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Abstract — The plane motion of an axisymmetric 
satellite with a movable mass on its axis of symmetry is 
examined. A restricted continuous law for controlling 
the movable mass is proposed, which solves a problem of 
the gravitational stabilization to in-plane perturbations 
of two diametrically opposite relative equilibrium 
positions of the satellite in a circular orbit using the 
swing-by technique. The problem of reorientation of the 
satellite by moving it from one stable equilibrium 
position to the other is solved.  

.Index Terms — Satellite, orbit, movable mass, gravitational 
torque, swing-by technique, stabilization, Lyapunov function. 
 

I. INTRODUCTION 

HE problem of the stability of the relative equilibrium 
positions and different motions of a satellite about the 
centre of mass in a Keplerian orbit under the action of 

gravitational, aerodynamic, and other torques has been the 
subject of publications by investigators [1–8]. We solve 
below the problem of control and stabilization of an 
axisymmetric satellite with a point mass (load) under the 
action of gravitational torque. The load can move along the 
axis of symmetry to the principle of swing action. Swings 
are modeled by a single-mass [9] or two-mass [10–12] 
pendulum of variable length. Their models can be used to 
solve applied problems. For example, the swing-by 
technique has been used in paper [13]. It solves the problem 
of orbital maneuvering of a satellite with using a space 
tether system. Note [14] is devoted to the study of two 
problems of the satellite in a circular orbit. They are the 
problem of gravitational stabilization with respect to in-
plane perturbations of the relative equilibrium position and 
the problem of reorientation of the satellite under the 
condition that the mass of the load is considerably less than 
the mass of the satellite. But in paper [14] was constructed 
unbounded control law such that the moving mass can move 
beyond the confines of the satellite. It presents severe 
difficulties in actual practice.  

In the present paper we investigate the plane motion of 
an axisymmetric satellite with a movable mass for any value 
of the movable mass. We annex the condition of the 
constraints of load’s motion.  

In Section 2 the equations of the plane motion of a 
satellite with a movable mass about a common centre of 
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mass in elliptical and circular orbits under the action of a 
gravitational torque are obtained. In Section 3 bounded 
control law is proposed, and the problem of gravitational 
stabilization (damping of the in-plane oscillations) in the 
vicinity of a position of relative equilibrium of the satellite 
is solved. In Section 4 the problem of the turning the 
satellite through an angle   is examined. We realize the 
control process of the “swinging” of the satellite in the 
vicinity of its stable equilibrium position and moving it into 
a diametrically opposite, asymptotically stable position.  

We solve the problem by using the second method of 
classical stability theory. We construct the corresponding 
Lyapunov functions. The asymptotic convergence of the 
solutions is confirmed by the results of numerical simulation 
of the motion of the system. 

II. PROBLEM DEFINITION AND MOTION EQUATIONS 

We consider the motion of a satellite about its centre of 
mass at the point O . The satellite moves in a central 
Newtonian gravitational field. The model of the satellite is 
an axisymmetric rigid body (carrier) of mass 1m  with a 

point load of mass 2m . Load can move along axis of 

symmetry of carrier (Fig. 1). The centre of mass of the 
carrier is located on its dynamic axis of symmetry at the 
point 1O . We use l  and d  to denote the distances from the 

point 1O  to the load 2m  and to the centre of mass 2O  of the 

entire satellite. The following equality holds  

1 2 ( )m d m l d                (1) 
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Fig. 1.  Satellite. 
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We annex the orbital system of coordinates 2O XYZ . 

Let the axis 2O X  is directed along a tangent to the satellite 

orbit, the axis 2O Y  is perpendicular to the orbital plane. The 

axis 2O Z  completes the system of coordinates as a set of 

three axes at right angles. The coordinates system 1O xyz  is 

connected to the satellite. It coincide with its principal 
central axes of inertia. The orientation of the connected 
system of coordinates relative to the orbital system of 
coordinates is specified using the Euler angles  ,   and 

 . Suppose A , B  and C , where B A C   are the 

principal central moments of inertia of the satellite. 
We derive the equation of plane motion of a satellite 

with a movable mass about the common centre of mass for 
any value of the mass 1m  and the mass 2m . We denote 

  1

1 2 1 2m m m m m
  . We denote 2A , 2B  and 2C  moments 

of inertia of a satellite with a movable load about the axes 
passing through the common centre of mass 2O  and parallel 

to the axes of the frame 1O xyz . The following equality 

holds: 
2 2 2
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It is well known [2] that exist the plane motions of a 

satellite   ,  
2

  , r     , 0p q  . They are 

relative motions about the centre of mass in an elliptical 
orbit. They occur under the action of the gravitational torque 
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Here p , q  and r  are the components of the angular 

velocity of rotation of the satellite. The dot denotes a 
derivative with respect to time t , const 0n    is the mean 
motion of the centre of mass of the satellite,   is the true 
anomaly, e  is the orbit eccentricity. The gravitational 
torque zM  is the torque about the perpendicular to the 

orbital plane axis passing through the point 2O . Using 

equality (1.2) we write the angular momentum: 
2

2 ( )( )zK C r A ml       . Then we have the equation of 

plane motions of a satellite with a movable mass in the 
following form: 
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Here ( , )l l    . We denote 1 1 cosk e   . We treat the 

true anomaly as a new variable [2]. Then we can rewrite the 
equation of planar motions of a satellite with a movable 
mass in a Keplerian orbit under the action of the 
gravitational torque:  
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  (4) 

The prime denotes the derivative with respect to  . 
Equation (1.4) is true for any value of the mass 1m  and 2m . 

For motion in a circular orbit 0e   and 1 1k  . 

III. CONTROL OF DAMPING MOTIONS OF SATELLITE 

We state and solve the problem of the asymptotic 
damping of in-place oscillations of a satellite about relative 
equilibrium position 0    using the swing-by 

technique. We treat the distance from the centre of mass of 
the carrier body 1O  to the movable mass 2m  as a control. 

We obtain the solution by the second method of stability 
theory. We define the control in the form: 

 
0

0

sin , if sin ( , ) 0;

sin , sin ( , ).

l a a b b a b
l

l b sign sign a b b
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Here 0 , , const 0l a b   . We write the derivative by 

the equalities 
2sin cos , if sin ( , );

0, if sin ( , ).

a a a b b
l

a b b

     
 

          
   (6) 

About the relative equilibrium position 0    we 

rewrite the equation (4) for 0e   and 1 1k   according to 

formulas (5) and (6): 

0
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  (7) 

Equation (7) has zero solution 0   , which 

corresponds to the relative equilibrium position of the 
satellite. We choose the Lyapunov function: 
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We determine the coefficient const 0p    later. In the 

vicinity of relative equilibrium position 0    the 

function ( , )V    is positive-definite. We will calculate the 

total derivative of the function ( , )V V    with respect to 

time. Since [2] n   in circular orbit. We calculate the 
derivative of the Lyapunov function in view of (8) and 
expand its expression in series in the variables   and  . 
Then we discard terms of higher than the fourth order 
respect to variables   and  . We obtain 
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where 

0 0F mal  , 2
0 0G A ml   , 2

0 0H A B ml     (10) 

We chose p  according to the equation 

3
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then rewrite (9): 

2 2 2

2 2 2

1 15
4

2 4

5 3
3 4

2 4

G F
V G

nF G

F
H

G

   

   

        
 

     
 



   (12) 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I, 
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016



 

By Sylvester’s criterion [16] satisfied homogeneous 

form (12) by the condition  2
0 08 30mal A ml   is 

negative-definite. By Lyapunov’s asymptotic stability 
theorem [16] we have the follow result. Relative equilibrium 
position 0    of the satellite in a circular orbit is 

asymptotically stable. The results of integrating the 
equations of motion confirm the conclusions drawn. 

The phase portrait of system with control (5) is shown in 
Fig. 2. Numerically integration the equation of motion was 
carried out at the following numerical values of the 
parameters of the system: 1 500m   kg, 2 50m   kg, 

100A   kg 2m , 10B   kg 2m , 0 1l   m, 0.7a   m  rad, 

0.2b   m  rad, and the initial values: 0( ) 1    rad, 

0( ) 0.2   . The integration was performed in the range 

 0;50   rad. The phase trajectory displays the asymptotic 

decay of the amplitude and speed of the oscillations of the 
satellite about the zero equilibrium position. The 
dependence of the distance l  on the angle of deflection   

of the satellite is shown in Fig. 3. It demonstrates its 
asymptotic convergences to the value 0l . 

 

IV. SWINGING AND REORIENTATION OF THE SATELLITE 

We apply a control law of the form (5) to the problem of 
the swinging of a satellite from an arbitrary neighborhood of 
the relative equilibrium position and its diametrical 

reorientation. 
We now assume that in control law (5) the parameter 

const 0,a a b               (13) 

The equation of controlled motion of the satellite 
maintains the form (7). The function (8) is positive-definite 
in the vicinity of equilibrium 0   . Derivative of this 

function on time owing to the equation (7),  when choosing 
a value p  according to equation (11) in designations (10) 

similar (12): 
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    (14) 

Here 0 0F mal  . By Sylvester’s criterion 

homogeneous form (14) will be positive-definite, for any 
parameters of the satellite. 

According to Lyapunov’s first instability theorem, [16] 
relative equilibrium position 0    of the satellite in a 

circular orbit is unstable Thus, control (5) with a negative 
value of the parameter a  implements the swinging of the 
satellite about the local vertical 

We investigate now the behavior of the satellite with 
control (5) for positive and negative values of the parameter 
a  in the vicinity of diametrically opposite equilibrium 
position   , 0  . We introduce the deflection 

x   , and write the equation of perturbed  motion. 

0

2 2

( ( 3 sin 2 sin ))

3
2 cos ( 1) ( )sin 2

2

x A ml l ax x a x

mla x x x A ml B x

    

     
   (15) 

Suppose const 0a   . Then equation (15) with control 
(5) is identical to equation (7) with control (5) where 

const 0a   . Therefore, the zero solution 0x x   of 
equation (15) is unstable according to the result obtained in 
Section 3. 

Now suppose const 0a    and condition (13) is 
satisfied. Equation of perturbed motion (15) with control (5) 
and condition (13) is identical to equation (7) with 

const 0a   . Therefore, the zero solution 0x x   of 
equation (15) is asymptotically stable, by the result obtained 
in Section 3. 

Thus, control (5) under condition (13) implements the 
diametrical reorientation of the satellite. After swinging 
about the relative equilibrium position, at which the axis of 
dynamic symmetry of the satellite coincides with the local 
vertical, the satellite swings through an angle  . Then it 
performs asymptotically decaying oscillations in the vicinity 
of its opposite position of relative equilibrium in the orbit. 

This process is clearly illustrated by the graphs of the 
corresponding numerical calculations. The change of an 
angle and the phase portrait of system (7) with control (5) 
under condition (13) are shown in Fig. 4, 5. Numerically 
integration the equation of motion was carried out at the 
following numerical values of the parameters of the system: 

1 500m   kg,  2 50m   kg,  100A   kg 2m ,  10B   

kg 2m , 0 1l   m, 0.7a    m  rad, 0.2b   m  rad and the 

Fig. 2.  Phase portrait. 

Fig. 3.  Value ( )l  . 
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initial values: 0( ) 0.3    rad, 0( ) 0.1   . The integration 

was performed in the range  0;50   rad. 

 
The figures 4 and 5 reflect the process of swinging about 

zero equilibrium position 0    followed by an 

asymptotic approach to the new equilibrium position   , 

0  . 

Fig. 6 shows the behavior of the distance l  as a function 
of the angle  . Initially, as the satellite swings, the 

deviations of the distance l  from the value 0l  in the vicinity 

of equilibrium 0   increase periodically. After the turning 

of the satellite its transit into the vicinity of position   , 

the distance l  converges asymptotically to 0l . We note that 

the value l  remains limited. 

V. CONCLUSION 

In this paper the equations of the controlled plane motion 
of a satellite with a movable mass about a common centre of 
mass in elliptical orbit for all values of the masses are 
obtained. Bounded control laws are proposed. Two 
problems are solved. First problem is the task of 
gravitational stabilization (damping of the in-plane 
oscillations) in the vicinity of a position of relative 
equilibrium of the satellite. Second problem is the task of 
the diametrical reorientation the satellite under the action of 
a gravitational torque. For the proposed control Lyapunov 
function is constructed. This function proves asymptotic 
stability and instability of the studied movements. 
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Fig. 4.  Change ( )   at the turn of the satellite. 

 
Fig. 5.  Phase portrait. 

 
Fig. 6.  Value ( )l  . 
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