
 

 
Abstract—This paper proposes a new real time task 

scheduling algorithm with GA. The proposed algorithm has 
multiobjective to minimize the total tardiness and total number 
of processors used simultaneously. For these conflicting 
objectives, this paper combines Adaptive Weight Approach 
(AWA) that utilizes some useful information from the current 
population to readjust weights for obtaining a search pressure 
toward a positive ideal point. The effectiveness of the proposed 
algorithm is shown through simulation studies. 
 

Index Terms— adaptive weight approach, genetic algorithm, 
multiobjective, simulated annealing 
 

I. INTRODUCTION 

EAL-time systems are classified into two categories: 
hard real-time system and soft real-time system. In hard 

real-time system, tardiness can be catastrophic. The goal of 
hard real-time scheduling algorithms is to meet all tasks’ 
deadlines, in other words, to keep the feasibility of 
scheduling through admission control. However, in the case 
of soft real-time systems, slight violence of deadlines is not 
so critical [1].  

In hard real-time system, the performance of scheduling 
algorithm is measured by its ability to generate a feasible 
schedule for a set of real-time tasks. Typically, there is Rate 
Monotonic (RM) and Earliest Deadline First (EDF) derived 
scheduling algorithms for hard real-time system with 
uniprocessor [2], [3]. They guarantee the optimality in 
somewhat restricted environments. However, these 
algorithms have some drawbacks to cope with soft real-time 
system related resource utilization and pattern of degradation 
under the overloaded situation. As the growing of soft real 
time applications, the necessity of scheduling algorithm for 
soft real-time system is on increase. Several researches for 
soft real time system are reported [4], [5]. However, these 
algorithms also can not show the graceful degradation of 
performance under the overloaded situation. Furthermore, 
the optimal assignment of tasks to multiprocessor is, in 
almost all practical cases, an NP-hard problem [6]. 
Consequently various modern heuristics based algorithms 
have been proposed for practical reason.  
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Recently, several approaches with single objective using 

Genetic Algorithm (GA) are proposed [7]-[9]. These 
algorithms have only one objective such as minimizing cost, 
end time, total tardiness.  

In this paper, we propose a new scheduling algorithm for 
nonpreemptive tasks in soft real-time multiprocessor system 
with the communication time between processors and the 
precedence relationship between tasks. The objective of 
proposed scheduling algorithm is to minimize the total 
tardiness and total number of processors used simultaneously. 
For these conflicting objectives, this paper combines 
Adaptive Weight Approach (AWA) that utilizes some useful 
information from the current population to readjust weights 
for obtaining a search pressure toward a positive ideal point 
[10]. 

II. SOFT REAL-TIME TASK SCHEDULING PROBLEM AND 

MATHEMATICAL MODEL 

In this study, we consider the problem of scheduling the 
tasks of precedence and timing constrained task graph on a 
set of homogeneous processors with communication time in a 
way that simultaneously minimizes the number of processors 
used f1 and the total tardiness f2 under the following 
conditions:  

 
1. All tasks are nonpreemptive. 
2. Every processor processes only one task at a time. 
3. Every task is processed on one processor at a time. 
4. Only processing requirements are significant; memory, 

I/O, and other resource requirements are negligible. 
 
The soft real-time task scheduling problem (sr-TSP) is 

formulated under the following assumptions: Computation 
time and deadline of each task and the communication time 
between processors are known. A time unit is artificial time 
unit. Soft real-time tasks scheduling problem is formulated as 
follows: 
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In above equations, notations are defined as follows:  
 

Multiobjective GA  
for Real Time Task Scheduling 

Myungryun Yoo, and Takanori Yokoyama  

R

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I, 
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016



 

- Indices 
 i, j : task index, i, j=1,2,…,N 
 m : processor index, m=1,2,…,M 
 
- Parameters 
 G=(T, E) : task graph 
 T={1, 2, …, N} : a set of N tasks 
 E={eij}, i, j=1,2,…,N, i≠j : a set of directed edges among                                                 
                                       the tasks representing precedence 
 i   : ith task, i=1,2,…, N 
 pm : mth processor, m=1,2,…,M 
 ci  : computation time of task i 
 di : deadline of task i 
 gij : communication time between task i and task j 
 pre*(i)  : set of all predecessors of task i 
 suc*(i)  : set of all successors of task i .  
 pre(i)  : set of immediate predecessors of task i 
 suc(i) : set of immediate successors of task i .  
 ti

E : earliest start time of ith task 
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- Decision Variables  
 ti

S : real start time of ith task 

   





otherwise,

processorsametoassignedareτtaskandτtaskif,0

ij

jiC
ij g

t    

 M : total number of processors used 
 
Equation (1) and (2) are the objective function in this 

scheduling problem. In (1) means to minimize the total 
number of processors used and (2) means to minimize total 
tardiness of tasks. Constraints conditions are shown from (3) 
to (5). Equation (3) means that task can be started after its 
earliest start time, begin its deadline. Equation (4) defines the 
earliest start time of task based on precedence constraints. 
Equation (5) is nonnegative condition for the number of 
processors. 

III. PROPOSED GA 

In this paper, solution algorithm is based on genetic 
algorithm (GA). Several new techniques are proposed in the 
encoding and decoding algorithm of genetic string. ush out 
any text that may try to fill in next to the graphic. 

A. Encoding and Decoding 

A chromosome Vk, k=1,2,…,popSize, represents one of all 
the possible mappings of all the tasks into the processors. 
Where popSize is the total number of chromosomes in a 
generation. A chromosome Vk is partitioned into two parts 
u(·), v(·). u(·) means scheduling order and v(·) means 
allocation information. The length of each part is the total 
number of tasks. The scheduling order part should be a 
topological order with respect to the given task graph that 
satisfies precedence relationship. The allocation information 
part denote the processor to which task is allocated.  

Encoding procedure for soft real-time task scheduling 
problem (sr-TSP) is composed of two strategies: strategy I 

for u(·) and strategy II for v(·). Procedures will be written as 
follows: 

 
procedure: Encoding Strategy I for sr-TSP 
input: task graph data set 
output: u(·) 
begin 
 l←1, w← ; 
 while (T ≠ ) 
  w ← w arg{

i 
|pre*(

i 
) =  , ∀i }; 

  T ← T- {
i
}, i∈w; 

  while (w ≠ ) 
   j ← random(w); 
   u(l) ← j ; 
   l ← l+1; 
   w ← w – {j }; 
   pre*(

i 
) ← pre*(

i 
) – {

j
},∀i;  

  end 
 end 
 output u(·); 
end 
 
procedure: Encoding Strategy II for sr-TSP 
input: task graph data set, u(·),  

,
1if,subgraph

1if,)1(
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output: v(·), Mk 
begin 
 l←1, tm ← 0, ∀m, idle ← 0; 
 while (l ≤ N) 
  m ← random[1, M]; 
  i ← u(l); 
  if (tm < tiE) then  
  tiS ← tiE; 
  idle ← idle + (tiS - tm); 
  end 
  else tiS ← tm;  
  if (tiS >tiL) then 
  if (idle/ci<) then 
      M ← M +1; 
      m ← M; 
      idle ← idle + tiE; 
      tm ← tiE + ci; 
        end 
        else  
      idle ←max{0, (idle -ci)} ; 
        end 
   else 

        tm ← tiS+ci; 
        v(l) ← m; 
        l ← l+1; 
   end 
   idle ← idle + ∑(max{ tm } - tm);  
 end 

 while (idle/∑M x max{tm}> β)  
 M ← M -1; 
   idle ← idle- idle/∑M x max{tm}; 
 end 
 output v(·), Mk; 
end 
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The procedure of strategy I generate u(·) as satisfying 
precedence relationship between tasks.  

In encoding strategy II procedure, the total number of 
processors is not fixed. Before generating v(·), the total 
number of processors M is defined and after generating v(·), 
M influence to v(·) of next chromosome. The M is changed 
during generating v(·). So, the M of output is different to the 
M of input. Where , β is boundary constant to decide 
increasing the number of processor and decreasing the 
number of processor respectively. 

Decoding procedure is will be written as follows: 
 

procedure: Decoding for sr-TSP 
input: task graph data set, chromosome u(·), v(·) 
output: schedule set S, the total number of processor used f1, 
total tardiness of tasks f2 
begin 
 l←1, tm ← 0, ∀m, idlem ← , ∀m, f1← 0, f2 ← 0,  
   S ← ; 
 while (l ≤ N) 
  i ← u(l); 
  m← v(l); 
  if (tm =0) then f1 ← f1 +1; 
  if (exist suitable idle time) then insert(i); 
  start(i); 
  update_idle(); 
  f2 ← f2+max{0,(tiS+ci-di )} ;      
  S ← S  {(i, m: tiS – tiF)};  
  l ← l+1; 
 end 
 output S, f1, f2 ; 

end  
 
where insert(i) means to insert i at idle time if i is 

computable in idle time, start(i) means to assigne i to 
maximum finish time of all assigned task to pm , add_idle() 
means to add idle time to idle time list if idle time is occurred. 
IS means the start time of idle duration, IF means the end time 
of idle duration, idelm means the list of idle time and tm means 
the maximum finish time of all assigned task to pm. 

The values of two objective f1 and f2 are calculated through 
the procedure of decoding.  

We use one-cut crossover for GA paerator.  

B. Evolution Function and Selection 

The multiobjective optimization problems have been 
receiving growing interest from researchers with various 
backgrounds since early 1960. Recently, GAs have been 
received considerable attention as a novel approach to 
multiobjective optimization problems, resulting in a fresh 
body of research and applications known as genetic 
multiobjective optimizations [11].  

In this paper, we combine Adaptive Weight Approach 
(AWA) [10] that utilizes some useful information from the 
current population to readjust weights for obtaining a search 
pressure toward a positive ideal point.  

For the examined solutions at each generation, we define 
two extreme points (maximum: f+, minimum: f-) 
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where fq
max and  fq

min  are the maximal and minimal values 
for the qth objective as defined by the following equations: 
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The equation driven above is a hyper plane defined by the 

following extreme points in current solutions:  
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Adaptive moving line defined by the extreme points (f1

max, 
f2

min) and (f1
min, f2

max) are shown Figure 1. 
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Fig. 1.  Adaptive weights and adaptive hyper plane 

 
The weighted-sum objective function for a given 

chromosome Vk is given by the following equation:  
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where wq is adaptive weight for objective q :  
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The evaluation function is designed as follows: 
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For selection, the commonly strategy called roulette wheel 

selection [9], [12] has been used.  

C. GA operators 

We use one-cut crossover. This operator creates two new 
chromosomes (the offspring) by mating two chromosomes 
(the parent). We crossover only part v(·) in chromosome to 
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maintain the topological order with respect to the given task 
graph that satisfies precedence relations. 

For another GA operator, mutation, we use the classical 
one-bit altering mutation.  

D. Reproduction and Population Replacement 

During reproduction and replacement steps, offspring 
chromosomes are created by mating, with probability pC , 
pairs of parents selected in the current population. And then 
chromosomes are mutated with probability pM. Then new 
population is built through evaluating chromosomes and 
selecting. 

The algorithm terminates when maxGen generations are 
completed. We use a fixed number of generations as the 
stopping criterion. The proposed moGA obeys to the 
following algorithm:  

 
procedure; sr-TSP by moGA 
input: task graph data set 
output: best schedule set S 
begin 

t ←0; 
initialize P(t) by encoding strategy I and strategy II; 
evaluate f1, f2 of P(t) by decoding routine; 
create Pareto E(P); 
fitness eval(P) by AWA;  
while (not termination condition) do 

crossover P(t) to yield C(t)  
                      by one-cut crossover; 

                   mutation P(t) to yield C(t)  
                                            by altering mutation; 
                   evaluate f1, f2 by C(t) by decoding routine; 
                   update Pareto E(P, C); 
                   fitness eval(P, C) by AWA;  
                   select P(t +1) from P(t) and C(t); 
                   t ← t +1;   
           end 
           output best schedule set S; 

end 
 
Let P(t) and C(t) be parents and offspring in current 

generation t. Firstly, P(t) is initialized by encoding algorithm 
and each objective function is calculated. Then Pareto 
solution set is initialized by nondominated solution. The 
offspring is generated by crossover operation and mutation 
operation, and each objective function is calculated also. A 
new generation is formed by selecting, according to the 
fitness values, some of parents and offspring and rejecting 
others so as to keep the population size constant. The Pareto 
solution set is updated during these process.  

IV. VALIDATION 

To validate proposed moGA (multiobjective GA), several 
numerical tests are performed. We compared proposed 
moGA with Oh-Wu’s algorithm by Oh and Wu and 
Monnier-GA by Monnier et al [9]. Numerical tests are 
performed with randomly generated task graph. We use 
P-Method [13] for generation task graph. Numerical tests are 
performed with three task graph: the number of tasks 10, 50 
and 100. Task graph and data set is omitted.  

Table 1, 2 and 3 shows the comparisons of results by three 
different scheduling algorithms.  

 

TABLE I 
COMPARISON IN NO-TARDINESS FOR 10 TASKS 

 
TABLE II 

COMPARISON IN NO-TARDINESS FOR 50 TASKS 

 
TABLE III 

COMPARISON IN NO-TARDINESS FOR 100 TASKS 

 
In table 1, 2 and 3, there is no tardiness inclusively. The 

computing time of proposed moGA is a little bit longer than 
those of the other two. However, the number of used 
processors is fewer than those of the other two algorithms. 
The average utilization of processors by moGA is most 
desirable than those of the others.  

 

Fig. 2.  Pareto solution in 10 task 
 

Terms 
Monnier 

GA 
Oh-Wu’s 
algorithm 

Proposed 
moGA 

# of 
processor M         3         4        3
Makespan       27       29       28
CPU Times 
(msec)       14       13       19
Average 
utilization of 
processors 0.550725 0.487179 

  
0.578571

Terms 
Monnier 

GA 
Oh-Wu’s 
algorithm 

Proposed 
moGA 

# of 
processor M 22 19 16
Makespan 29 30 27
CPU Times 
(msec) 118 122 128
Average 
utilization of 
processors 0.368339 0.412281 0.543981

Terms 
Monnier 

GA 
Oh-Wu’s 
algorithm 

Proposed 
moGA 

# of 
processor M 38 37 32
Makespan 149 157 163
CPU Times 
(msec) 497 511 518
Average 
utilization of 
processors 0.447582 0.453392 0.567352
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Figure 2, 3 and 4 represent the Pareto solution of proposed 
moGA and those of Oh-Wu’s algorithm. In these Figure, the 
Pareto solution curve by proposed moGA is closer to ideal 
point than that of Oh-Wu’s algorithm.   

 

Fig. 3.  Pareto solution in 50 tasks 
 

Fig. 4.  Pareto solution in 100 tasks  

V. CONCLUSIONS 

A new task scheduling algorithm is proposed in this paper. 
This algorithm is designed for nonpreemptive tasks in soft 
real-time multiprocessor system with the communication 
time between processors and the precedence relationship 
between tasks. The objective of proposed scheduling 
algorithm is to minimize the total tardiness and total number 
of processors used simultaneously. For these conflicting 
objectives, this paper combines Adaptive Weight Approach 
(AWA). From the numerical results, the results of the 
proposed moGA are better than that of other algorithms.  

This determines the next step of our study. We plan to 
design real-time tasks scheduling algorithm in heterogeneous 
multiprocessors system. 
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