
 

 
Abstract—The Web Ontology Language, OWL, provides an 

effective language for encoding semantic constraints on data. 
Although a variety of semantic functionalities such as 
inference, retrieval, data integration, consistency and 
validation are enabled by representing semantics explicitly in 
OWL, most data continues to be managed in relational 
databases where such constraints can only be handled in 
procedural code buried in the application. This paper shows 
how the most important semantic constructs in OWL can be 
readily implemented in a database by semi-automatically 
translating OWL statements into database triggers without loss 
of encoded semantic information. 
 

Index Terms—Constrains, OWL, ontology, RDBMS, 
semantics, trigger 

I. INTRODUCTION 

data model is intended to be a representation of real-
world entities, relations and their semantics [1]. The 
traditional relational database schema defines the 

structure of the data in terms of relations, attributes, keys 
and dependencies. Other aspects of the semantics of the 
real-world domain are handled by object-oriented models 
with their class hierarchies and inheritance mechanisms. 
However, representation of more complex semantic 
constraints continues to be a challenge in traditional 
databases. On the other hand, languages like the W3C 
recommendation of Web Ontology Language, OWL [2] are 
designed specifically to support constructs for capturing a 
rich set of semantic constraints on the real-world data [3]. 
The methods of the Semantic Web amount to more modern, 
comprehensive, self-sufficient and machine interpretable 
forms of data description. Yet, current implementations of 
OWL are best considered prototypes and are not easily 
scalable beyond a few million triples, to the sizes of data 
handled by a typical database. 

Implementing a sufficiently rich set of semantic 
constraints in a relational database involves the tedious task 
of manually hard-coding the semantic constraints in the 
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application programs. This causes further inefficiencies 
down the road when the ontology of the domain needs a 
change and the semantic constraints need to be edited. For 
example, consider a semantic constraint that says every 
customer must have at least one bank account with at least a 
minimum balance as prescribed by that bank. Such a 
constraint can only be implemented by hard-coding its rules 
into application programs or embedding a rather messy 
piece of code in suitable triggers in the database. In an OWL 
ontology, such constraints can be encoded rather neatly. 

There is a need for a system or framework which 
encapsulates the fluidity and flexibility of describing the 
semantic constraints present in real-world entities and 
relationships, which at the same time can scale to capture 
the amount of data present in real-world applications. 
Furthermore, in-order to be employed at scale, this system 
must cater to individuals with training in legacy relational 
database management systems, in order to be a practical and 
viable replacement, while at the same time, proving to be a 
self-contained system capable of reasoning and factual 
interpretation, on the lines of the Semantic Web.  

This paper proposes a solution to this problem by 
showing how an ontology can be semi-automatically 
mapped to SQL commands that can be run and stored in any 
commercial or open-source Relational Database 
Management System. The proposed approach implements 
the semantics of any domain with minimal effort and 
without loss of semantics. The semantics of the domain can 
be independently modeled using OWL tools such as 
OntoEdit, Protégé [4], or TopBraid Composer [5]. 

II. CURRENT APPROACHES 

There has been ample work in migrating Relational 
Databases into the Semantic Web. Some notable examples 
are the work done by Astrova et al. [6], Guntar Bumans [7], 
Alalwan et al. [8], Shen et al. [9] and RONTO [10]. There 
is, however, little work done in the opposite direction, 
which is, adding the semantics of Semantic Web 
technologies to a database, with a few exceptions [11]. One 
technique is to store the additional semantic information as 
meta-data in a separate layer on top of the relational 
database. This is the approach taken by GEM [12] and the 
work done by Vyšniauskas et al. in their hybrid approach 
[13]. The solution proposed in this paper is distinctly 
different, as it maps the semantic constraints directly to the 
database during the creation of the relational schema itself. 
At run-time, triggers whose code is automatically generated 
are used to apply the semantic constraints. A somewhat 
related solution is the rule-based approach in the work done 
by Astrova et al. [14]. However, their system is only able to 
store information that is supported inherently by the 
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constructs of an RDMS, with no mechanism to create 
custom triggers corresponding to semantic constraints. 

Some work has also gone into trigger based model, a 
notable example of which is by A. Tzacheva et al. [15] 
where they discuss using integrity constraints as a means of 
enforcing Domain-Range constraints, and triggers as a 
means of enforcing Subclass-Superclass constraints. The 
work, however, neither deals with the specific constructs of 
OWL, nor provides a framework or mapping for them. 
Finally, SQOWL2 [16] varies from our work in two main 
ways: in the underlying design philosophy of the system, 
SQOWL2 implements constraints such as a Functional 
Property by hard-coding them within the same database 
table. In the proposed solution, the mapping is done in an 
open ended manner to obtain the same consistency through 
automatically generated triggers regardless of the ontology, 
without relying on exploiting the structure of the database to 
enforce the constraints. The second difference lies in the 
range of semantic constructs from OWL supported in the 
proposed solution including Cardinality constraints, 
AllValuesFrom, SomeValuesFrom, and additional specific 
constructs that are known to be important and useful in 
modeling the semantics of real world systems. 

In what follows, we describe the mappings from OWL 
semantic constructs to database triggers in sufficient detail 
to ensure reproducibility and easy implementation of this 
work in any database system whose semantics is defined as 
an OWL ontology. 

III. MAPPING STRUCTURAL CONSTRAINTS: OWLTORDBMS 

Fig. 1 shows the overall architecture of the mapping from 
OWL to RDBMS. The various elements of the OWL 
ontology that need to be mapped to the relational system 
are: 

 Classes (Specified as IRI or URI declarations) 
 Properties 

o  Datatype Properties 
o  Object Properties 

 Restrictions on Classes and Properties 
 Other OWL constructs and Individuals (i.e., 

instances) 
 

 
 

Fig. 1. Architecture of OWL to RDBMS Mapping 

In order to map them, the following steps are taken:  
i. Pellet (or any other OWL 2 DL) reasoner is used to 

parse the OWL ontology and build the hierarchy of 
classes in the ontology.  

ii. The properties of the ontology are iterated over, and 
the hierarchy of properties is built.  

iii. These hierarchies are used to ensure that integrity 
constraint violations do not take place in the database.  

iv. Classes are mapped to tables in the following way: 
a. Each class is mapped to a table with the class 

name as the table name.  
b. Tables corresponding to independent classes are 

given a column named classnameID that serves 
as the primary key for the table. It is of type 
INTEGER. 

c. Association classes or Union of classes are 
given multiple columns, each referring via a 
Foreign Key to the classes that together make 
them. The primary key of the table is the 
composition of all the columns that form the 
class. 

d. Subclasses refer to the Superclass using a 
Foreign Key constraint. 

e. Assertions/Triggers are written to ensure 
Integrity Constraint Violations do not take 
place: Specifically, a BEFORE INSERT trigger 
is written to INSERT the data first into the 
super-class and then into the subclass. Similarly 
with association classes, data is first inserted 
into all of the tables that it refers to, and then 
into the table corresponding to the association 
class. 

v. Datatype Properties are mapped to tables in the 
following way: 
a. Each datatype property is given a separate table 

that is named with the same name as the data 
type property. Two columns are created: 
ClassID which references the class to which the 
property belongs, and Value which contains the 
value. 

b. If the property is functional, it implies each 
individual of the class can have only a single 
value. This is enforced by making the ClassID 
column of the table the primary key. 

c. If the property is multivalued, it implies that 
each individual can take multiple values for the 
same property. This is enforced by making the 
primary key of the table a combination of both 
ClassID and Value columns. 

d. If the property is a sub-property of another 
property, a BEFORE INSERT assertion (or 
Trigger) is used in order to first insert the 
information into the super-property, and then 
into the sub-property.  

vi. Object Properties are mapped to tables in the 
following way:  
a. Each object property is mapped to a table with 

the same name as the object property. The table 
has two columns, named Domain and Range 
that reference the primary key columns of the 
tables corresponding to the classes linked by the 
property. 
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b. If the property is functional and inverse functional it 
means the function is a bijection. This is enforced 
by making the Domain column the primary key, 
and imposing a UNIQUE constraint on the Range 
column. 

c. If the property is functional, but its inverse is not 
functional, it implies an individual in the Domain 
can have only a single Range, whereas the inverse, 
i.e. Range can have multiple corresponding 
domains. This is enforced by making the Domain 
column the primary key. 

d. If the property is inverse functional, but is not 
functional, it implies an individual in the Range can 
have only a single inverse Domain, whereas the 
Domain can have multiple corresponding ranges. 
This is enforced by making the Range column the 
primary key. 

e. If the property is neither functional nor inverse 
functional then there can be multiple allowed 
values for both Domain and Range. In this case, the 
primary key of the table is combination of both 
Domain and Range columns. 

f.      Please note that after mapping a property, the 
inverse of the property is implicitly mapped. It is 
not required to create separate tables for both the 
property as well as its inverse. 

g. If the property is a sub-property of another property, 
a BEFORE INSERT assertion (or Trigger) is used 
in order to first insert the information into the 
super-property, and then into the sub-property. 

IV. MAPPING SEMANTIC CONSTRAINTS: OWLTORDBMS 

 
The OWL constructs [17] that are most commonly used in 
modeling real-world systems include the properties listed in 
Table I. Additionally, we have also implemented some other 
important properties, which are also enumerated in Table I.  
 

TABLE I 
OWL CONSTRAINTS COMMONLY USED IN  

MODELLING REAL-WORLD SYSTEMS 
allValuesFrom 
someValuesFrom 
hasValue 
Cardinality 
TransitiveProperty 
SymmetricProperty 
FunctionalProperty 
InverseOf 
InverseFunctionalProperty 
AssymetricProperty 
ReflexiveProperty 
Irreflexive Property 

 
Restrictions and other related OWL constructs are 

mapped to RDBMS using triggers/assertions. As listed 
above for Object Properties, there are four distinct cases to 
be dealt with. Table II provides an abstract definition of 
how the properties look under each of the four scenarios. In 
order to enforce the constraints, a two-pass system is 
required. For constraints such as minCardinality, 
someValuesFrom and Cardinality we cannot rely on 
INSERT/DELETE assertions. This is because these state 
that the number of individuals must be of a minimum 
number, i.e. after reaching that minimum number, the user 

must not be allowed to further delete individuals. This, 
however, cannot be checked during the initial building of 
the database, as Triggers do not have look ahead capability 
to foresee later insertion of records that will satisfy the 
constraints.  

In-order to deal with this shortcoming, the application 
program itself enforces these constraints before creation of 
the DDL commands, and the triggers are written as 
BEFORE DELETE triggers to prevent later violation of the 
constraints at later times. It is important at this point to 
examine some of the difficulties in implementing triggers. 
In particular, most database management systems (if not all) 
do not allow triggers to insert data into the same table on 
which it is defined. As a work-around, three techniques are 
proposed: 

i. A separate stored procedure is written that encapsulates 
both the insert procedure as well as the trigger, and 
the final commit is done after both statements are 
executed. This, however is not a viable option in 
our scenario as we require the data to be accessed 
dynamically via a pre-written stored procedure. 
Methods (b) and (c), however, are viable. 

ii. A secondary READ_ONLY table is created and 
maintained. Every time data is written into the 
WRITE (object property) table, the trigger writes 
twice into the READ_ONLY table, once with the 
original assertion, and once with the inferred 
assertions. This implies, however, the user must 
execute WRITE statements into one table, and 
READ statements separately from another table. 

iii. The final alternative is the creation of a separate 
blackhole table. A blackhole table is an optimized 
structure that accepts data and throws it away, and 
does not store it. A “BEFORE INSERT” trigger is 
written for the blackhole table so as to insert the 
incoming data back into the original table. After it 
is inserted into the original table, the blackhole 
table then discards the incoming data, therefore 
providing a memory efficient solution. 

 
For constraints of the type someValuesFrom, hasValue and 
allValuesFrom, two modes of operation are possible: 

i. The application program enumerates and hard-codes 
the possible/acceptable values into the trigger 
itself, which then checks it BEFORE INSERTION 
and raises an ERROR if the inserted values do not 
match the allowed values. 

ii. In the case where the number of possible values is 
large, the above technique reduces readability and 
modifiability of the trigger. The alternative, 
therefore, is for the application program to create 
separate enumeration tables containing the allowed 
values, and the trigger referencing these tables 
using the IS IN SQL query. This allows for 
changing the values dynamically as well. 

 
 
Finally, we describe the logic behind the implementation of 
the trigger procedures corresponding to every semantic 
constraint:  
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i. allValuesFrom- The semantics of this restriction imply 
that for an entity to be valid, it must belong to a 
specified Class. It is analogous to the universal 
(for-all) quantifier of Predicate logic - for each 
instance of the class that is being described, every 
value for P must fulfill the constraint. This is 
implemented by writing a BEFORE INSERTION 
assertion that verifies whether the value being 
inserted into the table also has an entry in the table 
corresponding to the class of which it must be a 
part. This is done using an IS IN SQL query.  

 
ii. someValuesFrom- The semantics of this restriction imply 

that for a group of entities to be valid, at least one 
entity within the group must belong to a specified 
Class. It is analogous to the existential quantifier of 
Predicate logic - for each instance of the class that 
is being defined, there exists at least one value for 
P that fulfills the constraint. The implementation if 
this it two-fold. Firstly, while we are initially 
building the DDL commands from the ontology, 
the application program must check if this 
constraint is fulfilled, and is done with the help of 
OWL reasoners. Once the initial constraint is 
fulfilled, the database can be created. Now, 
however, we need to ensure that the constraint is 
not violated further ahead in time. The only case in 
which the 
constraint can be violated, is on a DELETE SQL 
command, and therefore an assertion is written to 
check the validity of the constraint after a DELETE 
operation is carried out. If the constraint is found to 
be violated, an error is thrown, thereby preventing 
the DELETE operation from taking place. 

 
iii. Cardinality- There are three cardinality restrictions that 

we must map into assertions, namely minimum 
cardinality, maximum cardinality and cardinality 
(fixed cardinality.) 
Like someValuesFrom, the minimum cardinality 
semantic restriction has a two-fold implementation. 
It is checked by the application program prior to 
the creation of the database, and an assertion is 
written to ensure that the constraint is not violated 
on deletion of records from the table. Similarly, 
assertions are written for maximum cardinality and 
fixed cardinality, an example of which is given 
below.  
 
CREATE ASSERTION max_cardinality  
            CHECK (SELECT COUNT(*) FROM 

table_2 > max) NOT DEFERRABLE; 
 

iv. Transitive Property- In order to implement the 
transitive property on entities, we need to use a 
separate table to make the inferred insertions, as 
most RDBMS do not allow triggers to insert 
records into the table on which they are written. 
Therefore, AFTER INSERT of the tuple (x,y) into 
the intended table T1, a search is carried out in T1, 
to retrieve all tuples of the form (d,x) where d is a 
generic record. For each record that matches this 
search, (d,y) is inserted into a dummy/black-hole 

table T2. Similarly, a search is carried out for 
records of the form (y,d) and (x,d) is inserted into 
T2 corresponding to the search results. T2 has a 
BEFORE INSERT trigger, which inserts all values 
into T1, thereby achieving the intended effect of 
inserting the inferred values of the transitive 
property into table T1. 

 
v. Symmetric Property-  In order to implement the 

symmetric property on entities, we need to use a 
separate table to make the inferred insertions, as 
most RDBMS do not allow triggers to insert 
records into the table on which they are written. 
Therefore, AFTER INSERT of the tuple (x,y) into 
the intended table T1, (y,x) is inserted into a 
dummy/black-hole table T2. T2 has a BEFORE 
INSERT trigger, which inserts all values into T1, 
thereby achieving the intended effect of inserting 
the inferred values of the symmetric property into 
table T1. 
 

vi. Reflexive Property- In order to implement the reflexive 
property on entities, we need to use a separate table 
to make the inferred insertions, as most RDBMS 
do not allow triggers to insert records into the table 
on which they are written. Therefore, AFTER 
INSERT of the tuple (x,y) into the intended table 
T1, (y,y) and (x,x) are inserted into a 
dummy/black-hole table T2. T2 has a BEFORE 
INSERT trigger, which inserts all values into T1, 
thereby achieving the intended effect of inserting 
the inferred values of the reflexive property into 
table T1. 

 
vii. Irreflexive Property- In order the implement the 

irreflexive property, we need to invalidate all 
entries of the form (x,x), which is done using an 
assertion. 

 
The final step in the process is mapping of the actual data. 
Each individual in the ontology is mapped to a row in the 
database. However, since the restrictions are NOT 
DEFERRABLE, the order in which they are inserted is 
also important. In order to ensure the generated SQL 
statements are in the appropriate order, the following 
technique is used. The structure of the tables created, 
specifically the foreign key references, is used as meta-
data to process the individuals and create a directed 
acyclic graph. Topological sort is carried out on the 
graph, and if any dependencies are found to be 
unresolved, the application program asks the user to 
resolve them. This is the minor way in which our 
mapping process is semi-automatic as it relies on the user 
to resolve any discrepancies that may arise from the 
mapping process. 
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V. IMPLEMENTATION DETAILS AND FUTURE WORK 

Our system is currently implemented using Apache Jena 
API which currently does not support IRI representation. A 
separate module was written in OWL API to retrieve the 
information that Jena cannot. Alternatively, an editing 
environment like Protégé can also be used to convert the 
OWL file into a suitable format that Jena can read. 

Our future work includes porting the entire codebase to 
OWL API. Additionally, if the semantic constraints in the 
original ontology change, the database system needs to be 
regenerated. Our ongoing work involves developing 
dynamic mapping rules to write an incremental upgrade 
algorithm that would modify and run consistency checks 
only on parts that have changed to improve efficiency and 
reduce the overheads of checking semantic constraints in the 
database. It may be noted here that some prior work exists 
in dynamic mapping, particularly the work done by Yaun 
An et al. [18]. 

VI. CONCLUSION 

In this paper, we have presented a complete and detailed 
technique to map a wide range of semantic constraints from 
an ontology to a conventional RDMS. Using our technique, 
we are able to use a combination of structural constraints, 
trigger procedures and assertions to bring the expressibility 
and flexibility of the Semantic Web into the scalability of a 
conventional RDBMS. The representation of real-world 
semantic constraints comes naturally using the constructs of 
OWL ontologies, and we are able to encode these semantics 
using semi-automatically generated trigger procedures. We 
have provided a viable mapping algorithm, such that post 
mapping, we are able to generate a self-contained RDBMS 
that is fully capable of behaving according to the semantic 
constraints of the domain. 
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Not allowed as domain is 
single valued, hence (a,b) 
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Not allowed as range is 
single valued, hence 
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On insert of (x,y): 1. 
Search for (d,x) and insert 
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Cardinality of inverse : 1 

Cardinality of property : 1  
Cardinality of inverse: find 
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Cardinality of property : 
find min/max/fixed 
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Cardinality of property and 
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min/max/fixed cardinality, 
select count(*) < or > or = 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I, 
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016



 

[14] Irina Astrova, Nahum Korda, and Ahto Kalja, "Storing OWL 
Ontologies in SQL Relational Databases" in International 
Journal of Computer, Electrical, Automation, Control and 
Information Engineering Vol:1, No.5 

[15] Angelina Tzacheva, Tyrone Toland, Peyton Poole, and Daniel 
Barnes, "Ontology Database System and Triggers" in 
Advances in Intelligent Data Analysis XII, Lecture Notes in 
Computer Science Volume 8207, 2013, pp 416-426 

[16] Y. Liu and P. McBrien,   "SQOWL2: Transactional Type 
Inference for OWL 2 DL in an RDBMS",  ;in Proc. 
Description Logics, 2013, pp.779-790.  

[17] Hai Zhuge, Yunpeng Xing and Peng Shi, "Resource Space 
Model, OWL and Database: Mapping and Integration" in 
ACM Transactions on Internet Technology, Vol.8, No.4 

[18] Yuan An, Xiaohua Hu, and Il-Yeol Song, "Maintaining 
Mappings between Conceptual Models and Relational 
Schemas" in Journal of Database Management, 21(3), 36-68 

 
 
 
 
 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I, 
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016




