
problems for rectangular supergrid graphs are easy to solve.
In this paper, we provide a constructive proof to show
that rectangular supergrid graphs are Hamiltonian connected
except two trivial forbidden conditions. It is interesting to
see whether the Hamiltonian related problems for the other
subclasses of supergrid graphs, including solid and locally
connected, are polynomial solvable. We would like to post
it as an open problem to interested readers.
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