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Abstract— In view of rapid development of computer 

technologies digital systems of automatic control are installed 

on the modern ships for performance of various manoeuvres at 

optimal trajectories taking into account the features of the ship 

and active disturbances. In the paper, the problem of 

suppression of exogenous disturbance, about which we have no 

information except its boundedness, is considered. In this 

situation, it requires to choose the parameters of the controller, 

which will give the best possible result under the worst 

bounded disturbance, and also ensure the implementation of 

additional requirements to dynamic processes. 

 
Index Terms— control law, stability, invariant ellipsoid, 

optimization, disturbances 

 

I. INTRODUCTION 

HE level of development of modern computer 

technologies, the continuous increasing of computing 

power, the appearance of new program tools – all this 

contributes to the widespread automation of the functioning 

of various marine  objects using autonomous onboard 

systems. 

In particular, this allows installing on modern marine 

moving objects highly efficient systems for automatic 

motion control, thereby facilitating and making it more safe 

trips and expeditions in the open sea. Such systems can 

reduce the appearance of accidents due to human factors, 

conserve energy resources, and precisely follow to the 

specified routes, avoiding various obstacles, to compensate 

for the influence of the external disturbances with regard to 

the peculiarities of the dynamics of the vessel. 

This raises a number of substantive and formal problems 

associated with systems engineering and automatic control 

of the motion, namely, the problem of minimizing the time 

of manoeuvre and fuel consumption, the problem of 

construction of optimal trajectories of motion, the problem 

of suppression of external influences caused by gusts of  
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wind and rough sea. Often these problems effectively solved 

separately in [1] and [2], but in practice, we often deal with 

multiple tasks simultaneously. 

 Special attention should be paid to the situation when in 

the framework of a formalized setting external disturbances 

are uncertainties, and control system must not simply to 

compensate such influences, in a sense, but also to ensure 

the implementation of additional requirements to dynamic 

processes. This fact significantly complicates the analysis 

and design of control systems, one of the main functions of 

which is to suppress the influence of impacts on the vessel. 

Some aspects of suppression of bounded external 

disturbances are considered in [3–8]. 

The theory of multipurpose control laws’ synthesis with 

the set of additional modal requirements to the dynamic 

process is presented in papers [9–12, 14–21]. 

Particularly, in the paper much prominence is given to the 

questions, associated with computer synthesis and modelling 

of the control laws those suppress bounded exogenous 

disturbances. The example of modelling of the control 

system for the marine ship with displacement ton 6000 is 

performed. 

 

II. PROBLEM STATEMENT 

Let consider linear model of marine vessel 

,

,

),(

Cxy

uδ

DwBδAxx









 t

    (1) 

where nEx  is a state vector (it defines the deviation from 

the equilibrium position), y
k

Ey  is a vector of controllable 

coordinates, A , B , D , C  and M  are constant matrices of 

corresponding dimensions. 

Feedback for the system (1) we form as a state controller 
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where matrices xK  and K  are constant. 

Further, the set of stabilizing controllers (2) will be 

denoted as k , identifying it with the set of such matrices 

K , for which the characteristic polynomial 

 KBAEK 003 det),(   ss mn     (3) 

of the closed-loop system (1), (2) is hurwitzian. Here the 

following notation is used: 
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Let introduce the narrowing sk  of the set of stabilizing 

controllers, determining it by desired modal requirements for 

a closed-loop system: 

 mniCiksk   ,1,)(: KK     (4) 

where )(Ki  are the roots of the characteristic polynomial 

(3) of this system, C  is defined area on the complex plane. 

In particular, as such area it can be taken a half-plane 

}:{ 1
dxjyxsC  C , where 0d  is a given 

real number that determines the degree of stability of the 

closed-loop system. However, other variants are also 

possible. 

Let assume that in the assignment of the external 

disturbance there is uncertainty, however, accept its 

limitations, supposing that 

  1t w   at  t0 ,    (5) 

where the Euclidean norm of the space lE  is used. 

Let introduce the functional )(Kdd JJ   characterizing 

the minimal invariant ellipsoid, including the set ae  of 

reactions on the external influences for a closed-loop system 

(1), (2). In accordance with [7] in this case we have 
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)(P is a positive definite solution of linear matrix equation 
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Let consider the problem of choosing the stabilizing 

controller (2), which minimizes the size dJ  of the invariant 

ellipsoid with regard to the desired modal properties of a 

closed-loop system 

ks k

dd JJ
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where the feasible set sk  is defined by formula (4). 

Note that if the modal properties are not taken into 

account, and it is required only the stability of the closed-

loop system, we are led to the formulation of the well-known 

problem 
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which is discussed in details in [13]. He with co-authors 

provide a relatively simple and elegant solution, which is 

represented in the form 
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),( P  is positive definite solution of linear matrix 

equations 
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Because of the correctness of inclusion ksk  , we 

have  
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i.e. the solution of (9) is a lower estimation for the solution 

to (8), that greatly simplifies the usage of approximate 

methods to search for its solution. 

As it noticed in [7], for any pair 0 , 0 , for which 

linear matrix equation (11) has the solution 0),( P , the 

controller (2) with the coefficient matrix  

),(),( 1
0  

PBKK   (14) 

is stabilizing. 

Let introduce a special notation for the hurwitzian 

characteristic polynomial of the closed-loop system (1), (2) 

taking into account the condition (14): 

 ),(det),,( 003   KBAE ss mn . (15) 

A set k  of stabilizing feedbacks with matrices 

),( K , defined by the formula (14), further we will call 

the set of parameterized controllers for the problem (9), 

which solution is reduced to the search for the minimum of 

the function  ),( PF . 

Let note that the process of solution of the problem (8) is 

convenient to connect with parameterization using real 

vectors mnE γ  of characteristic polynomials of the system 

closed by controllers from the admissible set sk , entered 

by (4).  

The parameterization of characteristic polynomials 

mentioned above define the corresponding parameterization 

of the set sk  of controllers (2) for the object (1). Really, let 

define the arbitrary vector mnE γ   and construct the 

polynomial ),(*
γs .  This polynomial will be characteristic 

for the closed-loop system, if the matrix K  of the controller 

(2) will satisfy the identity 

  ),(det),( *
003 γKBAEK sss mn   . (16) 

Collecting all components of the matrix K  into vector 
mmnmE k ,  we obtain that to the identity (16) will 

correspond an equivalent linear system 

)(γmΓk  , (17) 

where matrix Γ  is defined by matrices 0A  and 0B , and 

vector )(γm  is defined by the coefficients of the polynomial 

),(*
γs  and characteristic polynomial of the matrix 0A . 

Note that the system (17) is always compatible due to the 

condition of full controllability. It contains mn   equations 

and mmnm   unknown variables, i.e. 

mnmmnmnc  components of the vector k , 

collected to the vector c
n

c Eh , can be choose arbitrarily. 

Let consider vector   cc nmnE   ,,hγε , and in 

addition, define the arbitrary vector ch . Then we can find 

the corresponding solution ),()( chγkεk   of the system 

(17). Thus it is found the matrix ),()( chγKεKK   of the 

controller coefficients (2) from the set sk , parameterized 

by vectors  chγε , .  
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Let take an arbitrary controller from the set   and 

form the characteristic polynomial ),,(3  s  of the closed-

loop system by the formula (15), presenting it in the form 

  )),(1(1),,( 1
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),ν(  is the vector of coefficients of the polynomial 

),,(3  s . 

Similarly rewrite characteristic polynomial  

  ))(1(1),( 1
3

 
KνK ssss mnmn   

with the coefficients vector mnE )(Kν , obtained using (3) 

for an arbitrary controller (2) taking into account the 

condition kK . 

Let’s call the non-negative real number 

)(),(),,( KννK   .  (18) 

relative distance between regulators (2) with the matrices of 

coefficients  ),(K  and kK  or between the 

corresponding characteristic polynomials ),,(3  s  and 

),(3 Ks . 

Let consider a finite dimensional problem on 

unconditional extremum 


 

Eε
εKε min))(,,()(** , (19) 

where the dependence ),()( chγKεKK   from the vector 

 chγε , is mentioned above. 

Thus we can formulate the search algorithm of the 

approximate solution for the problem (8) using the ideology 

of the solution of the problem (9). 

 

Algorithm 1. 

1. Take any pair  , , 0 , 0 . 

2. Find the solution ),( P  of linear matrix equation 

(11). 

3. If 0),( P  (non positive defined) we need to 

change the selected pair  ,  using some rule. 

4. For given pair  ,  construct the matrix ),( K  

using (14) and calculate the value of the function 

   33 ),(tr),( CPCP F . 

5. For given pair  ,  find the solution ),(~ ε  of the 

problem (19), obtain the matrix sk )),(~(),(
~

εKK  

for the closest controller and calculate the value of the 

corresponding distance ),(   . 

6. Calculate the value of the auxiliary function 

  ),(),(),(  PFFa ,    (20) 

where   is a given weight factor. 

7. Using any admissible numeric method of minimization 

the function ),( aF  on the set of parameters 0 , 0  

define a new pair  ,  and, repeating items 2,6, find the 

extremum  00 ,  of the function ),( aF . 

8. If sk  )β,α(β 001
0 PBK  and it is fulfilled the 

condition   dddd JJJ  **)(K , where d  is admissible 

deterioration of the size of minimal invariant ellipsoid by 

providing modal properties, then the problem is solved. If 

the last inequality is broken, it is necessary to decrease the 

value of the weight factor   in (20) and repeat the search 

process. 

III. PRACTICAL EXAMPLE 

Let us consider the mathematical model of the sea-going 

ship:  

u

tdhbaa
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 (21) 

Here   is an angular velocity relative to the vertical axis, 

  is a course (the turn to port side is considered positive), 

  is a deviation angle of the vertical rudders,   is a drift 

angle (angle between the velocity vector and longitudinal 

axis of the ship), u is a control, )(td  is a bounded 

exogenous disturbance: 

 ttdtd 0,1)()(  (22) 

Main parameters of the model are represented in the  

Fig. 1. 

Coefficients in (21) for a fixed velocity are the following:  

.   

,, h, h, bb

,, a, a, aa

)0.2 0.2, 0.2, 0.2,(diag

0.00460.06480.004170.0099

0.3060.0150.560.03408

2121

22211211


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Q

 

The graph of the test disturbance is represented in the  

Fig. 2. 

 

 
 

Fig. 1  Main parameters of the vessel 
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Fig. 2  External disturbance 
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It is offered to search for the state controller with 

mathematical model 

 4321 kkkku  (23) 

where k1, k2, k3, k4 are parameters need to be found those 

provide the desired dynamics of the closed-loop system.  

Deviation of the rudders and the its velocity turn (that is 

control) are constrained: 

≤ 30
o
,  u≤ 3

o
/sec. 

Let consider the modal requirement, that consists in the 

providing of the desirable degree of stability, i.e. let C  in 

(4) has the form }05.0:{ 1  xjyxsC C  

( 05.0d ). 

Using the Algorithm 1 stated above for the given ship we 

obtained the controller with the coefficients 

0.00133,  0.0384,   66.6,   2.44,  4321  k-kkk  

which provides the desired dynamics, is obtained. At the 

same time all requirements are taking into account. 

Really, the eigenvalues of the matrix of the closed-loop 

system are 




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so the desired degree of stability is reahed. 

For the performance testing of the found controller let use 

it for automatic control of a sea-going ship under bounded 

exogenous disturbance. 

Fig. 3 and Fig. 4 show the graphs of yaw and deviation 

angle of the vertical rudders (solid line) in comparison with 

Polyak method (dashed line). 
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Fig. 3  Yaw variation 
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Fig. 4  Deviation angle of the rudders 

As we can see, the developed algorithm gives better 

results than Polyak method. 

 

IV. CONCLUSIONS 

In the paper the method of suppression of bounded 

disturbances based on using of invariant ellipsoids and 

taking into consideration additional requirements to dynamic 

processes is stated. Its quality is illustrated on the example 

of the marine vessel. 
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