
 

 
Abstract—The program spherical motions problem around 

the center of mass of a single-rotor dynamically symmetrical 
gyrostat with a spherical cavity, entirely filled with highly 
viscous fluid, is studied. The active stabilizing controls attached 
to the gyrostat are constructed by the principle of feedback. 
They solve stabilizing program motions problem of a gyrostat 
with fluid. Conditions under which the desirable program 
motions property of asymptotic stability is possible are 
received. The task is solved on the base of a method of 
Lyapunov functions and a method of the limit equations and 
the limit systems. 
 

Index Terms—Gyrostat, cavity with fluid, Lyapunov 
function, feedback, stabilization. 
 

I. INTRODUCTION 

ROBLEMS about spatial orientation of satellites and 
aircraft in an orbit have important applied value and 

are widely considered by authors in many notes. Spatial 
motions of aircraft concerning the center of masses are 
modeled by spherical motions of solid bodies or bodies 
systems, in particular, gyrostats. The basic methods and 
principles of control of rotational motions of bodies and 
systems were studied, for example, in notes [1-3]. Modern 
domestic and foreign scientists actively study tasks of 
resonance modes and bifurcations of stationary motions of 
satellites [4, 5], of chaotic motions and methods of their 
elimination [6, 7], about stabilization of the set program 
motions of gyrostats of various structure [8, 9]. From the 
middle of the previous century, various problems of 
dynamic motions of rigid bodies with cavities filled with 
fluid were widely researched. Two main ways of research 
and the first results of the theory of rigid bodies with 
cavities filled with liquid are represented in papers [10, 11]. 
The author of paper [10] suggested a model, describing the 
motions of rigid body with a cavity entirely filled with 
highly viscous fluid. In the model the influence of fluid on 
the motion of the body is described using the kinematic 
characteristics of the body. This approach is widely used in 
papers of modern scientists [12-14]. 

This paper is devoted to a study of spherical motions 
around a center of mass of a single-rotor gyrostat with a 

 
Manuscript received January 8, 2016; revised January 27, 2016. This work 
was supported by the grant of the Ministry of Education and Science of 
Russian Federation (project no. 9.540.2014/K). 

S.P. Bezglasnyi is with the Samara State Aerospace University, Samara, 
443086 Russia (corresponding author to provide phone: 8-917-104-1316; e-
mail: bezglasnsp@rambler.ru).  

V.S. Krasnikov is with the Joint Stock Company Space Rocket Centre 
Progress, Samara, 443086 Russia (e-mail: walkthrough@mail.ru). 

spherical cavity filled with highly viscous fluid. The 
gyrostat motion equations are obtained by virtue of the 
method from note [10]. The active program and stabilizing 
controls attached to the gyrostat are constructed by the 
principle of feedback. The problem of stabilization of 
program motions of a gyrostat with fluid to asymptotically 
stable is solved. The presented results are received on the 
base of a method of Lyapunov functions of the classical 
stability theory and of a method of the limit equations and 
limit systems [15]. The asymptotic convergence of the 
solutions is confirmed and illustrate by the results of 
numerical simulation of the motion of the gyrostat. 

 

II. STATEMENT OF THE PROBLEM AND MOTION EQUATIONS 

We research spherical motion of a gyrostat. It is modeled 
by a system of two dynamically symmetric connected 
bodies with common axis of rotation. The first body is the 
carrier. It has a cavity filled with highly viscous fluid. The 
second body is the rotor. 1 1A B  and 1C  are main inertia 

moments of a carrier with fluid, 2 2A B  and 2C  are main 

inertia moments of a rotor. Here OXYZ  is fixed coordinate 
system, Oxyz  is related to a carrier coordinate system. The 

fixed point O  of a gyrostat coincides with the system’s 
center of mass and is located on an axis of dynamic 
symmetry of both bodies (Fig. 1). The rotation of a rotor 
around the carrier is described with the rotation angle   
counted around Oz  axis. 

Motion equations of a single-rotor gyrostat with a cavity 
filled with fluid are projected on axis in the related 
coordinate system, and they are following [14] in the form: 
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Fig. 1.  Gyrostat. 
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Here  , ,p q r
ω  is the vector of absolute angular 

velocity of the carrier in the coordinate system Oxyz . 

1 2A A A  , 1 2B B B   and 1 2C C C   are main inertia 

moments of a gyrostat calculated in the coordinate system 

Oxyz . Symbol    means transposition. The angular 

velocity ( )t   of rotor rotation is a determined 

continuous function of time.  

Right parts  , ,x y zm m m


m  of equations (1) are 

projections on axes of the frame Oxyz of the force torques 

acting on the carrier from the cavity with fluid. According 
to model suggested in note [10] they are calculated in form: 
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Here  , ,p q r
  ω    is the vector of angular acceleration 

of the carrier body, 78 / 525P a   is coefficient, that is 
considering the form (sphere with radius a) of the cavity,   

is density and   is kinematic viscosity of fluid. We assume 

that the cavity is filled with highly viscous fluid: 1 1 � . 
Following the paper [10, 14] we have vector components 

of angular acceleration 
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After replacing right parts (2) of (3) the force torques 
acting on the carrier from the cavity with fluid are 
calculated in form: 
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We constructed the gyrostat motion equations in the 
Lagrange equations form: 

d T T

dt

  
    

Q
q q

               (5) 

Here  , ,   q  is the general coordinates vector, and 

 , ,  


q     is the general velocities vector. Values 

, ,     are Euler variables. The kinetic energy of the 

system is  
2 2 2 2

2 22 2T Ap Bq Cr C r C      .       (6) 

We designate the general forces e p s  Q Q Q Q . Here 
eQ  is the force torque acting on the carrier from the cavity 

with fluid. It has coordinates 
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Torque pQ  is the program control, torque sQ  is the 

stabilizing control. 
Equations (5) are dynamic gyrostat motion equations. 

They are closed, for example, with Euler kinematic 
equations 
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Let the gyrostat moves according to the law 

 Τ* * *( ) ( ), ( ), ( )t t t t  r . Here * * *( ), ( ), ( )t t t    are 

the determined continuous functions of time. We call the 
function ( )tr the program motion of the gyrostat. 

We now state the task about realization and stabilization 
of program motion of gyrostat. Namely, we have to find the 
attached to the carrier control torques pQ  and sQ  making 

the program motion ( )tr asymptotically stable. 

We solve this task and we construct active control using 
principle of feedback on the base Lyapunov method of 
stability theory. 

The kinetic energy (6) may be presented as the following 
sum of the components 2 1 0T T T T   . Here 

2
0 0 2( , ) ( )T T t C t q  is a scalar function. The component 

1 ( , )T t B q q  is a linear form of the general velocities q . 

Vector ( , )tB q  has the coordinates 1 22 ( ) cos ,b C t   

2 0,b  3 22 ( )b C t .The last component 

2 0.5 ( )T  q A q q   is a quadratic form of the velocities. The 

matrix ( )A q  is bounded and positive definite. It has the 

elements 

 

2 2 2 2 2
11

12 21 33

2 2
22

13 31 23 32

sin sin sin cos cos ,

sin sin cos , ,

cos sin ,

cos , 0.

a A B C

a a A B a C

a A B

a a C a a

    
  

 


  

   

 
   

 

As a result we obtain the motion equation (5) in the form  
T

T
e p s

t

   
        

B B B
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qq
  .    (9) 

Here ( , )Λ Λ q q is the vector with coordinates  
3 3

, 1 , 1

1
, ( 1,3).
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III. PROGRAM AND STABILIZATION CONTROLS 

We calculate the program control torque according 
direct substitution of function ( )tr in the motion equations 

(9): 

     

     

T

T

( ) ( )
( )

( ), ( ) ( ) / ( ), ( )

p

e

t t
t

t t t t t t

  
    

  
    

B r B r
Q A r r r

rr

Λ r r B r Q r r

 

 

   (11) 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I, 
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016



 

The program control torque (11) realizes the program 
motion ( )tr  of the gyrostat. We mean, that the function 

( )tr  is the solution of the equation (9). But in the presence 

of initial deviations or actions of small perturbations we 
construct the additional stabilizing torque sQ  making the 

program motion ( )tr asymptotically stable.  

Let us introduce the new generalized coordinates 
(deflections) x  according to equality ( )t  x q r  

 T* * * T
1 2 3( ( ), ( ), ( )) , , .t t t x x x           

Then we rewrite the equation (9) as 
T

T
( ) ( )

/ .e p st
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Here program control pQ  has the form (11), and , ,Λ Λ  

Λ  analogously (10) are the vectors with components  
3 3
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We choose the Lyapunov function 

T T1 1
( , ) ,

2 2
V  x x x Cx x Ax             (13) 

And we construct the stabilization control in the form 
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Here matrices C  and D  are bounded and positive 
definite. We calculate the total derivative of the function 
(13) with respect to time according the equation (12) with 
controls (11) and (14): 

T 2
0 00 (0 const)

dV
d d

dt
      x Dx x      (15) 

The derivative (15) of Lyapunov function (13) is negative 
definite determined by speeds. The set on which the 
derivative is equal to zero, is a set { 0}x . The system limit 

to system (12), with (11), (14) on a set { 0}x  has no other 

decisions, except 0x . Therefore on the basis of the 
theorem from paper [15] we receive, that program motion 

 Τ* * *( ) ( ), ( ), ( )t t t t  r  of the gyrostat with fluid is 

asymptotically stable. 

IV. NUMERICAL SIMULATION 

To illustrate the analytical results we integrate 
numerically the equations of control motion of the gyrostat. 
We use “Wolfram Mathematica 7.0”. We model the carrier 
and rotor by a rigid bodies with inertia moments 

220, 30, 10A B C C     kg/ 2m . Let the angular 

velocity of rotor rotation about the carrier is 1   1s . The 
program motion is  

* * *( ) 6cos(2 ), ( ) / 2 sin(2 ), ( ) sin(10 )t t t t t t        rad. 
We assume that the initial deviations at 0t   are 

 (0) 0.1, 0.07, 0.05x
  rad and  (0) 0.1, 0.1, 0.1x

  

rad/s. The integration was performed over the time interval 

 0,30  s. Let the coefficients of the matrices С  and D  are 

10ii iiс d  , 0, , , 1,2,3ij ijс d i j i j    . 

Figures 2-4 present graphs of the behavior of the 
components of the vector ( )x t . They are the deviations of 

the general coordinates  , ,   q  of the gyrostat for its 

program motion  Τ* * *( ) ( ), ( ), ( )t t t t  r . This motion 

occurs under the action of programmed torque (11) and 
stabilizing torque (14). The graphs illustrate the 
asymptotical stable of the obtained solutions. 

 
Fig. 2.  Value 1( )x t . 

Fig. 3.  Value 2 ( )x t . 

Fig. 4.  Value 3( )x t . 
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V. CONCLUGION 

This paper describes mathematic model of movement 
around the center of mass of single-rotor dynamically 
symmetrical gyrostat with a spherical cavity filled with 
viscous fluid. The problem about realization and 
stabilization of gyrostat program motions is solved. The 
active program and stabilizing controls acting to the gyrostat 
by the principle of feedback are constructed. The task is 
solved on the base of a method of Lyapunov functions and a 
method of the limit equations and the limit systems. The 
asymptotic convergence of the solutions is confirmed and 
illustrate by the results of numerical simulation of the 
motion of the gyrostat. 

The results of this paper further develop results from 
notes [10, 14] and can be used for projecting control 
systems for objects with cavities filled with highly viscous 
fluids. 
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