


Abstract—This paper proposes a new real time task

scheduling algorithm with GA. The proposed algorithm has
multiobjective to minimize the total tardiness and total number
of processors used simultaneously. For these conflicting
objectives, this paper combines Adaptive Weight Approach
(AWA) that utilizes some useful information from the current
population to readjust weights for obtaining a search pressure
toward a positive ideal point. The effectiveness of the proposed
algorithm is shown through simulation studies.

Index Terms— adaptive weight approach, genetic algorithm,
multiobjective, simulated annealing

I. INTRODUCTION

EAL-time systems are classified into two categories:
hard real-time system and soft real-time system. In hard

real-time system, tardiness can be catastrophic. The goal of
hard real-time scheduling algorithms is to meet all tasks’
deadlines, in other words, to keep the feasibility of
scheduling through admission control. However, in the case
of soft real-time systems, slight violence of deadlines is not
so critical [1].

In hard real-time system, the performance of scheduling
algorithm is measured by its ability to generate a feasible
schedule for a set of real-time tasks. Typically, there is Rate
Monotonic (RM) and Earliest Deadline First (EDF) derived
scheduling algorithms for hard real-time system with
uniprocessor [2], [3]. They guarantee the optimality in
somewhat restricted environments. However, these
algorithms have some drawbacks to cope with soft real-time
system related resource utilization and pattern of degradation
under the overloaded situation. As the growing of soft real
time applications, the necessity of scheduling algorithm for
soft real-time system is on increase. Several researches for
soft real time system are reported [4], [5]. However, these
algorithms also can not show the graceful degradation of
performance under the overloaded situation. Furthermore,
the optimal assignment of tasks to multiprocessor is, in
almost all practical cases, an NP-hard problem [6].
Consequently various modern heuristics based algorithms
have been proposed for practical reason.

This work supported in part by JSPSKAKENHI Grant Number

15K00084.
Myungryun Yoo is with the Department of Computer Science, Tokyo

City University, 1-28-1 Tamazutsumi, Setagaya-ku, Tokyo, Japan
(corresponding author to provide phone: +81-3-5707-0104; e-mail:
yoo@cs.tcu.ac.jp).

Takanori Yokoyama is with the Department of Computer Science, Tokyo
City University, 1-28-1 Tamazutsumi, Setagaya-ku, Tokyo, Japan (e-mail:
yokoyama@cs.tcu.ac.jp)

Recently, several approaches with single objective using

Genetic Algorithm (GA) are proposed [7]-[9]. These
algorithms have only one objective such as minimizing cost,
end time, total tardiness.

In this paper, we propose a new scheduling algorithm for
nonpreemptive tasks in soft real-time multiprocessor system
with the communication time between processors and the
precedence relationship between tasks. The objective of
proposed scheduling algorithm is to minimize the total
tardiness and total number of processors used simultaneously.
For these conflicting objectives, this paper combines
Adaptive Weight Approach (AWA) that utilizes some useful
information from the current population to readjust weights
for obtaining a search pressure toward a positive ideal point
[10].

II. SOFT REAL-TIME TASK SCHEDULING PROBLEM AND

MATHEMATICAL MODEL

In this study, we consider the problem of scheduling the
tasks of precedence and timing constrained task graph on a
set of homogeneous processors with communication time in a
way that simultaneously minimizes the number of processors
used f1 and the total tardiness f2 under the following
conditions:

1. All tasks are nonpreemptive.
2. Every processor processes only one task at a time.
3. Every task is processed on one processor at a time.
4. Only processing requirements are significant; memory,

I/O, and other resource requirements are negligible.

The soft real-time task scheduling problem (sr-TSP) is

formulated under the following assumptions: Computation
time and deadline of each task and the communication time
between processors are known. A time unit is artificial time
unit. Soft real-time tasks scheduling problem is formulated as
follows:

 Mf 1min (1)

  



N

i
ii

S
i dctf

1
2 ,0maxmin (2)

 idtt i
S

i
E

i  ,t.s. (3)

 iττtctt ij
C

jij
E

j
E

i ),(pre, (4)

 NM 1 (5)

In above equations, notations are defined as follows:

Multiobjective GA
for Real Time Task Scheduling

Myungryun Yoo, and Takanori Yokoyama

R

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

- Indices
 i, j : task index, i, j=1,2,…,N
 m : processor index, m=1,2,…,M

- Parameters
 G=(T, E) : task graph
 T={1, 2, …, N} : a set of N tasks
 E={eij}, i, j=1,2,…,N, i≠j : a set of directed edges among
 the tasks representing precedence
 i : ith task, i=1,2,…, N
 pm : mth processor, m=1,2,…,M
 ci : computation time of task i
 di : deadline of task i
 gij : communication time between task i and task j
 pre*(i) : set of all predecessors of task i
 suc*(i) : set of all successors of task i .
 pre(i) : set of immediate predecessors of task i
 suc(i) : set of immediate successors of task i .
 ti

E : earliest start time of ith task














itct

E
t C

jij
E

j

ijjE
i

ij

,otherwise},{max

)τ,τ(:τif,0

)τ(pre*τ

 ti
L : latest start time of ith task














icdtct

Ecd
t

ii
C

iji
L

j

jijiiL
i

ij

,otherwise},},{minmin{

)τ,τ(:τif,

)τ(*sucτ

- Decision Variables
 ti

S : real start time of ith task






otherwise,

processorsametoassignedareτtaskandτtaskif,0

ij

jiC
ij g

t

 M : total number of processors used

Equation (1) and (2) are the objective function in this

scheduling problem. In (1) means to minimize the total
number of processors used and (2) means to minimize total
tardiness of tasks. Constraints conditions are shown from (3)
to (5). Equation (3) means that task can be started after its
earliest start time, begin its deadline. Equation (4) defines the
earliest start time of task based on precedence constraints.
Equation (5) is nonnegative condition for the number of
processors.

III. PROPOSED GA

In this paper, solution algorithm is based on genetic
algorithm (GA). Several new techniques are proposed in the
encoding and decoding algorithm of genetic string. ush out
any text that may try to fill in next to the graphic.

A. Encoding and Decoding

A chromosome Vk, k=1,2,…,popSize, represents one of all
the possible mappings of all the tasks into the processors.
Where popSize is the total number of chromosomes in a
generation. A chromosome Vk is partitioned into two parts
u(·), v(·). u(·) means scheduling order and v(·) means
allocation information. The length of each part is the total
number of tasks. The scheduling order part should be a
topological order with respect to the given task graph that
satisfies precedence relationship. The allocation information
part denote the processor to which task is allocated.

Encoding procedure for soft real-time task scheduling
problem (sr-TSP) is composed of two strategies: strategy I

for u(·) and strategy II for v(·). Procedures will be written as
follows:

procedure: Encoding Strategy I for sr-TSP
input: task graph data set
output: u(·)
begin
 l←1, w← ;
 while (T ≠ )
 w ← w arg{

i
|pre*(

i
) =  , ∀i };

 T ← T- {
i
}, i∈w;

 while (w ≠ )
 j ← random(w);
 u(l) ← j ;
 l ← l+1;
 w ← w – {j };
 pre*(

i
) ← pre*(

i
) – {

j
},∀i;

 end
 end
 output u(·);
end

procedure: Encoding Strategy II for sr-TSP
input: task graph data set, u(·),

,
1if,subgraph

1if,)1(









k

popSizekkM
M , β

output: v(·), Mk
begin
 l←1, tm ← 0, ∀m, idle ← 0;
 while (l ≤ N)
 m ← random[1, M];
 i ← u(l);
 if (tm < tiE) then
 tiS ← tiE;
 idle ← idle + (tiS - tm);
 end
 else tiS ← tm;
 if (tiS >tiL) then
 if (idle/ci<) then
 M ← M +1;
 m ← M;
 idle ← idle + tiE;
 tm ← tiE + ci;
 end
 else
 idle ←max{0, (idle -ci)} ;
 end
 else

 tm ← tiS+ci;
 v(l) ← m;
 l ← l+1;
 end
 idle ← idle + ∑(max{ tm } - tm);
 end

 while (idle/∑M x max{tm}> β)
 M ← M -1;
 idle ← idle- idle/∑M x max{tm};
 end
 output v(·), Mk;
end

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

The procedure of strategy I generate u(·) as satisfying
precedence relationship between tasks.

In encoding strategy II procedure, the total number of
processors is not fixed. Before generating v(·), the total
number of processors M is defined and after generating v(·),
M influence to v(·) of next chromosome. The M is changed
during generating v(·). So, the M of output is different to the
M of input. Where , β is boundary constant to decide
increasing the number of processor and decreasing the
number of processor respectively.

Decoding procedure is will be written as follows:

procedure: Decoding for sr-TSP
input: task graph data set, chromosome u(·), v(·)
output: schedule set S, the total number of processor used f1,
total tardiness of tasks f2
begin
 l←1, tm ← 0, ∀m, idlem ← , ∀m, f1← 0, f2 ← 0,
 S ← ;
 while (l ≤ N)
 i ← u(l);
 m← v(l);
 if (tm =0) then f1 ← f1 +1;
 if (exist suitable idle time) then insert(i);
 start(i);
 update_idle();
 f2 ← f2+max{0,(tiS+ci-di)} ;
 S ← S  {(i, m: tiS – tiF)};
 l ← l+1;
 end
 output S, f1, f2 ;

end

where insert(i) means to insert i at idle time if i is

computable in idle time, start(i) means to assigne i to
maximum finish time of all assigned task to pm , add_idle()
means to add idle time to idle time list if idle time is occurred.
IS means the start time of idle duration, IF means the end time
of idle duration, idelm means the list of idle time and tm means
the maximum finish time of all assigned task to pm.

The values of two objective f1 and f2 are calculated through
the procedure of decoding.

We use one-cut crossover for GA paerator.

B. Evolution Function and Selection

The multiobjective optimization problems have been
receiving growing interest from researchers with various
backgrounds since early 1960. Recently, GAs have been
received considerable attention as a novel approach to
multiobjective optimization problems, resulting in a fresh
body of research and applications known as genetic
multiobjective optimizations [11].

In this paper, we combine Adaptive Weight Approach
(AWA) [10] that utilizes some useful information from the
current population to readjust weights for obtaining a search
pressure toward a positive ideal point.

For the examined solutions at each generation, we define
two extreme points (maximum: f+, minimum: f-)

 },{ max
2

max
1 fff (6)

 },{ min
2

min
1 fff (7)

where fq
max and fq

min are the maximal and minimal values
for the qth objective as defined by the following equations:

 2,1)},({maxmax  qVff kq
k

q (8)

 2,1)},({minmin  qVff kq
k

q (9)

The equation driven above is a hyper plane defined by the

following extreme points in current solutions:

 
 max

2
min

1

min
2

max
1

ff

ff
 (10)

Adaptive moving line defined by the extreme points (f1

max,
f2

min) and (f1
min, f2

max) are shown Figure 1.

f

1f

2f

min
2f

max
1f

max
2f

min
1f

subspace
corresponding to
current solutions

adaptive
moving line

whole criteria space

positive ideal point
minimal rectangle containing

all current solutions

maximum
extreme

point

minimum
extreme point

f

),(max
2

min
1 ff

),(min
2

max
1 ff

Fig. 1. Adaptive weights and adaptive hyper plane

The weighted-sum objective function for a given

chromosome Vk is given by the following equation:














2

1
minmax

2

1

)(

)()(

q qq

kq

k
q

qqk

ff

Vf

VfwVF

 (11)

where wq is adaptive weight for objective q :

 2,1,
1

minmax



 q

ff
w

qq
q (12)

The evaluation function is designed as follows:


 





2

1
minmax

)(
1

)(/1)(

q qq

kq

kk

ff

Vf

VFVeval

 (13)

For selection, the commonly strategy called roulette wheel

selection [9], [12] has been used.

C. GA operators

We use one-cut crossover. This operator creates two new
chromosomes (the offspring) by mating two chromosomes
(the parent). We crossover only part v(·) in chromosome to

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

maintain the topological order with respect to the given task
graph that satisfies precedence relations.

For another GA operator, mutation, we use the classical
one-bit altering mutation.

D. Reproduction and Population Replacement

During reproduction and replacement steps, offspring
chromosomes are created by mating, with probability pC ,
pairs of parents selected in the current population. And then
chromosomes are mutated with probability pM. Then new
population is built through evaluating chromosomes and
selecting.

The algorithm terminates when maxGen generations are
completed. We use a fixed number of generations as the
stopping criterion. The proposed moGA obeys to the
following algorithm:

procedure; sr-TSP by moGA
input: task graph data set
output: best schedule set S
begin

t ←0;
initialize P(t) by encoding strategy I and strategy II;
evaluate f1, f2 of P(t) by decoding routine;
create Pareto E(P);
fitness eval(P) by AWA;
while (not termination condition) do

crossover P(t) to yield C(t)
 by one-cut crossover;

 mutation P(t) to yield C(t)
 by altering mutation;
 evaluate f1, f2 by C(t) by decoding routine;
 update Pareto E(P, C);
 fitness eval(P, C) by AWA;
 select P(t +1) from P(t) and C(t);
 t ← t +1;
 end
 output best schedule set S;

end

Let P(t) and C(t) be parents and offspring in current

generation t. Firstly, P(t) is initialized by encoding algorithm
and each objective function is calculated. Then Pareto
solution set is initialized by nondominated solution. The
offspring is generated by crossover operation and mutation
operation, and each objective function is calculated also. A
new generation is formed by selecting, according to the
fitness values, some of parents and offspring and rejecting
others so as to keep the population size constant. The Pareto
solution set is updated during these process.

IV. VALIDATION

To validate proposed moGA (multiobjective GA), several
numerical tests are performed. We compared proposed
moGA with Oh-Wu’s algorithm by Oh and Wu and
Monnier-GA by Monnier et al [9]. Numerical tests are
performed with randomly generated task graph. We use
P-Method [13] for generation task graph. Numerical tests are
performed with three task graph: the number of tasks 10, 50
and 100. Task graph and data set is omitted.

Table 1, 2 and 3 shows the comparisons of results by three
different scheduling algorithms.

TABLE I
COMPARISON IN NO-TARDINESS FOR 10 TASKS

TABLE II

COMPARISON IN NO-TARDINESS FOR 50 TASKS

TABLE III

COMPARISON IN NO-TARDINESS FOR 100 TASKS

In table 1, 2 and 3, there is no tardiness inclusively. The

computing time of proposed moGA is a little bit longer than
those of the other two. However, the number of used
processors is fewer than those of the other two algorithms.
The average utilization of processors by moGA is most
desirable than those of the others.

Fig. 2. Pareto solution in 10 task

Terms
Monnier

GA
Oh-Wu’s
algorithm

Proposed
moGA

of
processor M 3 4 3
Makespan 27 29 28
CPU Times
(msec) 14 13 19
Average
utilization of
processors 0.550725 0.487179

0.578571

Terms
Monnier

GA
Oh-Wu’s
algorithm

Proposed
moGA

of
processor M 22 19 16
Makespan 29 30 27
CPU Times
(msec) 118 122 128
Average
utilization of
processors 0.368339 0.412281 0.543981

Terms
Monnier

GA
Oh-Wu’s
algorithm

Proposed
moGA

of
processor M 38 37 32
Makespan 149 157 163
CPU Times
(msec) 497 511 518
Average
utilization of
processors 0.447582 0.453392 0.567352

0

5

10

15

20

25

30

0 1 2 3 4

to
ta

l t
ar

di
n
e
ss

 f 2

total number of processors f1

proposed moGA Oh-Wu's algorithm

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

Figure 2, 3 and 4 represent the Pareto solution of proposed
moGA and those of Oh-Wu’s algorithm. In these Figure, the
Pareto solution curve by proposed moGA is closer to ideal
point than that of Oh-Wu’s algorithm.

Fig. 3. Pareto solution in 50 tasks

Fig. 4. Pareto solution in 100 tasks

V. CONCLUSIONS

A new task scheduling algorithm is proposed in this paper.
This algorithm is designed for nonpreemptive tasks in soft
real-time multiprocessor system with the communication
time between processors and the precedence relationship
between tasks. The objective of proposed scheduling
algorithm is to minimize the total tardiness and total number
of processors used simultaneously. For these conflicting
objectives, this paper combines Adaptive Weight Approach
(AWA). From the numerical results, the results of the
proposed moGA are better than that of other algorithms.

This determines the next step of our study. We plan to
design real-time tasks scheduling algorithm in heterogeneous
multiprocessors system.

REFERENCES
[1] C. M. Krishna, and G. S. Kang, Real-Time System. McGraw-Hill 1997.
[2] J. L. Diaz, D. F. Garcia, and J. M. Lopez, “Minimum and Maximum

Utilization Bounds for Multiprocessor Rate Monotonic Scheduling,”
IEEE Transactions on Parallel and Distributed Systems, vol. 15, no.7,
pp. 642-653, 2004.

[3] G. Bernat, A. Burns, and A. Liamosi., “Weakly Hard Real-Time
Systems,” Transactions on Computer Systems, vol. 50, no. 4, pp.
308-321, 2001.

[4] M. H. Kim, H. G. Lee, and J. W. Lee, “A Proportional-Share Scheduler
for Multimedia Applications,” Proc. of Multimedia Computing and
Systems, pp. 484-491, 1997.

[5] M. R. Yoo, “A Scheduling Algorithm for Multimedia Process,” Ph. D.
dissertation, University of YeoungNam, Korea, 2002.

[6] F. Yalaoui, and C. Chu, “Parallel Machine Scheduling to Minimize
Total Tardiness,” International Journal of Production Economics, vol.
76, no. 3, pp. 265-279, 2002.

[7] H. Mitra, and P. Ramanathan, “A Genetic Approach for Scheduling
Non-preemptive Tasks with Precedence and Deadline Constraints,”
Proc. of the 26th Hawaii International Conference on System Sciences,
pp. 556-564, 1993.

[8] M. Lin, and L. Yang, “Hybrid Genetic Algorithms for Scheduling
Partially Ordered Tasks in A Multi-processor Environment,” Proc. of
the 6th International Conference on Real-Time Computer Systems and
Applications, pp. 382-387, 1999.

[9] Y. Monnier, J. P. Beauvais, and A. M. Deplanche, “A Genetic
Algorithm for Scheduling Tasks in a Real-Time Distributed System,”
Proc. of 24th Euromicro Conference, pp. 708-714, 1998.

[10] M. Gen, and R. Cheng, Genetic Algorithms & Engineering
Optimization, John Wiley & Sons, 2000.

[11] K. Deb, Multi-objective Optimization using Evolutionary Algorithms,
John Wiley & Sons, 2001.

[12] M. Gen, and R. Cheng, Genetic Algorithms & Engineering Design,
John Wiley & Sons, 1997.

[13] S. Al-Sharaeh, and B. E. Wells, “A Comparison of Heuristics for List
Schedules using The Box-method and P-method for Random Digraph
Generation,” Proc. of the 28th Southeastern Symposium on System
Theory, pp. 467-471, 1996.

0

20

40

60

80

100

120

140

0 5 10 15 20

to
ta

l t
ar

di
n
e
ss

 f 2

total number processors f1

proposed moGA Oh-Wu's algorithm

0

100

200

300

400

500

600

700

800

0 10 20 30 40

to
ta

l t
ar

di
n
e
ss

 f 2

total number of processors f1

proposed moGA Oh-Wu's algorithm

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

