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Abstract—In this paper, we present a modified energy-based
swing-up controller for a single inverted pendulum (SIP) on a
cart. The controller was derived using a more complex dynam-
ical model for the SIP system than models that are commonly
used. We also consider the effects of viscous damping, and
incorporate physical restrictions like the maximum deliverable
voltage by the amplifier, the capacity of the DC motor that
drives the cart, as well as the finite track length.

Index Terms—inverted pendulum, real-time implementation,
energy-based control, swing-up, Lyapunov function.

I. INTRODUCTION

The control of an inverted pendulum is considered a
benchmark problem in nonlinear control theory. Because of
its popularity and numerous applications, there are many
existing control methods for both the swing-up and the stabi-
lization of the inverted pendulum. However, many of the pub-
lished controllers have only been tested in simulations and
not in real-time experiments [1]. Comparing experimental
results with published work of others, the simulation results
are often different from the real-time results. This is because
almost all simulations use a simplified model to represent
the dynamics of the inverted pendulum. Furthermore, most
of the simulations ignore the effects of friction, and often fail
to incorporate some physical restrictions like the maximum
deliverable voltage by the amplifier, the capacity of the DC
motor that drives the cart, and the finite track length [2].

II. SYSTEM DYNAMICS

A. Conventions

Figure 1 shows a diagram of the Single Inverted Pendulum
(SIP) mounted on a linear cart. We define the positive
sense of rotation counterclockwise, when facing the cart. The
perfectly upright position of the pendulum corresponds to the
zero angle, modulus 2π, (i.e. α = 0 rad [2π]). The positive
direction of the cart’s displacement is to the right when facing
the cart.

B. System Parameters

The model parameters and their values as specified by
Quanser in [3] and [4] are provided in Table I.
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Fig. 1. Single inverted pendulum diagram.

TABLE I
INVERTED PENDULUM MODEL PARAMETERS

Symbol Description Value
Mw Cart Weight Mass 0.37 kg
M Cart Mass with Extra Weight 0.57 + Mw kg
Jm Rotor Moment of Inertia 3.90E-007 kg.m2

Kg Planetary Gearbox Gear Ratio 3.71
rmp Motor Pinion Radius 6.35E-003 m
Beq Equivalent Viscous Damping Coefficient 5.4 N.m.s/rad
Mp Pendulum Mass 0.230 kg
`p Pendulum Length from Pivot to COG 0.3302 m
Ip Pendulum Moment of Inertia about its COG 7.88E-003 kg.m2

Bp Viscous Damping Coefficient 0.0024 N.m.s/rad
g Gravitational Constant 9.81 m/s2
Kt Motor Torque Constant 0.00767 N.m/A
Km Back-ElectroMotive-Force Constant 0.00767 V.s/rad
Rm Motor Armature Resistance 2.6 Ω

C. Equations of Motion

The dynamic model for the system can be derived using
Lagrange’s method. For this method, we treat the driving
force, Fc, generated by the DC motor acting on the cart
through the motor pinion as the single input to the system. As
we showed in [5] and [2], the second-order time derivatives
of x and α are the two nonlinear equations

ẍ =

(
− (Ip +Mp`

2
p)Beqẋ−Mp`p cos(α)Bpα̇

− (M2
p `

3
p + IpMp`p) sin(α)α̇

2 + (Ip +Mp`
2
p)Fc

+M2
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(1)
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and
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where D(α) = (M + Mp)Ip + MMp`
2
p + M2

p `
2
p sin

2(α),
and x and α are both functions of t. Equations (1) and (2)
represent the equations of motion (EOM) of the system.

In our implementation the system’s input is equal to the
cart’s DC motor voltage, Vm, so we must convert the driving
force, Fc, to voltage input. Using Kirchhoff’s voltage law and
the physical properties of our system, it can be shown that

Fc = −
K2
gKtKm (ẋ(t))

Rmr2mp
+
KgKtVm
Rmrmp

. (3)

III. ENERGY-BASED CONTROLLER

A. Pendulum’s Energy

One of the most popular control methods for swinging
up the pendulum is where the control law is chosen such
that the energy of the pendulum builds until reaching the
upright equilibrium. This technique was first proposed and
implemented by Astrom and Furuta [6], [7]. Here, we present
a modified approach based on a more complex dynamical
model for the SIP system than the simplified model that is
most commonly used. We also consider the electrodynamics
of the DC motor that drives the cart, incorporate viscous
damping friction as seen at the motor pinion, and account
for the limitation of having a cart-pendulum system with a
finite track length.

The total energy, Ep, of the pendulum at it’s hinge is given
by the sum of it’s rotational kinetic energy and it’s potential
energy, so

Ep =
1

2
Jpα̇

2 +Mp`pg(cos(α)− 1), (4)

where Jp, the pendulum’s moment of inertia at it’s hinge, is
defined as

Jp =

∫ 2`p

0

r2
Mp

2`p
dr =

4

3
Mp`

2
p. (5)

Since our goal is to increase the energy of the pendulum
until the upright position is reach, we must design a con-
troller so that the condition

dEp
dt
≥ 0 (6)

is guaranteed. By differentiating (4) we have

dEp
dt

= Jpα̇α̈−Mp`pg sin(α)α̇

=
4

3
Mp`

2
pα̇α̈−Mp`pg sin(α)α̇.

(7)

B. Lagrange’s Equations

The Lagrangian, L, is given by

L = KT − VT , (8)

where

KT =
1

2

(
M +Mp +

JmK
2
g

r2mp

)
ẋ(t)2 +

2

3
Mp`

2
pα̇(t)

2

−Mp`p cos(α(t))ẋ(t)α̇(t)

(9)

is the total kinetic energy, and

VT =Mpgyp =Mpg`p cos(α(t)) (10)

is the total potential energy [2]. By definition, the two
Lagrange’s equations for our system are

∂2

∂t∂ẋ
L − ∂

∂x
L = Fc −Beqẋ(t) (11)

and
∂2

∂t∂α̇
L − ∂

∂α
L = −Bpα̇(t), (12)

where Beq is the equivalent viscous damping coefficient as
seen at the motor pinion, and Bp is the equivalent viscous
damping coefficient as seen at the pendulum axis. Thus,
equations (11) and (12) account for friction in the form
of equivalent viscous damping, however, it should be noted
that in the development of the current model the (nonlinear)
Coulomb friction applied to the cart, and the force on the cart
due to the pendulum’s action have been neglected. Equation
(11) can be rewritten as(

M +Mp +
JmK

2
g

r2mp

)
ẍ(t) +Mp`p sin(α(t))α̇(t)

2

−Mp`p cos(α(t))α̈(t) = Fc −Beqẋ(t),
(13)

and (12) can be rewritten as

−Mp`p cos(α(t))ẍ(t) +
4

3
Mp`

2
pα̈(t)−Mp`pg sin(α(t))

= −Bpα̇(t).
(14)

Then, by using (14), equation (7) becomes

dEp
dt

=Mp`pα̇ cos(α)ẍ−Bpα̇2. (15)

Using Newton’s second law of motion together with
D’Alemberts principle, we can express (15) as

dEp
dt

=Mp`pα̇ cos(α)

(
KgKtrmpVm

Rm(Mr2mp +K2
gJm)

−
(K2

gKtKm +BeqRmr
2
mp)ẋ

Rm(Mr2mp +K2
gJm)

)
−Bpα̇2.

(16)

C. Lyapunov Stability Condition

Consider the Lyapunov function

L(X) =
1

2
E2p + k(1− cos3(α)), (17)

where k is a positive constant. Equation (17) only has one
zero, namely the upright position with zero angular velocity
(i.e. α = 0, α̇ = 0), and is strictly positive everywhere else.
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0.25-0.25 0

x < 0, ẋ > 0
sg(X) = 1

x > 0, ẋ > 0
sg(X) = 1

x < 0, ẋ > 0
sg(X) = 1

x > 0, ẋ > 0
sg(X) = −1

x < 0, ẋ < 0
sg(X) = −1

x > 0, ẋ < 0
sg(X) = −1

x < 0, ẋ < 0
sg(X) = 1

x > 0, ẋ < 0
sg(X) = −1

Fig. 2. Diagram representing how sg(X) is defined. The arrows indicate
the direction of the cart’s displacement, while the number line indicates the
cart’s position.

Then, based on Lyapunovs theorem, our control input, Vm,
must satisfy

dL

dt
=EpMp`pα̇ cos(α)

(
KgKtrmpVm

Rm(Mr2mp +K2
gJm)

−
(K2

gKtKm +BeqRmr
2
mp)ẋ

Rm(Mr2mp +K2
gJm)

)
+

3

2
k cos(α) sin(2α)α̇− EpBpα̇2

≤ 0.

(18)

Substituting the model parameter values provided in Table I
into (18), and simplifying yields the condition

Epα̇ cos(α)(Vm − 7.614ẋ)

+ 12.28kα̇ cos(α) sin(2α)− 0.0197Epα̇2

≤ 0,
(19)

that our swing-up controller must satisfy to guarantee Lya-
punov stability.

D. Control Law

Consider the control law of the form

Vm(X) = β1|ẋ|
(
−β2sign(Epα̇ cos(α)) + sg(X)eη|x|

)
− β3sign(α̇ cos(α))| sin(2α)|

Ep
+ 0.0197sign(Ep)α̇ cosα,

(20)

where β1, β3, η, and 0 < β2 < 1 are positive constants, and
the function sg(X) is defined as

sg(X) =0.5(sign(ẋ)− sign(x)
− sign(|x| − 0.25)(sign(ẋ) + sign(x))),

(21)

which will output ±1 depending on the position of the cart
and the direction it is moving. The total length of the track
that the cart can travel is 0.814 m, indicating that the cart’s
horizontal displacement in either direction must be less than
0.407 m (i.e. |x| < 0.407 m). For safety reasons, the cart
should not get too close to the end of the track, thus sg(X)
was defined in such a way that it switches signs only when
the cart’s displacement from the center is more than 0.25
m and the direction of the cart’s displacement is towards
either track end. Figure 2 represents how sg(X) is defined.
Substituting (20) into (19), and simplifying results in

Epα̇ cos(α)
(
β1|ẋ|

(
−β2sign(Epα̇ cos(α)) + sg(X)eη|x|

)
−7.614ẋ)− β3|α̇ cos(α)|| sin(2α)|
+ 12.28kα̇ cos(α) sin(2α)− 0.0197 sin2(α)|Ep|α̇2

≤ 0.
(22)

It can be shown that (22) is satisfied when

7.614

eη|x| + β2
≤ β1 ≤

7.614

eη|x| − β2
, (23)

and β3 ≥ 12.28k [2]. Physically for our system, a positive
input voltage means positive cart displacement, therefore Vm
and ẋ have the same sign. This means that the sign of Vm
should be given by the value of sg(X) to make sure the cart
avoids the edges of the track. Therefore, we must have

sign
(
β1|ẋ| ( − β2sign(Epα̇ cos(α)) + sg(X)eη|x|

)
−β3sign(α̇ cos(α))| sin(2α)|

Ep

)
= sg(X).

(24)

Considering the possible sign combinations [2], we can show
that (24) holds when the constants β1, β2, β3, and η satisfy

β1 >
β3| sin(2α)|

|ẋ||Ep|(eη|x| − β2)
. (25)

To avoid division by zero and bound the value of β1, we
can saturate the signals of Ep and ẋ so that |Ep| > δ1 and
|ẋ| > δ2 for some small positive constants δ1 and δ2. Then,
the condition (25) will be satisfied when

β1 ≥
β3

δ1δ2(1− β2)
. (26)

Moreover, we must ensure that the amplifier doesn’t go into
saturation (i.e. |Vm| ≤ 10). The choice of the constants in
the control law that satisfy all the restrictions is somewhat
arbitrary. A particular choice of constants that will satisfy
all conditions for the controller in (20), taking into account
that the maximum value for ẋ is 1.075 m/s, is β1 = 4.8,
β2 = 0.6, β3 = 0.0115, and η = 0.6. These constants were
calculated using k = 10−4, δ1 = 0.001, and δ2 = 0.1.

IV. REAL-TIME IMPLEMENTATION

A. Apparatus

For our real-time experiments we use apparatus designed
and provided by Quanser Consulting Inc. (119 Spy Court
Markham, Ontario, L3R 5H6, Canada). This includes a
single inverted pendulum mounted on an IP02 servo plant
(pictured in Figure 3), a VoltPAQ amplifier, and a Q2-USB
DAQ control board. The IP02 cart incorporates a Faulhaber
Coreless DC Motor (2338S006) coupled with a Faulhaber
Planetary Gearhead Series 23/1. The cart is also equipped
with a US Digital S1 single-ended optical shaft encoder.
The detailed technical specifications can be found in [3]. A
diagram of our experimental setup is included in Figure 4.
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Fig. 3. Single inverted pendulum mounted on a Quanser IP02 servo plant.
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Amplifier Command
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Fig. 4. Diagram of experimental setup.

B. Simulation Results

The controller given by (20) was tested in simulation with
β1 = 4.8, β2 = 0.6, β3 = 0.0115, and η = 0.6, using
MATLAB Simulink. Since the starting downward position
of the pendulum is a stable equilibrium we must input some
initial voltage to get the experiment started. The starting volt-
age for our simulation was 8 Volts that was applied for 0.1
second. The state responses and the corresponding control
effort are depicted in Figures 5 and 6. The dashed blue lines
in the second graph in 5(b) indicate the region where the
stabilization control can take over (i.e. where |α| < 15◦). The
simulation indicates that the controller swings the pendulum
up into the upright position in approximately 30 seconds.
Furthermore, all the values of the states and the required
control effort stayed within the possible ranges deliverable
by the apparatus we use for real time experiments. Figure
5(a) also indicates that the cart did not go past the end of
the track.

C. Experimental Results

The swing-up controller given by (20) was successfully
implemented in real-time with β1 = 4.8, β2 = 0.6,
β3 = 0.0115, and η = 0.6 using MATLAB Simulink.
The state responses and the corresponding control effort
are shown in Figures 7 and 8. Figure 7(b) indicates that
the controller swung up the pendulum in approximately 15
seconds. On one occasion the required control effort reached
the upper limit of 10 Volts and had to be saturated. The

average amount of voltage used during the experiment was
about 2.89 Volts. Once the pendulum reached within 15◦

of the upright position, the power series based stabilization
controller presented in [5] successfully took over [2].

The experiment was repeated several times with swing-up
times ranging between 15 and 40 seconds. During the swing-
up procedure the cart makes very fast big moves because of
how the function sg is defined. When the cart moves close to
the end of the track, the controller successfully makes the cart
moving away from the edge, but this action results in a jerk
of the cart. Unfortunately, sometimes when the pendulum is
near the upright position, this fast jerk of the cart overpowers
the movement of the pendulum and makes the pendulum
loose momentum. When this happens, making up the loss of
momentum increases the swing-up time [2].

V. CONCLUSION

We presented a controller based on the work of Astrom
and Furuta [6], [7] to create a new energy-based swing-up
method that was derived using a more complex dynamical
model for the SIP system than the simplified models that are
commonly used. It is often the case, that a controller based
on a simplified model works well in simulation, but not in
real-time. For the purposes of real-time implementation and
many applications, it is desirable to consider the effects of
friction, and incorporate physical restrictions of the SIP sys-
tem like the maximum deliverable voltage by the amplifier,
the capacity of the DC motor that drives the cart, and the
finite track length. The control method presented accounts
for viscous damping friction, and it also takes many of the
physical restrictions of the actual SIP system into account.
Even though the controller can successfully swing-up the
pendulum, the amount of time it takes for the pendulum to
reach the upright position varies between 15 and 40 seconds
[2].
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(a)

(b)

(c)

(d)
Fig. 5. Simulated state response.

Fig. 6. Simulated control effort.
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(d)
Fig. 7. Experimental state response.

Fig. 8. Experimental control effort.
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