

Abstract—The Web Ontology Language, OWL, provides an

effective language for encoding semantic constraints on data.
Although a variety of semantic functionalities such as
inference, retrieval, data integration, consistency and
validation are enabled by representing semantics explicitly in
OWL, most data continues to be managed in relational
databases where such constraints can only be handled in
procedural code buried in the application. This paper shows
how the most important semantic constructs in OWL can be
readily implemented in a database by semi-automatically
translating OWL statements into database triggers without loss
of encoded semantic information.

Index Terms—Constrains, OWL, ontology, RDBMS,
semantics, trigger

I. INTRODUCTION

data model is intended to be a representation of real-
world entities, relations and their semantics [1]. The
traditional relational database schema defines the

structure of the data in terms of relations, attributes, keys
and dependencies. Other aspects of the semantics of the
real-world domain are handled by object-oriented models
with their class hierarchies and inheritance mechanisms.
However, representation of more complex semantic
constraints continues to be a challenge in traditional
databases. On the other hand, languages like the W3C
recommendation of Web Ontology Language, OWL [2] are
designed specifically to support constructs for capturing a
rich set of semantic constraints on the real-world data [3].
The methods of the Semantic Web amount to more modern,
comprehensive, self-sufficient and machine interpretable
forms of data description. Yet, current implementations of
OWL are best considered prototypes and are not easily
scalable beyond a few million triples, to the sizes of data
handled by a typical database.

Implementing a sufficiently rich set of semantic
constraints in a relational database involves the tedious task
of manually hard-coding the semantic constraints in the

Manuscript received December 08, 2015; revised January 20, 2016. This

work is supported in part by the World Bank/Government of India research
grant under the TEQIP programme (subcomponent 1.2.1) to the Centre for
Knowledge Analytics and Ontological Engineering (KAnOE),
http://kanoe.org at PES University, Bangalore, India.

Aman Achpal is an undergraduate student in Computer Science at PES
Institute of Technology, Bangalore, India (e-mail:
aman.achpal@gmail.com).

Vinayshekhar Bannihatti Kumar is an undergraduate student in
Computer Science at PES Institute of Technology, Bangalore, India (e-mail:
vinayshekhar000@gmail.com).

Dr. Kavi Mahesh is the Dean of Research, Director of KAnOE and
Professor of Computer Science at PES University (phone: +91 9845290073
e-mail: drkavimahesh@gmail.com).

application programs. This causes further inefficiencies
down the road when the ontology of the domain needs a
change and the semantic constraints need to be edited. For
example, consider a semantic constraint that says every
customer must have at least one bank account with at least a
minimum balance as prescribed by that bank. Such a
constraint can only be implemented by hard-coding its rules
into application programs or embedding a rather messy
piece of code in suitable triggers in the database. In an OWL
ontology, such constraints can be encoded rather neatly.

There is a need for a system or framework which
encapsulates the fluidity and flexibility of describing the
semantic constraints present in real-world entities and
relationships, which at the same time can scale to capture
the amount of data present in real-world applications.
Furthermore, in-order to be employed at scale, this system
must cater to individuals with training in legacy relational
database management systems, in order to be a practical and
viable replacement, while at the same time, proving to be a
self-contained system capable of reasoning and factual
interpretation, on the lines of the Semantic Web.

This paper proposes a solution to this problem by
showing how an ontology can be semi-automatically
mapped to SQL commands that can be run and stored in any
commercial or open-source Relational Database
Management System. The proposed approach implements
the semantics of any domain with minimal effort and
without loss of semantics. The semantics of the domain can
be independently modeled using OWL tools such as
OntoEdit, Protégé [4], or TopBraid Composer [5].

II. CURRENT APPROACHES

There has been ample work in migrating Relational
Databases into the Semantic Web. Some notable examples
are the work done by Astrova et al. [6], Guntar Bumans [7],
Alalwan et al. [8], Shen et al. [9] and RONTO [10]. There
is, however, little work done in the opposite direction,
which is, adding the semantics of Semantic Web
technologies to a database, with a few exceptions [11]. One
technique is to store the additional semantic information as
meta-data in a separate layer on top of the relational
database. This is the approach taken by GEM [12] and the
work done by Vyšniauskas et al. in their hybrid approach
[13]. The solution proposed in this paper is distinctly
different, as it maps the semantic constraints directly to the
database during the creation of the relational schema itself.
At run-time, triggers whose code is automatically generated
are used to apply the semantic constraints. A somewhat
related solution is the rule-based approach in the work done
by Astrova et al. [14]. However, their system is only able to
store information that is supported inherently by the

Modeling Ontology Semantic Constraints in
Relational Database Management System

Aman Achpal, Vinayshekhar Bannihatti Kumar and Kavi Mahesh

A

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

constructs of an RDMS, with no mechanism to create
custom triggers corresponding to semantic constraints.

Some work has also gone into trigger based model, a
notable example of which is by A. Tzacheva et al. [15]
where they discuss using integrity constraints as a means of
enforcing Domain-Range constraints, and triggers as a
means of enforcing Subclass-Superclass constraints. The
work, however, neither deals with the specific constructs of
OWL, nor provides a framework or mapping for them.
Finally, SQOWL2 [16] varies from our work in two main
ways: in the underlying design philosophy of the system,
SQOWL2 implements constraints such as a Functional
Property by hard-coding them within the same database
table. In the proposed solution, the mapping is done in an
open ended manner to obtain the same consistency through
automatically generated triggers regardless of the ontology,
without relying on exploiting the structure of the database to
enforce the constraints. The second difference lies in the
range of semantic constructs from OWL supported in the
proposed solution including Cardinality constraints,
AllValuesFrom, SomeValuesFrom, and additional specific
constructs that are known to be important and useful in
modeling the semantics of real world systems.

In what follows, we describe the mappings from OWL
semantic constructs to database triggers in sufficient detail
to ensure reproducibility and easy implementation of this
work in any database system whose semantics is defined as
an OWL ontology.

III. MAPPING STRUCTURAL CONSTRAINTS: OWLTORDBMS

Fig. 1 shows the overall architecture of the mapping from
OWL to RDBMS. The various elements of the OWL
ontology that need to be mapped to the relational system
are:

 Classes (Specified as IRI or URI declarations)
 Properties

o Datatype Properties
o Object Properties

 Restrictions on Classes and Properties
 Other OWL constructs and Individuals (i.e.,

instances)

Fig. 1. Architecture of OWL to RDBMS Mapping

In order to map them, the following steps are taken:
i. Pellet (or any other OWL 2 DL) reasoner is used to

parse the OWL ontology and build the hierarchy of
classes in the ontology.

ii. The properties of the ontology are iterated over, and
the hierarchy of properties is built.

iii. These hierarchies are used to ensure that integrity
constraint violations do not take place in the database.

iv. Classes are mapped to tables in the following way:
a. Each class is mapped to a table with the class

name as the table name.
b. Tables corresponding to independent classes are

given a column named classnameID that serves
as the primary key for the table. It is of type
INTEGER.

c. Association classes or Union of classes are
given multiple columns, each referring via a
Foreign Key to the classes that together make
them. The primary key of the table is the
composition of all the columns that form the
class.

d. Subclasses refer to the Superclass using a
Foreign Key constraint.

e. Assertions/Triggers are written to ensure
Integrity Constraint Violations do not take
place: Specifically, a BEFORE INSERT trigger
is written to INSERT the data first into the
super-class and then into the subclass. Similarly
with association classes, data is first inserted
into all of the tables that it refers to, and then
into the table corresponding to the association
class.

v. Datatype Properties are mapped to tables in the
following way:
a. Each datatype property is given a separate table

that is named with the same name as the data
type property. Two columns are created:
ClassID which references the class to which the
property belongs, and Value which contains the
value.

b. If the property is functional, it implies each
individual of the class can have only a single
value. This is enforced by making the ClassID
column of the table the primary key.

c. If the property is multivalued, it implies that
each individual can take multiple values for the
same property. This is enforced by making the
primary key of the table a combination of both
ClassID and Value columns.

d. If the property is a sub-property of another
property, a BEFORE INSERT assertion (or
Trigger) is used in order to first insert the
information into the super-property, and then
into the sub-property.

vi. Object Properties are mapped to tables in the
following way:
a. Each object property is mapped to a table with

the same name as the object property. The table
has two columns, named Domain and Range
that reference the primary key columns of the
tables corresponding to the classes linked by the
property.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

b. If the property is functional and inverse functional it
means the function is a bijection. This is enforced
by making the Domain column the primary key,
and imposing a UNIQUE constraint on the Range
column.

c. If the property is functional, but its inverse is not
functional, it implies an individual in the Domain
can have only a single Range, whereas the inverse,
i.e. Range can have multiple corresponding
domains. This is enforced by making the Domain
column the primary key.

d. If the property is inverse functional, but is not
functional, it implies an individual in the Range can
have only a single inverse Domain, whereas the
Domain can have multiple corresponding ranges.
This is enforced by making the Range column the
primary key.

e. If the property is neither functional nor inverse
functional then there can be multiple allowed
values for both Domain and Range. In this case, the
primary key of the table is combination of both
Domain and Range columns.

f. Please note that after mapping a property, the
inverse of the property is implicitly mapped. It is
not required to create separate tables for both the
property as well as its inverse.

g. If the property is a sub-property of another property,
a BEFORE INSERT assertion (or Trigger) is used
in order to first insert the information into the
super-property, and then into the sub-property.

IV. MAPPING SEMANTIC CONSTRAINTS: OWLTORDBMS

The OWL constructs [17] that are most commonly used in
modeling real-world systems include the properties listed in
Table I. Additionally, we have also implemented some other
important properties, which are also enumerated in Table I.

TABLE I
OWL CONSTRAINTS COMMONLY USED IN

MODELLING REAL-WORLD SYSTEMS
allValuesFrom
someValuesFrom
hasValue
Cardinality
TransitiveProperty
SymmetricProperty
FunctionalProperty
InverseOf
InverseFunctionalProperty
AssymetricProperty
ReflexiveProperty
Irreflexive Property

Restrictions and other related OWL constructs are

mapped to RDBMS using triggers/assertions. As listed
above for Object Properties, there are four distinct cases to
be dealt with. Table II provides an abstract definition of
how the properties look under each of the four scenarios. In
order to enforce the constraints, a two-pass system is
required. For constraints such as minCardinality,
someValuesFrom and Cardinality we cannot rely on
INSERT/DELETE assertions. This is because these state
that the number of individuals must be of a minimum
number, i.e. after reaching that minimum number, the user

must not be allowed to further delete individuals. This,
however, cannot be checked during the initial building of
the database, as Triggers do not have look ahead capability
to foresee later insertion of records that will satisfy the
constraints.

In-order to deal with this shortcoming, the application
program itself enforces these constraints before creation of
the DDL commands, and the triggers are written as
BEFORE DELETE triggers to prevent later violation of the
constraints at later times. It is important at this point to
examine some of the difficulties in implementing triggers.
In particular, most database management systems (if not all)
do not allow triggers to insert data into the same table on
which it is defined. As a work-around, three techniques are
proposed:

i. A separate stored procedure is written that encapsulates
both the insert procedure as well as the trigger, and
the final commit is done after both statements are
executed. This, however is not a viable option in
our scenario as we require the data to be accessed
dynamically via a pre-written stored procedure.
Methods (b) and (c), however, are viable.

ii. A secondary READ_ONLY table is created and
maintained. Every time data is written into the
WRITE (object property) table, the trigger writes
twice into the READ_ONLY table, once with the
original assertion, and once with the inferred
assertions. This implies, however, the user must
execute WRITE statements into one table, and
READ statements separately from another table.

iii. The final alternative is the creation of a separate
blackhole table. A blackhole table is an optimized
structure that accepts data and throws it away, and
does not store it. A “BEFORE INSERT” trigger is
written for the blackhole table so as to insert the
incoming data back into the original table. After it
is inserted into the original table, the blackhole
table then discards the incoming data, therefore
providing a memory efficient solution.

For constraints of the type someValuesFrom, hasValue and
allValuesFrom, two modes of operation are possible:

i. The application program enumerates and hard-codes
the possible/acceptable values into the trigger
itself, which then checks it BEFORE INSERTION
and raises an ERROR if the inserted values do not
match the allowed values.

ii. In the case where the number of possible values is
large, the above technique reduces readability and
modifiability of the trigger. The alternative,
therefore, is for the application program to create
separate enumeration tables containing the allowed
values, and the trigger referencing these tables
using the IS IN SQL query. This allows for
changing the values dynamically as well.

Finally, we describe the logic behind the implementation of
the trigger procedures corresponding to every semantic
constraint:

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

i. allValuesFrom- The semantics of this restriction imply
that for an entity to be valid, it must belong to a
specified Class. It is analogous to the universal
(for-all) quantifier of Predicate logic - for each
instance of the class that is being described, every
value for P must fulfill the constraint. This is
implemented by writing a BEFORE INSERTION
assertion that verifies whether the value being
inserted into the table also has an entry in the table
corresponding to the class of which it must be a
part. This is done using an IS IN SQL query.

ii. someValuesFrom- The semantics of this restriction imply

that for a group of entities to be valid, at least one
entity within the group must belong to a specified
Class. It is analogous to the existential quantifier of
Predicate logic - for each instance of the class that
is being defined, there exists at least one value for
P that fulfills the constraint. The implementation if
this it two-fold. Firstly, while we are initially
building the DDL commands from the ontology,
the application program must check if this
constraint is fulfilled, and is done with the help of
OWL reasoners. Once the initial constraint is
fulfilled, the database can be created. Now,
however, we need to ensure that the constraint is
not violated further ahead in time. The only case in
which the
constraint can be violated, is on a DELETE SQL
command, and therefore an assertion is written to
check the validity of the constraint after a DELETE
operation is carried out. If the constraint is found to
be violated, an error is thrown, thereby preventing
the DELETE operation from taking place.

iii. Cardinality- There are three cardinality restrictions that

we must map into assertions, namely minimum
cardinality, maximum cardinality and cardinality
(fixed cardinality.)
Like someValuesFrom, the minimum cardinality
semantic restriction has a two-fold implementation.
It is checked by the application program prior to
the creation of the database, and an assertion is
written to ensure that the constraint is not violated
on deletion of records from the table. Similarly,
assertions are written for maximum cardinality and
fixed cardinality, an example of which is given
below.

CREATE ASSERTION max_cardinality
 CHECK (SELECT COUNT(*) FROM

table_2 > max) NOT DEFERRABLE;

iv. Transitive Property- In order to implement the
transitive property on entities, we need to use a
separate table to make the inferred insertions, as
most RDBMS do not allow triggers to insert
records into the table on which they are written.
Therefore, AFTER INSERT of the tuple (x,y) into
the intended table T1, a search is carried out in T1,
to retrieve all tuples of the form (d,x) where d is a
generic record. For each record that matches this
search, (d,y) is inserted into a dummy/black-hole

table T2. Similarly, a search is carried out for
records of the form (y,d) and (x,d) is inserted into
T2 corresponding to the search results. T2 has a
BEFORE INSERT trigger, which inserts all values
into T1, thereby achieving the intended effect of
inserting the inferred values of the transitive
property into table T1.

v. Symmetric Property- In order to implement the

symmetric property on entities, we need to use a
separate table to make the inferred insertions, as
most RDBMS do not allow triggers to insert
records into the table on which they are written.
Therefore, AFTER INSERT of the tuple (x,y) into
the intended table T1, (y,x) is inserted into a
dummy/black-hole table T2. T2 has a BEFORE
INSERT trigger, which inserts all values into T1,
thereby achieving the intended effect of inserting
the inferred values of the symmetric property into
table T1.

vi. Reflexive Property- In order to implement the reflexive
property on entities, we need to use a separate table
to make the inferred insertions, as most RDBMS
do not allow triggers to insert records into the table
on which they are written. Therefore, AFTER
INSERT of the tuple (x,y) into the intended table
T1, (y,y) and (x,x) are inserted into a
dummy/black-hole table T2. T2 has a BEFORE
INSERT trigger, which inserts all values into T1,
thereby achieving the intended effect of inserting
the inferred values of the reflexive property into
table T1.

vii. Irreflexive Property- In order the implement the

irreflexive property, we need to invalidate all
entries of the form (x,x), which is done using an
assertion.

The final step in the process is mapping of the actual data.
Each individual in the ontology is mapped to a row in the
database. However, since the restrictions are NOT
DEFERRABLE, the order in which they are inserted is
also important. In order to ensure the generated SQL
statements are in the appropriate order, the following
technique is used. The structure of the tables created,
specifically the foreign key references, is used as meta-
data to process the individuals and create a directed
acyclic graph. Topological sort is carried out on the
graph, and if any dependencies are found to be
unresolved, the application program asks the user to
resolve them. This is the minor way in which our
mapping process is semi-automatic as it relies on the user
to resolve any discrepancies that may arise from the
mapping process.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

V. IMPLEMENTATION DETAILS AND FUTURE WORK

Our system is currently implemented using Apache Jena
API which currently does not support IRI representation. A
separate module was written in OWL API to retrieve the
information that Jena cannot. Alternatively, an editing
environment like Protégé can also be used to convert the
OWL file into a suitable format that Jena can read.

Our future work includes porting the entire codebase to
OWL API. Additionally, if the semantic constraints in the
original ontology change, the database system needs to be
regenerated. Our ongoing work involves developing
dynamic mapping rules to write an incremental upgrade
algorithm that would modify and run consistency checks
only on parts that have changed to improve efficiency and
reduce the overheads of checking semantic constraints in the
database. It may be noted here that some prior work exists
in dynamic mapping, particularly the work done by Yaun
An et al. [18].

VI. CONCLUSION

In this paper, we have presented a complete and detailed
technique to map a wide range of semantic constraints from
an ontology to a conventional RDMS. Using our technique,
we are able to use a combination of structural constraints,
trigger procedures and assertions to bring the expressibility
and flexibility of the Semantic Web into the scalability of a
conventional RDBMS. The representation of real-world
semantic constraints comes naturally using the constructs of
OWL ontologies, and we are able to encode these semantics
using semi-automatically generated trigger procedures. We
have provided a viable mapping algorithm, such that post
mapping, we are able to generate a self-contained RDBMS
that is fully capable of behaving according to the semantic
constraints of the domain.

REFERENCES

[1] Michael Hammer and Dennis McLeod, "Database description
with SDM: A semantic Database model" in ACM
Transactions on Database Systems, Vol 6. No.3

[2] OWL 2 Web Ontology Language Document Overview at
http://www.w3.org/TR/owl2-overview/

[3] OWL 2 Web Ontology Language Structural Specification and
Functional-Style Syntax at http://www.w3.org/TR/owl2-
syntax/

[4] Farheen Siddiqui and M. Afshar Alam, "Web Ontology
Language Design and Related Tools: A Survey" in Journal of
Emerging Technologies in Web Intelligence, Vol. 3, No. 1

[5] TopBraid Composer, Maestro edition at
http://www.topquadrant.com/tools/ide-topbraid-composer-
maestro-edition/

[6] Irina Astrova, Nahum Korda, and Ahto Kalja, "Rule-Based
Transformation of SQL Relational Databases to OWL
Ontologies"

[7] Guntars Bumans, "Mapping between Relational Databases
and OwL Ontologies: an example" in Scientific Papers,
University Of Latvia, 2010. Vol. 756

[8] Nasser Alalwan, Hussein Zedan, François Siewe, "Generating
OWL Ontology for Database Integration" in Third
International Conference on Advances in Semantic Processing

[9] Guohua Shen, Zhiqiu Huang, Xiaodong Zhu, Xiaofei Zhao,
"Research on the Rules of Mapping from Relational Model to
OWL"

[10] Petros Papapanagiotou, Polyxeni Katsiouli, Vassileios
Tsetsos, Christos Anagnostopoulos and Stathes
Hadjiefthymiades, "RONTO: Relational To Ontology Schema
Matching" in AIS SIGSEMIS BULLETIN 3 (3&4) 2006

[11] Nikolaos Konstantinou, Dimitrios-Emmanuel Spanos and
Nikolas Mitrou, "Ontology And Database Mapping: A Survey
Of Current Implementations And Future Directions" in
Journal of Web Engineering, Vol. 7, No.1

[12] Shalom Tsurt and Carlo Zanrolo, "An implementation of
GEM, supporting a semantic model on a relational backend"

[13] Ernestas Vyšniauskas, Lina Nemuraite, Rimantas Butleris and
Bronius Paradauskas, "Reversible Lossless Transformation
From Owl 2 Ontologies Into Relational Databases" in
Information Technology And Control, Vol.40, No.4

TABLE II
MAPPING OF PROPERTY CONSTRAINTS TO RDBMS

(PK- Primary Key, FK- Foreign Key, ref- References)
Property between classes
(mapped to table) A and
class (mapped to table) B

(Single Valued AND
Optional) and has (Single
Valued Inverse) implies
B has FK ref PK(A)

(Single Valued) AND
(Inverse is not Single
Valued) implies A has FK
ref PK(B)

(Multi Valued) AND
(Inverse is Single Valued)
implies B has FK ref PK(A)

(Multi Valued) AND
(Inverse is Multi Valued)
implies new table with FK
ref A & B

Transitive Property
implies same domain and
range

Not allowed as domain is
single valued, hence (a,b)
&(a,c) invalid

Not allowed as domain is
single valued, hence (a,b)
&(a,c) invalid

Not allowed as range is
single valued, hence
(b,c)&(a,c) invalid

On insert of (x,y): 1.
Search for (d,x) and insert
(d,y) and 2. Search for
(y,d) and insert (x,d). PK =
(id,op)

Symmetric Property
implies same domain and
range

On insert of (a,b): Insert on
update (b,a) – Check for
integrity constraint

Not allowed: if (a,b) &
(c,b) exist implies (b,a) &
(b,c) - invalid

Not allowed: if (a,b) &
(c,a) exist implies (b,a) &
(a,c) - invalid as (c,a) and
(b,a)

On insert of (a,b): Insert
(b,a)

Asymmetric property
implies Same domain and
range

On insert of (a,b): Check if
(b,a) exists in table,
invalidate if true

On insert of (a,b): Check if
(b,a) exists in table,
invalidate if true

On insert of (a,b): Check if
(b,a) exists in table,
invalidate if true

On insert of (a,b): Check if
(b,a) exists in table,
invalidate if true

Reflexive property Reflexive property not
possible as (a,b) implies
(a,a)

Reflexive property not
possible as (a,b) implies
(a,a)

Reflexive property not
possible as (a,b) implies
(b,b)

On insert of (a,b): Insert
(a,a) and Insert (b,b)

Irreflexive property On insert of (a,a): Invalid On insert of (a,a): Invalid On insert of (a,a): Invalid On insert of (a,a): Invalid
Cardinality Restriction Cardinality of property : 0

or 1
Cardinality of inverse : 1

Cardinality of property : 1
Cardinality of inverse: find
min/max/fixed cardinality,
select count(*) < or > or =

Cardinality of property :
find min/max/fixed
cardinality, select count(*)
< or > or =
Cardinality of inverse : 1

Cardinality of property and
of inverse : find
min/max/fixed cardinality,
select count(*) < or > or =

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

[14] Irina Astrova, Nahum Korda, and Ahto Kalja, "Storing OWL
Ontologies in SQL Relational Databases" in International
Journal of Computer, Electrical, Automation, Control and
Information Engineering Vol:1, No.5

[15] Angelina Tzacheva, Tyrone Toland, Peyton Poole, and Daniel
Barnes, "Ontology Database System and Triggers" in
Advances in Intelligent Data Analysis XII, Lecture Notes in
Computer Science Volume 8207, 2013, pp 416-426

[16] Y. Liu and P. McBrien, "SQOWL2: Transactional Type
Inference for OWL 2 DL in an RDBMS", ;in Proc.
Description Logics, 2013, pp.779-790.

[17] Hai Zhuge, Yunpeng Xing and Peng Shi, "Resource Space
Model, OWL and Database: Mapping and Integration" in
ACM Transactions on Internet Technology, Vol.8, No.4

[18] Yuan An, Xiaohua Hu, and Il-Yeol Song, "Maintaining
Mappings between Conceptual Models and Relational
Schemas" in Journal of Database Management, 21(3), 36-68

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

