
 

 

Abstract— Modern marine vessels perform a wide spectrum 

of various tasks, including the most difficult research efforts 

and rescue expeditions. So, the problem of construction of 

automatic motion control systems for them has received 

considerable attention in various scientific publications. One of 

the most important requirements to any control system is the 

availability of the property of astaticism on regulated 

coordinates, i.e. the systems’ ability to provide zero static error 

when exposed to the constant external disturbances. At that the 

astaticism property should be performed not only in the 

stabilization mode of the motion of an object, but also in the 

functioning of the object in the other modes of motion. 

Significant attention in this paper is paid to the motion control 

laws in a predetermined path with the multipurpose structure, 

providing astaticism of the closed-loop system. In the paper the 

method to provide the astaticism in tracking control system is 

proposed, described in details and examined on the example. 

 
Index Terms— control law, observer, stability, tracking 

control, astaticism 

 

I. INTRODUCTION 

URRENTLY, the problem of construction of automatic 

motion control systems for moving objects, particularly 

for marine vessels, performing a wide spectrum of 

various tasks, has received considerable attention in various 

scientific publications. This is due to the continuous 

expansion of the range of requirements to such systems, and 

the growing capabilities of the devices that implement the 

control laws.  

In this regard, there is a need to use multipurpose control 

laws, allowing taking into account the complex of 

conditions, requirements and restrictions that must definitely 

be performed in all modes of operation of the rolling object. 

Such onboard systems give a great number of advantages 

that are not possible in manual control mode. These benefits 

include speed of processing data, the completeness of the 

considered factors, the accuracy of testing a given trajectory, 

the selection of the optimal settings, etc. 

In connection with this circumstance, to ensure all 

required dynamic properties of any moving object there 

must be some compromise on quality control processes in  
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different modes. Obviously, the simplest way is to build a 

single control law, which will provide admissible quality of 

motion in any mode, but for each of them separately 

specified control law will be far from the optimal one. 

 Note that for most individual modes of motion numerous 

methods for the synthesis of control laws [1-5], effective for 

specific situations, are developed. The multipurpose control 

laws that are focused on a set of modes are studied much 

less. These circumstances may create additional difficulties 

in the design of automatic control systems of moving 

objects. 

One of the most important requirements to any control 

system is the availability of the property of astaticism on 

regulated coordinates, i.e. the systems’ ability to provide 

zero static error when exposed to the constant external 

disturbances. At that the astaticism property should be 

performed not only in the stabilization mode of the motion 

of an object, but also in the functioning of the object in the 

other modes of motion. 

In particular, significant attention in this paper is paid to 

the motion control laws in a predetermined path with the 

multipurpose structure, providing astaticism of the closed-

loop system. Some methods to provide the astaticism are 

described in [6-10]. 

Works [11-20] present the theory of multipurpose 

synthesis of motion control systems, taking into account the 

complex set of conditions, requirements and restrictions 

which certainly should be performed in all operation modes 

of the vessel. 

II. TRACKING CONTROL PROBLEM 

An easy way to comply with the conference paper 

formatting In many practically important situations (obstacle 

avoidance, motion in narrow corridors, performing various 

maneuvers and group movement, and so on), the control 

system implements automatic maneuvering by practicing the 

given command signal )t(dy , i.e., by ensuring the closeness 

of the values of real output )t(y  of the closed-loop system 

to the desired value )(tdy  of output at each moment 

],0[ Tt  of the maneuvering process. 

Note that identical coincidence of these functions is 

almost impossible due to the inertia of the object, limited 

control resources, errors in measurements and etc. However, 

we assume that a given motion is realizable in the sense that 

here exists a feedback control law, which will provide in a 

closed-loop system the condition 

)()( tt dyy  , t . (1) 

Let consider some implementation issues of tracking 

control with the multipurpose structure using a linear 

stationary object with a mathematical model  
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where νEξ  is a state vector, 


Eu  is a control vector, 

kEy  is a vector of regulated coordinates, A, B, C, В are 

constant matrices with corresponding dimensions. 

 Equations (2) are determine the linear stationary 

operator 

YUp  : , uy p , (3) 

that at given initial conditions on the state vector establishes 

a one-to-one correspondence between each control u from 

the set U and each output y from the set Y. Further, we will 

assume that the corresponding inverse operator 1 p  is 

defined.  

Let the stabilizing feedback with LTI (Linear Time 

Invariant) mathematical model is given 

,

,

yDζCu

yBζAζ

cc

cc




      (4) 

where 1
ν

Eζ  is a state vector of controller, Ac, Bc, Cc, Dc 

are constant matrices with corresponding dimensions. Note 

that the initial conditions for vector ζ  are always assumed to 

be zero. 

As for the controlled object, the linear stationary feedback 

operator corresponds to the model (4)  

UYc  : , yu c .      (5) 

Operator (5) establishes a one-to-one correspondence 

between each output y from the set Y  and each control u 

from the set  U. 

Let consider the closed-loop system (2), (4). In 

accordance with the relations (3) and (5) we have 

yy cp  (6) 

i.e. the equation, which solution leads to a linear stationary 

operator 3  of the closed-loop homogeneous system, is 

03  y . (7) 

Since the feedback is stabilizing, zero equilibrium 

position of system (7) is asymptotically stable by Lyapunov, 

i.e. the condition (8) is fulfilled 

0y )(t  at t  for any ν
0 Eξ . (8) 

Now, instead of feedback (5) we form the control action 

as the following sum 

 dcdp yyyu  1  (9) 

where the first term can be interpreted as command signal 

)()( 1 tt dp yu
  , fed to the closed-loop system, and the 

second term  dc yyu ~  represents the feedback with 

the tracking error )()()( ttt dyye  . 

Subject to the linearity of the operator p , the closed-

loop system (3), (9) is 

)()( dcpddcpd yyyyyyyy   

or ee cp . According to (6) and (7) we have the 

closed-loop homogeneous system 

03  e  (10) 

with respect to the tracking error. 

It is easy to see that if the initial conditions   00 ξξ   on 

the state vector of the object are non-zero, the left side of 

(10) will have an additional term )( 00 ξe , which tends 

exponentially to zero with unlimited growth of time. Then, 

due to asymptotic stability, we have 

0e )(t  at t  for any ν
0 Eξ .    (11) 

which implies the condition 

)()( tt dyy   at t . 

Let concretize this scheme to implement the desired 

motion in a given direction using a stabilizing control 

according to the state of the object. 

Consider the linear mathematical model of the moving 

object with linear actuator: 

.

,

,

Cxy

uδ

BδAxx











    (12) 

Here nEx  is a state vector, mEδ  is a vector of 

control actions, mEu  is a vector of control signals 

(controls), kEy , nk   is an output of the system. 

Let consider the situation when  2C0C  , where 2C  

is non-singular square nn  matrix, i.e. the following 

equality is valid:  

  22

2

1

2 xC
x

x
C0Cxy 








 , 

kE2x , 0det 2 C . 

   (13) 

Let also consider the equation of stabilizing state control  

δKxKu  x ,    (14) 

that due to the notation  21 xxx KKK   can be written 

as 

δKxKxKu  2211 xx . 

With subject to (13), let denote 

yKyCKxKv 1
1

2222  
xx , 1

221
 CKK x . (15) 

Then we can write the auxiliary LTI system with the input 

v  and the output y  

.

,

,

11

Cxy

δKvxKδ

BδAxx







x




    (16) 

In block representation these equations will take the form 

,

,

ξCy

vBξAξ

p

pp




    (17) 

where 

mnE 









δ

x
ξ , 

  









K0K

BA
A

1x

p , 











m

p
E

0
B ,  0CC p . 

After recording (17) in  tf – form we obtain 

,)( vHy s     (18) 

where transfer matrix H  is 

)()()( sAss aaBH  ,    (19) 

and the polynomial )(sAa  and polynomial matrix )(saB  are 

defined by the following expressions 
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 pa ssA AE  det)( , 

  pppaa ssAs BAECB
1

)()(


 , 
(20) 

with the identity )( mn -matrix E . 

With account to (18) and (15) the equations of the closed-

loop system (12), (14) can be written in operator form 

,,

,)()(

1 dtdp

ppA aa





yKv

vBy
    (21) 

which determine respectively the operators p  and c  

specified higher. Note that for the first one there exist the 

inverse operator 1 p , that is uniquely determined by inverse 

transfer matrix )()()( 11 ssAs aa
  BH  of the auxiliary 

system. 

It is easy to see that equations (21) are reduced to a 

homogeneous system of differential equations relatively to 

the stable output 

  0)()( 1  yKBE ppA aka ,    (22) 

with hurwitzian characteristic polynomial )(s . It is 

important to note that equation (22) specifies a uniform 

stationary operator 3  entered in the general case by (10). 

Now let's use the auxiliary stabilizing controller (15) to 

implement the desired motion )(tdy  of the output. To this 

end, in accordance with the formula (9) we generate the 

control signal in the following form 

 

).()( 1
1

1

dd

dcdp

p yyKyHv

yyyv









     (23) 

Then the equations of the closed-loop system are 

).()(

,)()(

1
1

dd

aa

p

ppA

yyKyHv

vBy






    (24) 

Equations (24) can be easily reduced to one uniform 

equation 

  0)()( 1  eKBE ppA aka     (25) 

with respect to the tracking error e . Due to the characteristic 

polynomial of the system (22) is Hurwitz polynomial, the 

polynomial of the system (25) will also be Hurwitz 

polynomial. Thus, for any initial conditions 0)0( ξξ   on the 

state vector of the object (12) with actuator, on the basis of 

(25) have 

      0yye  ttt d , t . 

So we can formulate the transformation rule of the given 

stabilizing control to realize the desired motion of the 

controlled object: 

  .)()()( 1
2211

1

2211

δKyyCKxKyHu

δKxKxKδKxKu










ttp dxxd

xxx

 

(26) 

Here the first term )()()( 1* tpt dyHu
  can be 

interpreted as command signal, fed to the closed-loop 

system, and the second term  

  δKyyCKxKu 
  )()(~ 1
2211 tt dxx  

represents the feedback with the tracking error 

)()()( ttt dyye  . 

Let consider the system with constant external disturbance 

 t10  dd  

 

.

,

,

Cxy

uδ

DdBδAxx









 t

 (27) 

Assume, that we have the basic control law 

δKKxu 0 . On its basis let construct the control law in 

the form  

yzμu   , (28) 

where z  is the estimation of the state vector, obtained using 

the asymptotic observer 

 CzyGBδAzz  . (29) 

In static equilibrium position the equalities 

0,0,0  zδx   are fulfilled. Thus, we have 

,0

,0





y

BδAx
 

and, consequently, 0y  . So the structure of the control law 

(28) provides the astaticism of the closed-loop system. 

Let transform the controller (28) to realize the desired 

motion  tdy . The controller (28) can be represented in the 

form 

,yδKxKzKu  xz  (30) 

where GCΚBKGCAK μ,μ,μμ   xz . 

Then the closed-loop system (27), (29), (30) can be 

written as 

 

 
 .

,

,

CzyGBδAzz

xCKδKzKδ

DdBδAxx















xz

t

 (31) 

Let denote the state vector of the system (31) as 

  mn
 2dim,,, ξzδxξ . 

The condition of astaticism on thi  controllable coordinate 

for the system (31) can be represented in the following form 

  ,00 
i

dH  (32) 

where  s
i
dH  is a transfer function of the system (31) from 

the disturbance  td  to thi  controllable coordinate.  s
i
dH  

is determined by formula 

 

     

    ,det

,1

1

21
















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





GCAEB0

KKE0

0BD

H

H00H

d

dd

s

sss

ss

z

imni
i

 
(33) 

where  s  is a characteristic polynomial of the system (27), 

(28). 

Thus, the problem of providing astaticism of the closed-

loop system on the controlled coordinates is reduced to the 

choice of the matrices νμ,  in regulator (28), to satisfy the 

conditions (32).  

Similarly we can formulate the transformation rule of the 

given stabilizing astatic control (28) to realize the desired 

motion of the controlled object: 

   .1
ddp yyzyHu     (34) 
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III. SYNTHESIS OF THE CONTROLLER 

Let consider the system of automatic tracking control with 

respect to the requirement of astaticism. 

Consider the mathematical model of marine vessel:  

.δ

,ω

);(δωβω

);(δββωββ

22221

1101211

u

tMbaa

tFbaaa

















 (35) 

Here   is the angular velocity relative to the vertical axis, 

 is a yaw,   is the deviation angle of vertical rudders,   is 

the drift angle, u  is a control, )(1 tfhF   is a side force, 

)(2 tfhM   is a moment, )(tf  is an external stepwise 

disturbance, determined by wind and waves. The marine 

vessel used for modelling is shown in Fig.1. 

 

 
Fig. 1  Marine vessel 

Let’s take harmonic oscillation tAt ddd  sin)(  with 

the given amplitude and frequency as program motion. Then, 

according to (34), the transformation rule for the given 

stabilizing control  

 321
u  

is as follows 

 

 
 ,μμμ

,)(ν)()(

),(δ

321

1









μ

zμ

czgbAzz

ttpHu dd




 

where coefficients are 

.4062.0ν,2482.4μ,9414.6μ,7068.1μ 321   

The corresponding dynamic process for specified 

program motion d  is presented in Fig. 2. The graphs show 

that when using speed controller the vessel reach the desired 

trajectory. 

 

0 10 20 30 40 50 60
-10

0

10

20

30

t, c

 и 
d
, град

 

Fig. 2.  Adjustment of the program motion. Desired trajectory (dashed line) 

and real trajectory (solid line). 

In Fig. 2 solid line represents the desired trajectory and 

dashed line – current position of the marine vessel. As 

shown in the Fig. 2, the vessel needs only 30 seconds to 

reach the given trajectory d . As follows from the example 

the control law (34) provides zero tracking error, i.e. the 

system with controller (34) is astatic on yaw. 

Represented algorithm is implemented in the environment 

MATLAB with the subsystem Simulink. MATLAB is one of 

the most effective tools to form and use in the researches 

computer models of dynamic systems. So the realization of 

this algorithm can be easily used for any controlled object.  

 

IV. CONCLUSIONS 

Following the given trajectory is related to the necessity 

to avoid obstacles, vessels’ movement in narrow waters, 

performing the maneuvers of divergence and group motion 

of marine vessels and etc. In these situations the program of 

yaw motion )(td  is specified, and the control problem is to 

provide the proximity of current yaw values )(t  and 

desired yaw )(td  at every time moment 0t . At the same 

time the property of astaticism is very important to provide 

zero stabilization error in the process of any complicated 

motion.  

In the paper the method to provide the astaticism in 

tracking control system is proposed, described in details and 

examined on the example. 
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