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A Fuzzy-Neural Adaptive lterative Learning
Control for Freeway Traffic Flow Systems
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Abstract—In this paper, a fuzzy-neural adaptive iterative do not consider the repetitive characteristics of freeway traffic
learning control (AILC) is proposed for traffic flow systems flow systems for the design of ramp metering controller. This
of a single lane freeway with random bounded off-ramp traffic implies that these existing freeway ramp metering control

volumes. It is assumed that the system dynamic functions and h t suitable t f ted traffi
input gains are unknown for controller design. An adaptive approaches are not sunapleé 10 periorm a repeated tranic

fuzzy neural network (FNN) controller and an adaptive robust control task for traffic flow systems. Recently, traditional
controller are applied to compensate for the unknown system discrete iterative learning control (ILC) schemes have been

nonlinearity and input gain respectively. On the other hand, successfully applied for freeway traffic flow systems [5], [6],
to deal with the disturbance from random bounded off-ramp 7 with a repetitive task over a finite time interval. However,

traffic volumes, a dead zone like auxiliary error with the it i d that th t i it fi lobal
time-varying boundary layer is introduced as a bounding It 1S assume at the system nonlinearities satisfy globa

parameter. This proposed auxiliary error is also utilized for ~Lipschitz continuous condition.
the construction of adaptive laws without using the bound of  In this paper, the repetitive tracking control problem of

the input gain for all the adaptation parameters. The traffic  traffic flow systems of a single lane freeway with random
density tracking error is shown to converge along the axis of ,,,ndeq off-ramp traffic volumes is studied. We consider a
learning iteration to a residual set whose level of magnitude . - -
depends on the width of boundary layer. more general case in the sense that the system nonlinearities

and system parameters are allowed to be unknown. An
adaptive fuzzy neural network (FNN) controller and an
adaptive robust controller are applied to compensate for the
unknown system nonlinearity and input gain respectively. On
the other hand, to deal with the disturbance from random
[. INTRODUCTION bounded off-ramp traffic volumes, a dead zone like auxiliary

T is well-known that the traffic congestions on freeway8or with the time-varying boundary layer is introduced as
I are one of the main traffic problems in Taiwan. Thé bounding parameter. This proposed auxiliary error is also
freeway ramp metering [1] is one of the most typical contraftilized for the cqnstructipn of adaptive Iaws.without using
approaches to adjust the traffic flow of freeway. Besides, tHe bound of the input gain for all the adaptation parameters.
PID-type control in [2], neural network control in [3], andThe traffic density tracking error is shown to converge along
optimal control in [4] are also some popular control methodhe axis of learning iteration to a residual set whose level of
ologies in the research field of freeway ramp metering. THaagnitude depends on the width of boundary layer.
authors in [1], which is a good review of recent freewa This paper is organized as follows. In section Il, a problem
ramp metering, have commented that the freeway ra mulation is given. The discrete AILC is then presented in
metering can be further divided into three classes of cont@ction lll. Based on the proposed AILC and a derived traffic
strategies: 1. fixed-time ramp metering control, 2. local ranffnsity tracking error model, the analysis of closed-loop
metering control, 3. system ramp metering control. In tndability and learning performance will be studied extensively
local ramp metering control strategies, ALINEA local ramp? Section IV. A simulation example is given in Section V
metering has been widely applied in the freeway traffic flofp demonstrate the effectiveness of the proposed learning
systems for a long period of time. In fact, ALINEA localcontroller. Finally a conclusion is made in Section VI.
ramp metering is a traditional Pl-type controller which is
not suitable for dealing with highly nonlinear systems with [I. PROBLEM FORMULATION
uncertainties. In addition, since very few strict mathematical |, this paper, we consider an uncertain traffic flow system
analysis can be applied to design the controller gains @ for a single lane freeway witm sections which can
ALINEA local ramp metering, the system stability can noperform a given task repeatedly over a finite time sequence

Index Terms—fuzzy neural network, adaptive iterative learn-
ing control, traffic flow systems, random bounded off-ramp
traffic volumes.

be guaranteed by ALINEA local ramp metering. t € {0,1,2,---,N}. The traffic flow system for a single
On the other hand, high repeatabilities often exist in thgne freeway with one on-ramp and one off-ramp in ttie

freeway traffic flow systems. For example, traffic congestioRgction,i = 1, ---,n is represented as follows:
on the same freeway always repetitively appear in the same T
peak time interval from 7 to 9 AM every Monday. Unfor-y7(t +1) = fi(¢/_,(t), ol (), ¢ (1)) + — (rf (t) — s{(t))
tunately, the aforementioned freeway ramp metering control _ _ L;
strategies are typical time-domain control approaches which ¢} (t) = p(t)v](t)

vit+1) = g 4(t),p(t), 1] (t), piy(t+ 1)) @
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ith section (in vehicles per lane per kilometemj,(t) € R of the ith traffic flow subsystem, we apply the univer-
is the space mean speed in tile section (in kilometers per sal approximation technique to construct the basic struc-
hour),¢/ (t) € R is the traffic flow leaving théth section and ture of our AILC. An MIMO FNN [9] described by
entering the 4 1th section (in vehicles per houn)) (t) € R~ ©7(t)T ®(p]_,(t),v]_,(t), pl(t),v](t)) is utilized as the

is the on-ramp traffic volume in thih section (in vehicles approximators of fi(p!_,(t),v)_,(t), p! (t), v} (t)), i =

per hour),s](t) € R is the off-ramp traffic volume of the 1 2 ... n. Here ¢(pf_1(t),uf_1(t),p{(t)7Vf(t)) e RMx1

ith section (in vehicles per hour) considered to be an U@ the radial basis function vector in the rule layer of the
known random bounded disturbange(a’_, (+). o/ (), @/ (1)) MIMO FNN with M being the number of ruless” (t) ¢

and g;(v}_,(t), pj (1), v} (t), pi,(t + 1)) are unknown real RM>" s the output weight matrix of the output layer with
continuous nonlinear functions of/_,(t), ¢_,(t), pl(t), ©;(t) € RM*! being theith output weight vector. In other

vl (t), ¢/ (t), pl,, (t+1). Based on (1), théth freeway traffic words, 0l (t)T d(pl_,(t),v]_,(t), pl(t),v](t)) denotes the

flow subsystem can be rewritten as follows: ith output of the MIMO FNN. In this work, we use the
, ith output of the MIMO FNN to uniformly approximate the
pi(t+1) nonlinear functionf;(p]_, (t),v_,(t), pl(t), v (t)) of theith

traffic flow subsystem on a compact sdt ¢ R**'. An
important aspect of the above approximation property is that
(2) there exist an optimal parameter vec#@y for theith output

] o ] ) ] i of the MIMO FNN such that the function approximation
Now, given a specified iteration-varying desired traffic deng,,q, ei(pl_,(t),v_,(t),pl(t),v) (1)) between theith out-
sity trajectory of theith freeway traffic flow subsystem ¢ of thgoptiméli ENNO*T qﬁil(t) and nonlinear function
ph(t) € R, t € {0,1,2,---,N + 1}, the control objective £ (1), 0] l(t),p]f(t),y?l(t)) can be bounded by pre-
is to design an AILC to adjust the on-ramp traffic Volumgcyipeq constantg on the compact set... More precisely, if
r{(t) such that the traffic density;(t) can follow p),(t) e defined(t) = &;(p_, (1), ) (), p} (1), (t)) and the

as close as possiblé € {1,2,---, N 4+ 1} when iterationj ej(t) — ei(pf,l(t) I (), pl (1), (¢)) for simplicity, then
() J J J _ 0T &
some assumptions on the freeway traffic flow system aw have fi(p_1(t), v 1 (1), pi(0), V3 (1)) = OF i(t) +

approaches infinity. In order to achieve this control objective’ v
e (1) and |ef ()] < €, V(pj_1 (1), v/ 1 (1), pi (1), (1)) €

s Vi—1
desired traffic density trajectories are given as follows: =

(A1) The freeway traffic flow system is a relaxed system gageq on the traffic density tracking error equation in (3)
whose on-ramp traffic volumes(¢), traffic densities 5. theith output of the MIMO FNN, we propose the fuzzy-

pi(t), space mean speeds(t) and traffic flowsg; (f) neyral AILC for theith freeway traffic flow subsystem (2)
are related byp](t) = 0, v/(t) = 0 and ¢} (t) = 0, Lq-

— FEOVL @A 00 0) + 1 (H0 - 0)

t <O. _
(A2) The traffic flow rate entering the first sectiorqgg(t) and rl () = A (?5) —ei)Td(t) + pg}(t +1) (4)
the mean speed of the traffic entering the first section is * 5+ ) (t)? ! !

a;ssumedjto be the mean speed in the first section, i\gheres > 0. To further see the insight of the proposed AILC
v} (t) = vi(t). We also assume that the mean speed a@g), we substitute (4) into (3) and find that
traffic density of the traffic exiting the + 1th section

are assumed to be thosesith section, i.e.p] | (t) = €i(t+1)
vi(t), pi1(t) = pi(t). The boundary conditions can = f;(p]_,(t),v) (1), pl(t), v (1)) — O} (t)T &’ (¢t)
i i) = DO iy = i = T , ‘ . , .
be defined agh(t) = iy 0(1) = 10). pnpa (1) = + (£ - wl0) o+ 6100 - dute + )
pl(t) andv; () = v](t), respectively. Lé
(A3) There exists a positive unknown constapt such that Pl (t)? G T 5 j T ;
s(t)] < sp forall t € {0.1,---, N}, j > 1. P [0/ 1) + e+ 1)] = 75l

(A4) There exists a positive known constapff such that
lp ()] < pf forallt € {0,1,--- N +1},j > 1.
(A5) Let traffic density tracking errors be defined&$t) =

(6 — 6/(t)) " &/ (1) + <LT - wf(t)) r] (1) + 67,(1)

pl(t) — pl,;(t). The initial traffic density tracking errors ®)
at each iteratiore] (0) are bounded. where
) ) T .
8.t = €et)— —sl(t
I1l. THE Fuzzy-NEURAL AILC nil®) (1) 6Li (1)
In order to find the approach for controller design later, t e [Qf(t)T@(t) — phi(t+ 1)}(6)
we first derive the traffic density tracking error equation as: +i ()
_ _ _ _ _ T It is clear thaty] ,(¢) can be shown to be bounded B (t)
cit+1) = fili(8), i (), pi(8), v (1)) + T-ri(t)  as follows:
T . , A 5 , , ,
— —s/(t) — pl(t +1 @) 16, < |————= |0/t P(t) - pl(t+1
PRORYAUEEY O < S BT PO = e+ 1)
In order to overcome the design problem due to un- i T ;
known nonlinear functionf;(p!_,(t),v]_,(t), pl(t), v (1)) el )’ + fisi( )
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< 9;*(| Qf (t)| +1) @) 9{ (t)—6;. Then itis easy to show, by subtracting the optimal
~control gains on both sides of (10)-(12), that

where 07, i = 1,2,---,n are some unknown positive
constants. In order to overcome the uncertadjtyt) in (7), 0/ (t)
we now define an auxiliary errar,. (¢ + 1) of the ith traffic o Bred (t+1) B9 (t)
flow subsystem as = O/t LA . 5

| L+ [ @) + [0 + (|67 ()] +1)

J

I (E41) = (1) — (¢ + sat [ EETY (13)
eg(t+1)=e(t+1)—¢i(t+1) <¢§(t+1) (8) J{“(t)
. J J

for t € {0,1,2,---,N}. We don't definee;,;(0) of the = Y1) 526¢i<t+21)ri ®) ‘ .
ith traffic flow subsystem since it will not be utilized in L+ |21 + [ (0)|] + (]6] ()] +1)

our design of controller and adaptive laws. In (83t is (14)
the saturation function defined as in [10] anfi(t + 1) is AR

the width of the time-varying boundary layer for thith (t+ 1) QJ 1
traffic flow subsystem which is to be designed later. It is _ 0 ﬁ3|e¢z +DI(] )’4’ )

noted thatefm(t + 1) of the ith traffic flow subsystem which ' 1+ ‘@a | + 17’1' | + (| o/ (t)[ + 1)2
can be defined as in [10] and it can be easily shown that (15)

i el (t41)
eyt + 1)sat (¢f(t+1)) |e¢l (t+1)],Vj>1.

Next, the time-varying boundary layer for thith traffic

Now we are ready to state the main results in the following

. ) theorem.
fl bsyst Il be d d as follows:
oW subsystem Wil be designed as Tollows Main Theorem. Consider the traffic flow systems in (1)
¢J (t+1) = gﬂ (|@J )| + 1) (9) satisfying the assumptions (Al)-(A5). If the fuzzy-neural

) AILC is designed as in (4), (8), (10), (11) and (12) with
whered! (t) is a parameter of thih boundary to be updatedadaptive laws (10), (11) and (12) for thith freeway traffic

later. In this AILC, 6/ (t), ¥!(t) in (4) and #/(t) in (9) flow subsystem and the following condition can be satisfied:
are designed to compensate the unknown optimal consequent

parameter vector®);, input gains7- and 9;, respectively. 2—p1—p2— B3>0, (16)
The adaptive laws fo®; (¢), v/ (t) and#’ (t) at (next);j + 1th

. . . then the tracking performance and system stability will be
iteration are given as follows :

guaranteed as follows:

67 (1) (t1) The adjustable paramete® (¢), v/ (t), 6/ (t) and con-
, ﬁleé (t +1)®7(t) trol inputsr (¢t) are boundedt e {0, L,---,N},j>1
= O/(t)+ r 5 (t2) The auxiliary traffic density tracking erroe§, (t+1) are
1+ | | + | | - (|9i (t)| - 1210) boundedvt € {0,1,---,N},j > 1 andlim;_, eéi(ﬂ—
™ 1)=0,vte{0,1,---,N}
V() (t3) The traffic density tracking errer, (¢ + 1) are bounded
W+ ﬁ2eéi(t+1)7”g(t) vt € {0,1,---,N}, 7 >1 andhmjHOO lel(t +1)] <
= , , : 02°(t) (|62°(t)| + 1), ¥Vt € {0,1,---, N
0 e SO OIS Ol +D.vee J
o +1( ) (1) (t1) Define the cost functions of performance as follows
. t
¢ . 1 ~. - 1 ~. 1~
j Bslep,(t+ DI(|6] ()] +1) Vi) = B*Qf(t)TQZ(t) + 5*11)3@)2 + g@"(t)2
- ;i - 1 2 3
L2 (0" + [ @) + (|67 0)] +1)°
(12)

Then, the difference betweev’*1(¢) and V7 (t) can be
for t € {0,1,2,---,N}, where 31, 0,,0; > 0 are the derived as follows :

adaptation gains. For the first iteration, we sgt(t) = 6} Vj“(t) Vi

and ¢} (t) = ¢} to be any constant vector and constant, : Y

respectively.} (t) = 6! > 0 vt € {0,1,2,---,N} to be _ 1 (é?+1(t)Té?+1(t) — ég(t)Téij(t))
a small fixed valuevt € {0,1,2,---,N}. It is noted that 51
0!(t) > 0,vt € {0,1,2,---,N} andVj > 1. Furthermore, (WH( )2 {/;{(t)z)
we will choose!(t) = ' as a nonzero constant in order 52
to prevent the controller (4) from being a zero input in the +7 (§j+1(t)2 _g (t)2>
beginning of the learning process. A Y
2], (t+1)8) ()T ¥4 (1)
IV. ANALYSIS OF STABILITY AND CONVERGENCE 1 ’@j(t)|2+ ]r{(t)|2+ (|67 ()] +1)2
In this section, we will analyze the closed loop stability 51631‘%(15 + 1)2|q§j(t)|2
and learning convergence. At first, define the parameter errors + N A ‘ N 2
as O/(t) = 6/(t) — 6F, 0i(t) = vi(t) - L, 0l(t) = (1+ @@ + [ + (/] +1)?)
ISBN: 978-988-19253-8-1 IMECS 2016
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2¢),,(t + 1) (t)r (t)
)+ @) + (|6 t)

Baeli(t+ 1) |rl(t)

+
1+ | @it 6] +1)°

2

+ 2 2\ 2
(1+]¢J W+ + (|6 ]+1))
2lel, (t+1 )167(1) (|67 (1)) + 1)
L |21 + [0l + (18l o] +1)°
N ﬂ3eéi(t+1) (|e/ t)|—i—1)2
(1+|q§j(t)’2+|r§'(t)|2+(\93'(t)|+1)2)2
17)
Since (5) can be rewritten as
OL(t)T &7 (t) + ¢ ()] (t) = —el (t+1) + 67,(t)  (18)

This implies that
t+ VBB (1) + et + DI O ()

= —ej(t+ el (t+1) +e),(t+1)d7,(t) (19)

Substituting (19) into (17), we have
VI () - V(1)
—2e] (t + 1)el,;(t + 1) + 2€,,(t + 1)57 ,(t)
L@ ()] + [ ) + (|67 ()] +1)°

Bl (t+1)?| @7 (t)|”

(1|8 + [0 + (/] +1)°)
’2

+

Bacl (t +1)%|r] (¢)
(1+ 183 (6)|* + [+ (1)] + (|07 (1)] +1)2)2
2\e¢l(t+1 )67 (1)(|67(1)] + 1)
1+ |@i())* + [ ()] + (|67 (1) + 1)
Bsel,(t+1)2(|6 ()] +1)°
(1+ @] + [ + (J6/®) +1)2)2
(20)

+

+

If we substitue (8) into (20) and using the fact tlrtiigi(t) <
07 (|67 (t)| +1) in (7), we can derive that

VI () - V(1)
—2¢},(t+1)°
1+ |@i ()] + |[r ()] + (|6] ()] +1)*
2lel, (t+ 1)|67 (1) (| €7 (1)] + 1)
1@ [ OF + (6] +1)°
2lel,; (t+1)105 (|67 (1) + 1)
L+ | @) + [ ()] + (|67 (1) + 1)
2Jel (¢ + 1)8() (|61 0)] + 1)
L+ | @ + [ O + (16! @) +1)°
. Bl (t+1)?| @7 (t)|”

(1+ @@ + @)+ (|6 0] + 1)2)2
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ot + 12| 0)]
(14 |0 + [0 + (6! 0] +1)°)
ﬁ:seii(t—i— 1)2
(1+ @@ + @+ (|6 0] + 1)2)2
—(2-p1— 02— ﬂ?,)@éi(t +1)3
L+ | @) + [r ()] + (|67 (t)| + 1)

+

+

(21)

If we chooses,, 3, andg3s such that = 2—3,—6>,— (33 > 0,
then we have

ARGERA)
—kej, t+1)2
NP m( 2 : j 7 < (22)
L+ i)+ [rl0)|" + (|67 ()] +1)
for j > 1. SinceV'}(t) is boundedvt € {0,1,2,---, N} due

to O'(t) = O'(t) - 6] = 8} — 67, ¥ (1) = ' (1) — - =
Pt —F andgl( t) = 0}(t) — 67 = 6} — 67 are bounded
vt €{0,1,2,---, N}, we conclude that from (22) that’ (),
and henced? (t), W( ) andé (t), are bounded/j > 1. The
boundedness aof/ (¢) is then guaranteed by using (4). This
proves(tl) of the main theorem.

(t2) By summing (22) froml to j leads to

—kel,;(t +1)2
0"+ (16 (1)

0] + I [+1)°

SinceV;}(t) is bounded and’7(¢) must be nonnegative, we
have

e;i(t +1)2
“+ (6

lim — . 5
imeo 14 [ @i(t)]” + |l (¢)] )| +1)
vt € {0,1,2,---,N}. Since 1 + |@1(t)]" + |[rI(1)]" +
(|6t \ + 1 2 are bounded for allj > 1 and ¢ <

{0, 1, N} this readily implies thafim;_. em(t +

1)2 70

(t3) The boundedness of/ (t + 1) at each iteration over
{0,1,2,---, N} can be concluded from (8) becauskt+1)

is bounded This implies that the bound @F (¢ + 1) will
satisfy lim; o, [e] (t + 1)| = |e°(t + 1)| < ¢°(t + 1) =
0°(t) (]O=(t)| +1), V t € {0,1,2,---,N}. This proves
(t3) of the main theorem. Q.E.D.
Remark 1 : According to (t3) of the main theorem, it is
necessary to prevent the boundary layers to be large values in
the learning process. Hence we usually set the initial values
of #} and the adaptation gaifl in (12) as small constants.
This implies thatd! (¢)(|10;] (t)| + 1),t € {0,1,---, N} will
remain in a reasonable small value for Al 1.

Remark 2 : In our early work [10], the design of adaptation
gain is dependent of the upper bound of the input gain
function. However, in this proposed controller, the upper
bounds of input galn% are not necessary for our fuzzy
neural AILC design. In other words, the convergent condition
in 16 is less restricted than that given in our previous work
[10].
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V. SIMULATION EXAMPLE
In this section, we apply the proposed AILC for an — Exiting flow in of-ramp 4

400 Traffic demand in on-ramp 7 —

unknown long segment of a single lane freeway in [5], [6], .,
[7] which is subdivided into 12 sections. The difference ,,

equation of theith traffic flow subsystem of a single lane | / i
freeway with one on-ramp and one off-ramp is given as | ‘

I I I I I I I
0 50 100 150 200 250 300 350 400 450 500

follows,
P+ = A0+ T [da0-d0+io-0] -
20 = A : f
A1) = W0+ [Vl H) - R 0] * : |
+ A0 [0 - )] ; ; ; |

3

o = N w
T
I

:

V(A®) = e 1—[”“”1

-2

where p!(t), v} (t), ¢! (t),r](t),s](t) are respectively the — -

J I I I I I I I I
% 50 99 148 197 246 295 344 393 442 491

traffic density, space mean speed, traffic flow, on-ramp

traffic volume, off-ramp traffic volume; = 1,---,12. - @
Here, the iterative-varying desired traffic density trajectory | .
of the ith traffic flow subsystem is chosen ag,.(t) = oasl ,

254 0.1sin(27j/5)veh/km. In this simulation, we select the ,,| |
length of theith section, the sampling period, the free speed .|
and maximum possible density per lane to be= 0.5km, sl i
T = 15/3600h, vge. = 80km/h and pjam = 80veh/km a5 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
respectively. The freeway traffic flow system parameters e
0.01h, v = 35km?/h, k = 13veh/km,l = 1.8, m =1.7€ R

are respectively the street geometry, vehicle CharaCte”St'égcymptoticalconvergence proves the technical result given

drivers’ behaviors, etc.. Besides, we assume that the traffi (t2) of the main theorem. Because the learning process

];Ir?(\)/\r/eent:ween?ngi]titgletrfgf?itcssgggirt] kér(fc? s: ;igor\;eer;/:;:légzegf t'hsealmost completed at the 5th iteration, the traffic density
' y b b errors of the7th sectione3(t) is shown in Figure 1(c) to

:Petr::ézélr?wa;gl()os;/ s'iem2;\ ti?f?;”g?ﬂg;; /g?\fgh'/fnrqatlogrove the result itft3) of the main theorem. It is clear that the

. i 5 icfine__ N5 5 < 5 <
v!(0) = 66.619+ 0.3 sin(27;j/5)km/h, respectively. The off- trfjectoryB Ofcy () satisfies 97(t)(|.97 (?)’ +1) < e(t) <
ramp traffic volume of theith section iss’ () — 0 for 62(0)(| O7()| +1), £ € {1, -, 500} in Figure 1 (c). In order
i=1...35 12 and the off-ramp tréﬁ‘ic volume of to verify the nice traffic density tracking performance at the

TN g 5th iteration, we show the relation between traffic densit
the 4th sections)(¢) is shown in Figure 1(a). The control 5 y

objective is to make the traffic density/(t) of the ith p3(t) and desired traffic density trajectopy,(f) in Figure

. . 1 (d) fort € {0,1,2,---,500}. To see the control behavior
traffic flow subsystem to track as close as possible tlgﬁ( ) €1{0,1,2,- -+, 500}

I ; . . . . ; at p2(t) is close top?-(t) for t € {0,1,2,---,500} except
des're‘i 'tera“"e"iary'”g waffic densiy trajecton, (1) for e 1 ffty e e, the 'frajectories bet%Neﬁ?(t)
allt € {1,---,500}. In order to achieve the control objective, 5 A
the fuzzy-neural discrete AILC in (4), (8), (10), (11), ancﬁnd pa7(t) are shown again in Figure 1 (€) only for the

X . . ) me sequence € {0,1,2,---,100}. It is clear thatp3(t)
(12) is applied with the design parametgis = 0.9499, 5 > Finally. Ei 1 h
By = 0.9499. 5 — 0.0001 SO thatk = 2 — B — By — s — converges tg),(t) after¢ > 50. Finally, Figure 1(f) shows

0.1. Furthermore, we sef — 0.00001 in (4) and the the bounded learned control inpu}(t) for the 7th traffic

L — . flow subsystem.
initial control parameters at the first iteration are chosen as

OLt) = 0} =10.5,0.5,0.5,0.5,0.5] T, ¥}(t) = ¥} = 0.1

and 0}(t) = 6} = 1.5, i = 1,---,12, respectively. In

the following, we only investigate the learning performance A discrete fuzzy neural AILC is proposed in this paper
of the 7th traffic flow subsystem due to the limitations orfor repeatable traffic flow systems with initial resetting traffic
length of the paper. In order to verify the robustness agairtinsity errors, iteration-varying desired trajectories and ran-
iteration-varying initial resetting traffic density erroz$(0) dom off-ramp traffic volumes. We first derive a tracking error
and the bounded off-ramp traffic volume$(t) of the 7th  model to establish the main control structure. The MIMO
traffic flow subsystem, we shomax;c (1 ... 500y €7 (t)| with  FNN is applied in the main structure to compensate for the
respective to iteratiorj in Figure 1 (b). It implies that the lumped uncertainties from unknown system nonlinearities.

VI. CONCLUSION
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Fig. 1. (a) s3(t) versus timet; (b)max;cy1.... 500} |e(]b7 ()| ver-

sus control iterationj; (c)e3(¢) (solid line) and 9§(t)(|@$(t)’ +
1),—9?(75)(’ 6§(t)‘ + 1) (dotted lines) versus timee {1,2,---,500};
(d)p3(t) (solid line) and pfj'”(t) (dotted line) versus timet &
{0,1,---,500} at the 5th control iteration; (p?(t) (0 00) and pfg(t)

(- - ) versus timet € {0,1,---,100} at the 5th control iteration; (fp (t)
versus timet.

For further compensation of the lumped uncertainties in-
duced by function approximation errors and random off-ramp
traffic volumes of the freeway, a dead-zone like auxiliary
traffic density error functions with time-varying boundaries
are then constructed. By the auxiliary traffic density error
functions, the adaptive laws for the control parameters and
time-varying boundary layer are designed to guarantee the
closed-loop stability and learning error convergence. Based
on a Lyapunov like analysis, we show that all adjustable
parameters and the internal signals remain bounded and the
traffic density tracking errors asymptotically converge to a
residual set whose size depends on the width of boundary
layer as iteration goes to infinity.
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