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Swarm Computational Intelligence Design for a
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Abstract—The search meta-heuristic procedure that mimics
the process of biological natural selection is an embedded
part of artificial intelligence (AI). This is regularly used for
obtaining the solution to some optimization problems such as
the minimization of disastrous occurrence events in industries.
Extra precautions are given to people and equipment operating
in hazardous and harsh environments; thus there are safety
systems designed to give the required, accurate, necessary and
timely protections. There is hence the need to drastically reduce
the probability of the occurrence of a system failure. A High
Integrity Protection System (HIPS) is a safety device which
could be installed on offshore facilities with the objective to
mitigate a high pressure upsurge that has the potential to cause
immense harm and subsequently destroy the system. The aim
of the research is to use a Particle Swarm Optimization (PSO)
approach to intelligently design the system in order to optimize
and reduce the unavailability of the HIPS design. A Fault Tree
Analysis (FTA) model is employed to build the HIPS structure.
FTA is a top-down approach using Boolean logic operations
that is used to analyze causes, investigates potential and likely
faults and to quantify their contribution to system failure in the
process of product design. Comparison is made between this
HIPS-PSO approach and the previous work performed using
a genetic algorithm (GA). Alongside from the simplicity in the
design of the HIPS-PSO approach, a much faster execution
time and a reduced system unavailability was obtained when
compared with the GA approach.

Index Terms—Particle Swarm Optimization (PSO), High
Integrity Protection System (HIPS), Fault Tree Analysis (FTA),
Safety Systems, System Unavailability.

I. INTRODUCTION

VOLUTIONARY algorithms (EAs) are very appropriate

to optimally solve problems where there exists no
known algorithm that can produce the result in polynomial
time. EAs are heuristic approaches to solve optimization
problems by mimicking the biological nature of evolution.
EAs such as particle swarm optimization (PSO), genetic
algorithm (GA), simulated annealing (SA), artificial bee
colony (ABC) and ant colony optimization (ACO) have been
used to provide optimal solutions for numerous optimization
problems [1], [2], [3], [4], [5], [6].

The conventional approach in design operations consists
of many stages such as the initial design, analysis, evalu-
ation, testing, and assessment - the final designs are often
produced through trials and errors procedures. This is rather
cumbersome to comprehend to design and mostly erroneous.
Safety critical system designs are very important and cannot
be subjected to such; they are normally needed to produce
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a defined availability performance to keep the risk within a
speculated bound. EA algorithms such as the PSO has the
capabilities to rapidly and iteratively produce safety designs
with pre-determined acceptability criteria for system failure
unavailability.

A safety system is an essential part of an industrial
system as it operates to prevent the occurrence of certain
conditions and their future development into a hazardous
situation. Protection is provided for processing equipment
whose pressure rating could be exceeded. The High Integrity
Protection System (HIPS) is basically designed to hinder
a high pressure surge going across the system. Failure of
such safety systems may have catastrophic consequences.
Members of the workforce or the public could be injured
or even killed. To minimize the likelihood of a hazardous
situation, safety systems must be designed to maximize their
availability or minimize their unavailability. The aim in the
research is to investigate a design optimization scheme which
yields an optimal safety system design by fully utilizing
available resources. This work focuses on the implementation
of PSO for the optimization of the design of the HIPS.

The remainder of this paper discusses the related work
(Section II), the implementation of the PSO optimization
approach (Section IIT), HIPS fault tree design (Section IV)
and the results of applying this new technique to the safety
system are discussed in Section V and finally the conclusions
come in Section VI.

II. RELATED WORK

Previous studies have considered optimizing the design of
the HIPS safety systems. Some of these include the inves-
tigation of the effectiveness of genetic algorithm (GA) for
single objective [7], the implementation of GA for multi-
objective [8], and the branching algorithm which exploits
characteristics common to many safety systems to explore
the potential design space and deliver an optimal design on
HIPS [9]. Given the advances in EA, the benefits of PSO such
as the simplicity in the design, the inherent diversity creation
in the implementation, the rapid manner of converging to
quality solutions with the potential of attaining a global
optimal solution [1], [2], [3], [4], [5], [6], [10]; establish it
to stand out in improving the performance of optimization.
In view of the work carried out in the area of safety system
design, apart from knowing that no work currently centres on
the application of PSO for the optimization of safety system
design, the potential of a PSO design could be formulated
easily, implemented very fast and requires less computations
[11, [2], [3]; hence it gives the reason for the focus of this
research work.
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III. OVERVIEW OF THE PSO OPTIMIZATION APPROACH
A. Principle of the PSO method

PSO was proposed by Eberhart and Kennedy in 1995. Since
numerous scientific research has been carried out and applied
to many diverse problems [11]. PSO is a swarm intelligence
meta-heuristic which is biologically inspired by the behavior
of a set of particles (swarm) which could be referred to
as bees, insects or birds. It is a population-based method
that is iteratively adapted and adjusted until a termination
criterion is fulfilled. Swarms in the neighborhood operate
in such a way that information about fitness and position
of particles are passed from one to another while retaining
the information of the best previous states as it propagates
through the iterative procedure. PSO performs well when
applied to optimization problems of large dimensions and
non differentiable functions. Essentially, PSO can search for
a diverse solution space at a fast rate; its results might not
considerably improve further when the population size is
large; this approach is designed to use a minimal number
of populations so as to reduce the computational time. The
initial and subsequent population are randomly generated in
such a way to form sub-populations that span the whole range
for a constrained optimization problem. Good population
members are retained in each PSO generation throughout
the entire optimization process as it evaluates fitness values
and suitabilities for solution via the objective function. The
PSO algorithm used as part of this research uses a random
velocity approach for the exploitation and exploration of
the populations for potential solutions. This process helps
to avoid the operation being trapped in a local minimum
solution. In this way, there is an efficient and effective use of
the number of generations; this invariably leads to the drastic
reduction in the number of generations for the proposed novel
application. Furthermore, there is an improved performance
and a reduced computational time. This approach is to
enhance a global optimal solution.

B. Methodology for the PSO approach

The measures and processes for the implementation of
the PSO approach are enumerated; the operations are
subsequently described in the following procedures:

Procedure 1 - Parameter Initialization: The process
starts by deciding and choosing the following parameters:
number of generations (7), number of populations (1) and
minimum and maximum constraints on the population inputs.

Procedure 2 - Population Derivation: Initialize the
swarm position population (a), swarm velocity population
(b) and swarm best position population (¢) with all their
populations confined within the upper and lower limits of
their respective constrained values. These populations are
derived for the variables described and shown in Table I.
The vectors (a), (b) and (c¢) depict the current position
vector, attraction to the group best vector and attraction to
the overall individual best respectively.

Procedure 3 - Fitness Calculation: Obtain the fitness
values of the populations generated in procedure 2.
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Procedure 4 - Population Fitness Exchange: The
best n-dimension population vector/string in each of the
populations in procedure 3 are retained and transferred
from one generation to the next. This ensures enough
diversities throughout the entire process. New populations
are constantly being introduced in each generation from the
PSO operations. One good quality of this algorithm is in
the introduction of what is called a variable velocity (p).
This is to further ensure an increased diversity and helps
to avoid settling in a local optimal solution. The variable
velocity (p,,) shown in equation 4 is introduced and injected
into the algorithm in a situation where there has been no
significant and successive improvement in the solution for a
certain period of time.

Procedure 5 - Particle Position Update: The update
fragment of the entire process of PSO is summarized in
equations (1 - 5). The swarm particle vector update equation
(equation 4) equates to the summation of the inertia (k)
shown in equation 1, the local memory or the cognitive
learning component (&) in equation 2, and the global memory
or the social learning factor () in equation 3. The p,
component in equation 4 is introduced in every generation
in order to create a varied diversity in each generation
depending on the result performance while equation 5 is the
swarm particle position vector update equation. Equation 5
helps to constantly change and update the position vector in
each generation as it gets closer to the optimal solution.

k= ®(k) * Vi(k) (1)

§ = ai *; * [Pbi(k) — Pi(k)] (2)
0 = g * i % [Gb(k) — Py(k)] 3)
Vi(k +1) = py % [k + € + 0] )
Pi(k +1) = Pi(k) + Vi(k +1) (5)

Considering the equations, ¢ = particle index of the pop-
ulations, k = discrete time index, minimum (q,,;,) and
maximum (& ,mqez) COgnitive learning parameters, minimum
(a2 min) and maximum (a4, ) social learning parameters
while 71; and 79; are random numbers in the range between
[0, 1] interval that are associated with the cognitive and social
learning parameters respectively, P = position vector, V =
velocity vector, Pb = Personal best vector and Gb = Global
best population. The parameters in equations 1, 2 and 3 are
further explained in equations 6, 7 and 8. The new velocity
vector obtained in equation 4 is a linear combination of these
three vectors (P, V and Pb). The attractions to the group best
and the global best help to drive the optimization process to
achieve an optimal solution.

¢ = _((I)max - Qmin) * f + (I)max (6)
T
_ ¥
a1 = (almax - almin) * ; + @1min (7)
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Fig. 1: Structure of High Integrity Protection System (HIPS)

Qo = (042max - a2min) * % + @2min (8)

Note the current iteration value = ¢, maximum iteration
specified = 7, inertia weight function (®), initial weight
value (®,,;,) for the inertia function, final weight value
(®4e) for the inertia function. These initial values were
determined heuristically after a few trials.

Procedure 6 - Next Generation: The whole process
goes back and repeats from procedure 3 till procedure 6
by evaluating the fitness values of the new next generation
populations.

Procedure 7 - Stopping Criterion: The algorithm stops
when the specified number of epochs or generations is
reached.

IV. HIPS PARAMETERS EVALUATION AND
IMPLEMENTATION

A. HIPS Design

The main function of the HIPS is to prevent a high-pressure
surge passing through it. The HIPS is divided into two
separate sub-systems. Subsystem One (SubS!) is the Emer-
gency Shutdown (ESD) subsystem. This is the first level
of protection of the HIPS. The ESD system acts to close
the Wing and Master valves together with any ESD valves
that have been fitted when pressure in the pipeline exceeds
the permitted value. This value is monitored using Pressure
Transmitters (PT). Subsystem Two (SubS?) provides an
additional level of protection; the inclusion of the HIPS
incorporates this second level of redundancy. The latter sub-
system is completely independent in operation. Its method of
protection is the same as the ESD system. Figure 1 represents
the main features of the HIPS [9], [12].

In this work the design optimization scheme has been
applied to a HIPS where ten variables are considered in
the system design. These variables, their description and
evaluation limits are shown in Table I where MTI is the
maintenance or inspection test interval. Two points to note
are firstly that it is assumed that whatever Valve type or PT
type are fitted, they are the same in the entire design. The
second point is that the number of PTs required to activate
the closure of valves on subsystem 1 or 2 is a function of the
numbers installed (N7, N2) in the design. Given the numbers
of likely design variations from all the design variables
shown in Table I, this results in more than 44 million possible
design scenarios. It is therefore not feasible to completely
solve for each potential design. Furthermore, it is an arduous
task to understand the interactions that exist between all
the design variables and is practically inconceivable for any
engineer to manually design. A technique is required to

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18,2016, Hong Kong

determine the best design option in a more practical manner.
This is to be achieved using a computerized optimization
algorithm.

TABLE I: HIPS Design Variables

Variables | Description Range of Values
01 MTI for SubST 1 week - 2 years
[ MTI for SubS? 1 week - 2 years
\Y Valve Type lor2

P PT Type lor2

N, No of PTs fitted for SubST 1-4

No No of PTs fitted for SubS2 0-4

Ky No of PTs required to activate SubST 1-N;

Ko No of PTs required to activate SubSZ | 0 - Ny

E No of ESD valves fitted 0-2

H No of HIPS valves fitted 0-2

Each hardware component of the HIPS can fail either in
a dormant mode or spuriously. A dormant failure can be
described as the inability of the component to carry out its
desired task on demand. In contrast, spurious failure results
from the component carrying out its desired function when
its operation is not required. Table II shows the details of
the HIPS design variables: failure rates (\) and the mean
time to repair - MTTR (v) for each HIPS component in
both dormant and spurious failure modes. This data will be
used subsequently when calculating the unavailability and
spurious trip probability of the HIPS. Each combination of
HIPS variables gives a new system design with its particular
features such as cost and the maintenance down-time (MDT).
The choice of system design is not unlimited. In this case,
there are three limitations on the available resources. The
total cost of the system must be less than one thousand units.
The average time each year that the system resides in the
down state due to preventative maintenance is a maximum
of one hundred and thirty hours. If the number of times that
a spurious system shutdown occurs is more than once per
year then it is deemed unacceptable. The hardware costs in
£ for each component in the system as well as times taken to
service each component at each maintenance test are shown
in Table II.

TABLE II: Component Failure Data

Dormant Failures Spurious Failures
Components A v A v Cost | Time
(/hour) (hours) | (/hour) (hours) | (£) (hours)
Wing Valve 1.14% 1075 | 36 1.00 % 10-% | 36 100 | 12
Master Valve 1.14% 107" | 36 1.00 %105 | 36 100 12
HIPS Valve 1 5.44x107% | 36 5.0010~7 | 36 250 | 15
HIPS Valve 2 1.00 107> | 36 1.00%10~° | 36 200 10
ESDV Valve 1 5.44x107° | 36 5.00« 10~7 [ 36 250 | 15
ESDV Valve2 1.00% 107 | 36 1.00 % 10~° | 36 200 10
Solenoid Valve | 5.00+ 10=5 | 36 5.00 % 10~7 | 36 20 5
Relay Contacts 0.23%107% | 36 2.00%10°% | 36 1 2
PT 1 1.50 % 1076 | 36 1.50 % 1077 | 36 20 1
PT 2 7.00%107° | 36 7.00 1077 | 36 10 2
Computer Logic | 1.00% 107> | 36 1.00% 1077 | 36 20 1

B. HIPS Dormant and Spurious Unavailability Fault Tree
Structure

The HIPS is designed to protect both in the dormant and the
spurious mode. System design performance can be obtained
by using the fault tree analysis method. Fault trees are used
to quantify the system unavailability of each potential design.
Constructing a fault tree for each design variation would
be a time consuming task; and hence it is impractical to
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Fig. 2: Top Event Structure of the HIPS Unavailability.

implement. One way to solve this problem could be to
use automatic fault tree construction methods, if they were
available. An alternative is to resolve this difficulty by using
house events. These enable the construction of a single fault
tree capable of representing the causes of the system failure
mode for every possible system design. The structure of the
top event of both HIPS failure modes are shown in Figure 2.
The top event of the HIPS unavailability fault tree shown
in Figure 2a represents the causes of the system failing
to protect the processing equipment. The top event ‘Safety
System fails to Protect’ will occur if all (Wing, Master, ESD
and HIPS) valves along the pipeline fail to close. In total, the
fault tree dormant mode structure consists of 154 gates, 38
basic events representing component failures, and 40 house
events representing the design options. Consequently, the
sub-events ‘Wing and Master valves fail to protect’”, ‘ESD
valves fail to protect’ and “HIPS valves fail to protect’ related
by AND logic are immediate, necessary and sufficient. Each
valve is a fail safe type which can be defined as ‘air to open’.
The principle of each valve working can be described as
follows: when the pressure in the pipeline is at an appropriate
level, the solenoid of the valve is maintained by computer
logic in an energized state, the pneumatic line remains
pressurized and the associated actuator retains the valve in
the open state. When pressure in the pipeline increases,
pressure transmitters detecting that fact transmit a signal to
the computer. In the case when the pressure increase exceeds
the acceptable level, the functionality of the computer causes
the circuit of the output channel to the solenoid to open. This
circuit can be broken by two relay contacts which introduce a
level of redundancy. As a result, the solenoid is de-energized
and a vent valve activated. Consequently, pressure drops to
the actuator, causing the valve to close.

In a similar manner, consideration is given to a second
system failure mode, spurious activation of the HIPS. If any
one of the valves included along the pipeline closes the top
event will occur. Figure 2b shows the spurious trip frequency
for each design which is also an implicit constraint that
requires the use of fault tree analysis to assess its value.
House events are again used to construct a fault tree capable
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of representing each potential design for this failure mode.
The immediate, necessary, and sufficient sub-events to the
top event are “Wing or Master Valve Fails Spuriously’, ‘ESD
Subsystem Fails Spuriously” and ‘HIPS Subsystem Fails
Spuriously’ are related by an ‘OR’ logic gate. The fault tree
consists of 142 gates, 38 basic events and 40 house events.
Each valve is an ‘air to open’ safety type. It is important to
notice that house events incorporated in the HIPS spurious
trip fault tree structure and the house events from the first
level of the HIPS unavailability fault tree are consistent with
each other. Furthermore, the structural characteristics of the
design remain the same in each case. However, the failure
modes of the sub-events are different.

C. HIPS Cost Evaluation

There are two main categories of constraints: explicit and
implicit. Explicit ones can be determined and easily evaluated
from an explicit function of the design variables. In contrast,
implicit constraints can only be evaluated by a full analysis of
the system. Cost of the HIPS design is an explicit constraint
and is represented by the following equations:

Cost = Cost(SubS*) + Cost(SubS?) < 1000 9

(10)

Cost(SubS') = E(ViCy g1 + VaCyga + Cs) + N1(P1Cp1 + PoCp2) + 261

Y

Cost(SubS?) = H(ViCy 1 + VaCypa + Cs) + Na(PiCp1 + PoCps) + 21

where:

Cy1 = Cypg1 = Cypi - cost of the valve type 1,

Cyo = Cype = Cypga - cost of the valve type 2,

Cp1 - cost of the pressure transmitter (PT) type 1,
Cps - cost of the pressure transmitter (PT) type 2,
C - cost of the solenoid valves.

The constant 261 (equation 10) for SubS* is the additional
cost for the wing and master valve, their solenoid valves,
the computer and control relays. SubS? has a fixed cost of
21 units (equation 11)) for the computer and control relays.
From equations (9) - (11) the cost of each system design is:

Cost = (E + H)(ViCy1 + VaCyra + Cs) + (N1 + No)(PiCp1 + PaCpo) + 282 (12)

D. HIPS Maintenance Down Time Evaluations

Similarly to the cost for the HIPS, average MDT (mainte-
nance down time) is calculated as a sum of the maintenance
down time of SubS' and SubS? for each potential design:

MDT = MDT(SubS') + M DT (SubS?) < 130 (13)
MDT(SubS") = Z[E(ViMy g1 + VaMyps + M) + Ny(PiMpy + PoMpo) +47) - (14)
MDT(SubS?) = 2[H(ViMy 1 + VeMy s + M) + Na(PiMp1 + PaMps) +13] - (15)

where:
My g1 = My, = My - test time of the valve type 1,
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My gs = My o = Mys - test time of the valve type 2,
Mp; - test time of the pressure transmitter (PT) type 1,
Mpo - test time of the pressure transmitter (PT) type 2,
M, - test time of the solenoid valve.

The expression g—i (equations 14 - 15) gives the number of
times the system is down in a year. The constant 47 (equation
14) is the sum of the test times for the wing and master
valve, their solenoids, the computer and control relay for
SubSt. Similarly for SubS 2. the sum of the test time for the
computer and control relay is 13 units (equation 15). From
equations (13 - 15), MDT for each design can be calculated
using equation 16:

MDT =52 % [Hy  Hs + Hy « Hy + Hj) (16)

where:
H, = ViMyq + VaMyo + Mg,

H2 = PlMPl +P2MP2,
]’7[3 — E + H

N N.
H4:9*11+9*22,

— 47 4 13
H5f91+92.

E. HIPS Analysis

The most important feature of each safety system is its
perfect operation and swift action when an urgent demand
is required. Therefore, the objective is to minimize system
unavailability, which means to minimize the probability of
system failure on demand. Ideally, using the design alter-
natives, it is essential to determine which potential system
design would produce the highest functionality.

In practice, certain factors need to be taken into account
and it is the available resources for this application. The
limitations on resources were defined as cost, maintenance
effort and spurious frequency. The design options should
improve the HIPS performance without violating the con-
straints. Consequently, the evaluation of each constraint is
required in order to assess the overall desirability of each
design option.

F. Fitness Evaluation and Penalty Formulas

The system unavailability is the main optimization criterion.
However, resources are not inexhaustible. Therefore, the
following limits were considered:

e Cost < 1000 units,
e Maintenance Down Time: M DT < 130 hours,

 Spurious System Failure: Fy,, <1 per year.

If these three parameters exceed their respective limits,
the following penalty equations were implemented in this
HIPS-PSO design:
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1) The method utilized tries to form a direct relationship
between cost and performance. HIPS-PSO designs
with excessive cost will not be adopted so the more
the constraint violation the heavier the penalty. This
is implemented using an exponential relationship of
the form y = z%. For comparison with previous
work [7], the cost penalty also takes into account
both the cost violation and the system unavailability.
This is achieved using a multiplying factor which,
rather than being fixed, varies according to the system
unavailability of the design. Hence, the modified cost
penalty formula (C,) for excess cost is shown in
equation 17.

c, = { (COST — 1000)

5
1
sys 17
1000 } *Qsys (A7)

where (Qqys is the system unavailability.

2) If the MDT of a particular HIPS-PSO design exceeds
130 hours, a contribution is made to the unavailability
of the system in the form of a penalty. The respective
penalty (M) is shown in equation 18.

(M DT — 1000)
M,=——+—— 18
P 8760 (18)
where the value of 8760 is the number of hours per

year.

3) The third constraint, excess spurious trip occurrence
is also related to the cost. If a spurious trip occurs,
production ceases and hence a financial loss is in-
curred. It was assumed that the cost per hour for loss
of production is 100 units. On average, a spurious
trip requires 36 hours (refer to Table II) to repair and
only one such occurrence is acceptable in a yearly
period. Using the cost penalty formula (equation 17),
the spurious trip penalty (S,) can be expressed as
shown in equation 19:

C’ost}4 (19)

s, {Ea:cess

1000 * Qoys

Each penalty is subsequently added to the system
unavailability. The result is a sole fitness value for each
design referred to as its penalized system unavailability
(Q;ys), shown in equation 20.

Quys = Qsys + Cp + M, + 8, (20)

V. RESULTS AND DISCUSSION

This section discusses the results of the implementation of
PSO optimization for the design of HIPS. Previously, the
simple GA based technique and its modified version have
been successfully applied to the HIPS optimization [8], [9].
However, this approach clearly demonstrates the ability to
easily use PSO for the HIPS design to find and explore for
an optimal HIPS design to protect equipment. A comparison
is made between the two schemes design using GA and the
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PSO approach. The swarm parameters are heuristically cho-
sen with these values :®,,,, = 0.08, ®,,;,, = 0.06, @1 ez =
0.02, a1min = 0.01,02maz = 0.04, 22min = 0.03. A
variable velocity added to these parameters helps not only
to avoid being trapped in a local but to enhance obtaining
a near optimal solution. This algorithm is designed to use
an optimal population (n = 20) and generations (7 = 500)
while [8] has a populations of (n = 20, 30) and generations
of (7 = 3000, 100) respectively for the implementation of
the 1% and 2"¢ scheme. This approach is designed with
optimal values of 7 and 7 in order to ensure a much
reduced execution run time which would be very appropriate
for a case of a massive fault tree structure. Moreover, the
PSO approach gives a further reduced system unavailability
(Qsys) than with either of scheme 1 or 2 in [8] and the best
reduced overall cost of £575. Moreover, the main strength
of this approach is the drastic reduction in the execution run
time involved: about a tenth of a second for the proposed
PSO approach while it expended 38 hours for exhaustive
search and 20 minutes each for the two schemes. The
interesting finding from this approach as shown in the results
screenshot in Figure 3 is that it took about % of the number
of generations (just above 200 iterations) to produce the
optimal result. Table III gives the comparison results of these
approaches.

TABLE III: Characteristics and Comparisons of the Best
Design Structure

Ext ve h h 2 | PSO
The Sub Systems Search [8] | GA [8] GA [8] [Proposed]
‘: No. of ESD valves (E) 0 0 0 1
% | No. of PTs (N1) 2 2 3 2
= | No. of PTs to trip system (K;) 2 2 1
& | MTI (9;) 17 19 18 35
': No. of HIPS valves (H) 1 1 1 1
& | No. of PTs (N2) 2 2 3 1
= | No. of PTs to trip system (K2) 2 2 2 0
& | MTI (02) 127 60 93 65
Valve type (V) 1 1 1 1
PT type (P) 1 1 1 1
Maintenance Down Time (MDT) (hours) 129.53 128.40 129.53 129.71
Cost 632 632 652 575
Spurious trip (Fsys) 0.45045 0.45044 0.45027 0.14665
System unavailability (Qsys) * 10=7 4.051 4.235 4.143 4.117
Number of Populations used 20 20 30 20
Number of Iterations used Exhaustive 3000 100 500
Simulation Time involved 38 hours 20 mins 20 mins 0.104 secs

Kayode Cwa - Optimisation Strategy

High Integrity Protection System

Particle Swarm Optimisation

Subsystem 1
No of ESD valves

1 = ¥
No of PTs 2 § 3E-06
No of PTs to trip system 1 =
MTI 35 & 25E-06
! =]
Subsystem 2
No of HIPS valves 1 2E-06
No of PTs 1
No of PTs to trip system o 1.5E-06
MTI 65
. 1E-06
VYalve Type 1
FT Type 1 y L[
MDT 129.71 SE-07 —
Cost 575
Spurious Trip 0.1466579103 0
System Unavailability 4.117E-07 0 200 400
Time(s) 00:00:00.104000 Generations
Population 20 *  Generation 90 T
Clear Close

Fig. 3: A Screenshot of the HIPS-PSO Design strategy
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VI. CONCLUSIONS

This paper presents the successful implementation of a
Particle Swarm Optimization (PSO) approach to design a
High Integrity Protection System (HIPS). The HIPS is a
safety system that can be installed in an industrial envi-
ronment and on hazardous processes in order to mitigate
hazards such as overpressure, explosions, fires, explosions,
releases of flammable or toxic materials, vessel and and gas
blowout. A fault tree analysis (FTA) was carried out for the
HIPS design for offshore platforms in order to calculate the
design unavailability to initiate a shutdown in the case of
an emergency. The HIPS processes numerous design options
and the optimization tool is required in order to find the
optimal system design within certain constraints. PSO brings
more varieties, diversity and faster convergence in obtaining
the optimal solution. It has scope to further usage in safety
critical systems where scalability is not deemed to be an
issue. The design simplicity and the fast execution speed will
likewise enhance its utilization in industrial applications with
massive model designs. Further work will explore the multi-
objective technique for the design of systems with more than
one objective to be satisfied.
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