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Abstract—In this paper, a fuzzy-neural adaptive iterative
learning control (AILC) is proposed for traffic flow systems
of a single lane freeway with random bounded off-ramp traffic
volumes. It is assumed that the system dynamic functions and
input gains are unknown for controller design. An adaptive
fuzzy neural network (FNN) controller and an adaptive robust
controller are applied to compensate for the unknown system
nonlinearity and input gain respectively. On the other hand,
to deal with the disturbance from random bounded off-ramp
traffic volumes, a dead zone like auxiliary error with the
time-varying boundary layer is introduced as a bounding
parameter. This proposed auxiliary error is also utilized for
the construction of adaptive laws without using the bound of
the input gain for all the adaptation parameters. The traffic
density tracking error is shown to converge along the axis of
learning iteration to a residual set whose level of magnitude
depends on the width of boundary layer.

Index Terms—fuzzy neural network, adaptive iterative learn-
ing control, traffic flow systems, random bounded off-ramp
traffic volumes.

I. I NTRODUCTION

I T is well-known that the traffic congestions on freeways
are one of the main traffic problems in Taiwan. The

freeway ramp metering [1] is one of the most typical control
approaches to adjust the traffic flow of freeway. Besides, the
PID-type control in [2], neural network control in [3], and
optimal control in [4] are also some popular control method-
ologies in the research field of freeway ramp metering. The
authors in [1], which is a good review of recent freeway
ramp metering, have commented that the freeway ramp
metering can be further divided into three classes of control
strategies: 1. fixed-time ramp metering control, 2. local ramp
metering control, 3. system ramp metering control. In the
local ramp metering control strategies, ALINEA local ramp
metering has been widely applied in the freeway traffic flow
systems for a long period of time. In fact, ALINEA local
ramp metering is a traditional PI-type controller which is
not suitable for dealing with highly nonlinear systems with
uncertainties. In addition, since very few strict mathematical
analysis can be applied to design the controller gains of
ALINEA local ramp metering, the system stability can not
be guaranteed by ALINEA local ramp metering.

On the other hand, high repeatabilities often exist in the
freeway traffic flow systems. For example, traffic congestions
on the same freeway always repetitively appear in the same
peak time interval from 7 to 9 AM every Monday. Unfor-
tunately, the aforementioned freeway ramp metering control
strategies are typical time-domain control approaches which
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do not consider the repetitive characteristics of freeway traffic
flow systems for the design of ramp metering controller. This
implies that these existing freeway ramp metering control
approaches are not suitable to perform a repeated traffic
control task for traffic flow systems. Recently, traditional
discrete iterative learning control (ILC) schemes have been
successfully applied for freeway traffic flow systems [5], [6],
[7] with a repetitive task over a finite time interval. However,
it is assumed that the system nonlinearities satisfy global
Lipschitz continuous condition.

In this paper, the repetitive tracking control problem of
traffic flow systems of a single lane freeway with random
bounded off-ramp traffic volumes is studied. We consider a
more general case in the sense that the system nonlinearities
and system parameters are allowed to be unknown. An
adaptive fuzzy neural network (FNN) controller and an
adaptive robust controller are applied to compensate for the
unknown system nonlinearity and input gain respectively. On
the other hand, to deal with the disturbance from random
bounded off-ramp traffic volumes, a dead zone like auxiliary
error with the time-varying boundary layer is introduced as
a bounding parameter. This proposed auxiliary error is also
utilized for the construction of adaptive laws without using
the bound of the input gain for all the adaptation parameters.
The traffic density tracking error is shown to converge along
the axis of learning iteration to a residual set whose level of
magnitude depends on the width of boundary layer.

This paper is organized as follows. In section II, a problem
formulation is given. The discrete AILC is then presented in
section III. Based on the proposed AILC and a derived traffic
density tracking error model, the analysis of closed-loop
stability and learning performance will be studied extensively
in Section IV. A simulation example is given in Section V
to demonstrate the effectiveness of the proposed learning
controller. Finally a conclusion is made in Section VI.

II. PROBLEM FORMULATION

In this paper, we consider an uncertain traffic flow system
[8] for a single lane freeway withn sections which can
perform a given task repeatedly over a finite time sequence
t ∈ {0, 1, 2, · · · , N}. The traffic flow system for a single
lane freeway with one on-ramp and one off-ramp in theith
section,i = 1, · · · , n is represented as follows:

ρj
i (t + 1) = fi(q

j
i−1(t), ρ

j
i (t), q

j
i (t)) +

T

Li

(
rj
i (t)− sj

i (t)
)

qj
i (t) = ρj

i (t)ν
j
i (t)

νj
i (t + 1) = gi(ν

j
i−1(t), ρ

j
i (t), ν

j
i (t), ρj

i+1(t + 1)) (1)

where j and t denote the index of iteration and time,i
is the ith section of a single lane freeway,n is the total
number of sections,ρj

i (t) ∈ R is the traffic density in the
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ith section (in vehicles per lane per kilometer),νj
i (t) ∈ R

is the space mean speed in theith section (in kilometers per
hour),qj

i (t) ∈ R is the traffic flow leaving theith section and
entering thei+1th section (in vehicles per hour),rj

i (t) ∈ R
is the on-ramp traffic volume in theith section (in vehicles
per hour),sj

i (t) ∈ R is the off-ramp traffic volume of the
ith section (in vehicles per hour) considered to be an un-
known random bounded disturbance,fi(q

j
i−1(t), ρ

j
i (t), q

j
i (t))

and gi(ν
j
i−1(t), ρ

j
i (t), ν

j
i (t), ρj

i+1(t + 1)) are unknown real
continuous nonlinear functions ofνj

i−1(t), qj
i−1(t), ρj

i (t),
νj

i (t), qj
i (t), ρj

i+1(t+1). Based on (1), theith freeway traffic
flow subsystem can be rewritten as follows:

ρj
i (t + 1)

= fi(ρ
j
i−1(t), ν

j
i−1(t), ρ

j
i (t), ν

j
i (t)) +

T

Li

(
rj
i (t)− sj

i (t)
)

(2)

Now, given a specified iteration-varying desired traffic den-
sity trajectory of theith freeway traffic flow subsystem
ρj

di(t) ∈ R, t ∈ {0, 1, 2, · · · , N + 1}, the control objective
is to design an AILC to adjust the on-ramp traffic volume
rj
i (t) such that the traffic densityρj

i (t) can follow ρj
di(t)

as close as possible∀t ∈ {1, 2, · · · , N + 1} when iterationj
approaches infinity. In order to achieve this control objective,
some assumptions on the freeway traffic flow system and
desired traffic density trajectories are given as follows:

(A1) The freeway traffic flow system is a relaxed system
whose on-ramp traffic volumesrj

i (t), traffic densities
ρj

i (t), space mean speedsνj
i (t) and traffic flowsqj

i (t)
are related byρj

i (t) = 0, νj
i (t) = 0 and qj

i (t) = 0,
t < 0.

(A2) The traffic flow rate entering the first section isqj
0(t) and

the mean speed of the traffic entering the first section is
assumed to be the mean speed in the first section, i.e.,
νj
0(t) = νj

1(t). We also assume that the mean speed and
traffic density of the traffic exiting then + 1th section
are assumed to be those innth section, i.e.,νj

n+1(t) =
νj

n(t), ρj
n+1(t) = ρj

n(t). The boundary conditions can

be defined asρj
0(t) ≡ qj

0(t)

νj
1(t)

, νj
0(t) ≡ νj

1(t), ρj
n+1(t) ≡

ρj
n(t) andνj

n+1(t) ≡ νj
n(t), respectively.

(A3) There exists a positive unknown constantsU such that
|sj

i (t)| ≤ sU for all t ∈ {0, 1, · · · , N}, j ≥ 1.
(A4) There exists a positive known constantρU

d such that
|ρj

di(t)| ≤ ρU
d for all t ∈ {0, 1, · · · , N + 1}, j ≥ 1.

(A5) Let traffic density tracking errors be defined asej
i (t) =

ρj
i (t)− ρj

di(t). The initial traffic density tracking errors
at each iterationej

i (0) are bounded.

III. T HE FUZZY-NEURAL AILC

In order to find the approach for controller design later,
we first derive the traffic density tracking error equation as:

ej
i (t + 1) = fi(ρ

j
i−1(t), ν

j
i−1(t), ρ

j
i (t), ν

j
i (t)) +

T

Li
rj
i (t)

− T

Li
sj

i (t)− ρj
di(t + 1) (3)

In order to overcome the design problem due to un-
known nonlinear functionfi(ρ

j
i−1(t), ν

j
i−1(t), ρ

j
i (t), ν

j
i (t))

of the ith traffic flow subsystem, we apply the univer-
sal approximation technique to construct the basic struc-
ture of our AILC. An MIMO FNN [9] described by
Θj(t)>Φ(ρj

i−1(t), ν
j
i−1(t), ρ

j
i (t), ν

j
i (t)) is utilized as the

approximators of fi(ρ
j
i−1(t), ν

j
i−1(t), ρ

j
i (t), ν

j
i (t)), i =

1, 2, · · · , n. Here Φ(ρj
i−1(t), ν

j
i−1(t), ρ

j
i (t), ν

j
i (t)) ∈ RM×1

is the radial basis function vector in the rule layer of the
MIMO FNN with M being the number of rules,Θj(t) ∈
RM×n is the output weight matrix of the output layer with
Θj

i (t) ∈ RM×1 being theith output weight vector. In other
words, Θj

i (t)>Φ(ρj
i−1(t), ν

j
i−1(t), ρ

j
i (t), ν

j
i (t)) denotes the

ith output of the MIMO FNN. In this work, we use the
ith output of the MIMO FNN to uniformly approximate the
nonlinear functionfi(ρ

j
i−1(t), ν

j
i−1(t), ρ

j
i (t), ν

j
i (t)) of theith

traffic flow subsystem on a compact setAc ⊂ R4×1. An
important aspect of the above approximation property is that
there exist an optimal parameter vectorΘ∗

i for the ith output
of the MIMO FNN such that the function approximation
error εi(ρ

j
i−1(t), ν

j
i−1(t), ρ

j
i (t), ν

j
i (t)) between theith out-

put of the optimal FNNΘ∗>
i Φi(t) and nonlinear function

fi(ρ
j
i−1(t), ν

j
i−1(t), ρ

j
i (t), ν

j
i (t)) can be bounded by pre-

scribed constantsε∗i on the compact setAc. More precisely, if
we defineΦj(t) ≡ Φi(ρ

j
i−1(t), ν

j
i−1(t), ρ

j
i (t), ν

j
i (t)) and the

εj
i (t) ≡ εi(ρ

j
i−1(t), ν

j
i−1(t), ρ

j
i (t), ν

j
i (t)) for simplicity, then

we have fi(ρ
j
i−1(t), ν

j
i−1(t), ρ

j
i (t), ν

j
i (t)) = Θ∗>

i Φi(t) +
εj
i (t) and |εj

i (t)| ≤ ε∗i , ∀(ρj
i−1(t), ν

j
i−1(t), ρ

j
i (t), ν

j
i (t)) ∈

Ac.
Based on the traffic density tracking error equation in (3)

and theith output of the MIMO FNN, we propose the fuzzy-
neural AILC for theith freeway traffic flow subsystem (2)
as:

rj
i (t) =

ψj
i (t)

δ + ψj
i (t)2

[
−Θj

i (t)>Φj(t) + ρj
di(t + 1)

]
(4)

whereδ > 0. To further see the insight of the proposed AILC
(4), we substitute (4) into (3) and find that

ej
i (t + 1)
= fi(ρ

j
i−1(t), ν

j
i−1(t), ρ

j
i (t), ν

j
i (t))−Θj

i (t)>Φj(t)

+
(

T

Li
− ψj

i (t)
)

rj
i (t) + Θj

i (t)>Φj(t)− ρj
di(t + 1)

+
ψj

i (t)
2

δ + ψj
i (t)2

[
−Θj

i (t)>Φj(t) + ρj
di(t + 1)

]
− T

Li
sj

i (t)

=
(
Θ∗

i −Θj
i (t)

)>Φj(t) +
(

T

Li
− ψj

i (t)
)

rj
i (t) + δj

Li(t)

(5)

where

δj
Li(t) = εj

i (t)−
T

Li
sj

i (t)

+
δ

δ + ψj
i (t)2

[
Θj

i (t)>Φj(t)− ρj
di(t + 1)

]
(6)

It is clear thatδj
Li(t) can be shown to be bounded byΘj

i (t)
as follows:

|δj
Li(t)| ≤

∣∣∣∣∣
δ

δ + ψj
i (t)2

[
Θj

i (t)>Φj(t)− ρj
di(t + 1)

]∣∣∣∣∣

+
∣∣∣εj

i (t)
∣∣∣ +

∣∣∣∣
T

Li
sj

i (t)
∣∣∣∣
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≤ θ∗i
(∣∣Θj

i (t)
∣∣ + 1

)
(7)

where θ∗i , i = 1, 2, · · · , n are some unknown positive
constants. In order to overcome the uncertaintyδj

Li(t) in (7),
we now define an auxiliary errorej

φi(t + 1) of the ith traffic
flow subsystem as

ej
φi(t + 1) = ej

i (t + 1)− φj
i (t + 1)sat

(
ej
i (t + 1)

φj
i (t + 1)

)
(8)

for t ∈ {0, 1, 2, · · · , N}. We don’t defineej
φi(0) of the

ith traffic flow subsystem since it will not be utilized in
our design of controller and adaptive laws. In (8),sat is
the saturation function defined as in [10] andφj

i (t + 1) is
the width of the time-varying boundary layer for theith
traffic flow subsystem which is to be designed later. It is
noted thatej

φi(t + 1) of the ith traffic flow subsystem which
can be defined as in [10] and it can be easily shown that

ej
φi(t + 1)sat

(
ej

i
(t+1)

φj
i
(t+1)

)
= |ej

φi(t + 1)|, ∀j ≥ 1.

Next, the time-varying boundary layer for theith traffic
flow subsystem will be designed as follows:

φj
i (t + 1) = θj

i (t)
(∣∣Θj

i (t)
∣∣ + 1

)
(9)

whereθj
i (t) is a parameter of theith boundary to be updated

later. In this AILC, Θj
i (t), ψj

i (t) in (4) and θj
i (t) in (9)

are designed to compensate the unknown optimal consequent
parameter vectorsΘ∗

i , input gains T
Li

and θ∗i , respectively.
The adaptive laws forΘj

i (t), ψj
i (t) andθj

i (t) at (next)j+1th
iteration are given as follows :

Θj+1
i (t)

= Θj
i (t) +

β1e
j
φi(t + 1)Φj(t)

1 +
∣∣Φj(t)

∣∣2 +
∣∣rj

i (t)
∣∣2 +

(∣∣Θj
i (t)

∣∣ + 1
)2

(10)

ψj+1
i (t)

= ψj
i (t) +

β2e
j
φi(t + 1)rj

i (t)

1 +
∣∣Φj(t)

∣∣2 +
∣∣rj

i (t)
∣∣2 +

(∣∣Θj
i (t)

∣∣ + 1
)2

(11)

θj+1
i (t)

= θj
i (t) +

β3|ej
φi(t + 1)|(∣∣Θj

i (t)
∣∣ + 1

)

1 +
∣∣Φj(t)

∣∣2 +
∣∣rj

i (t)
∣∣2 +

(∣∣Θj
i (t)

∣∣ + 1
)2

(12)

for t ∈ {0, 1, 2, · · · , N}, where β1, β2, β3 > 0 are the
adaptation gains. For the first iteration, we setΘ1

i (t) = Θ1
i

and ψ1
i (t) = ψ1

i to be any constant vector and constant,
respectively.θ1

i (t) = θ1
i > 0 ∀t ∈ {0, 1, 2, · · · , N} to be

a small fixed value∀t ∈ {0, 1, 2, · · · , N}. It is noted that
θj

i (t) > 0, ∀t ∈ {0, 1, 2, · · · , N} and ∀j ≥ 1. Furthermore,
we will chooseψ1(t) = ψ1 as a nonzero constant in order
to prevent the controller (4) from being a zero input in the
beginning of the learning process.

IV. A NALYSIS OF STABILITY AND CONVERGENCE

In this section, we will analyze the closed loop stability
and learning convergence. At first, define the parameter errors
as Θ̃j

i (t) = Θj
i (t) − Θ∗

i , θ̃j
g(t) = ψj

i (t) − T
Li

, θ̃j
i (t) =

θj
i (t)−θ∗i . Then it is easy to show, by subtracting the optimal

control gains on both sides of (10)-(12), that

Θ̃j+1
i (t)

= Θ̃j
i (t) +

β1e
j
φi(t + 1)Φj(t)

1 +
∣∣Φj(t)

∣∣2 +
∣∣rj

i (t)
∣∣2 +

(∣∣Θj
i (t)

∣∣ + 1
)2

(13)

ψ̃j+1
i (t)

= ψ̃j
i (t) +

β2e
j
φi(t + 1)rj

i (t)

1 +
∣∣Φj(t)

∣∣2 +
∣∣rj

i (t)
∣∣2 +

(∣∣Θj
i (t)

∣∣ + 1
)2

(14)

θ̃j+1
i (t)

= θ̃j
i (t) +

β3|ej
φi(t + 1)|(∣∣Θj

i (t)
∣∣ + 1

)

1 +
∣∣Φj(t)

∣∣2 +
∣∣rj

i (t)
∣∣2 +

(∣∣Θj
i (t)

∣∣ + 1
)2

(15)

Now we are ready to state the main results in the following
theorem.
Main Theorem. Consider the traffic flow systems in (1)
satisfying the assumptions (A1)-(A5). If the fuzzy-neural
AILC is designed as in (4), (8), (10), (11) and (12) with
adaptive laws (10), (11) and (12) for theith freeway traffic
flow subsystem and the following condition can be satisfied:

2− β1 − β2 − β3 > 0, (16)

then the tracking performance and system stability will be
guaranteed as follows:

(t1) The adjustable parametersΘj
i (t), ψj

i (t), θj
i (t) and con-

trol inputsrj
i (t) are bounded∀t ∈ {0, 1, · · · , N}, j ≥ 1.

(t2) The auxiliary traffic density tracking errorsej
φi(t+1) are

bounded∀t ∈ {0, 1, · · · , N}, j ≥ 1 andlimj→∞ ej
φi(t+

1) = 0, ∀t ∈ {0, 1, · · · , N}
(t3) The traffic density tracking errorej

i (t + 1) are bounded
∀t ∈ {0, 1, · · · , N}, j ≥ 1 and limj→∞ |ej

i (t + 1)| ≤
θ∞i (t) (|Θ∞

i (t)|+ 1), ∀t ∈ {0, 1, · · · , N}
Proof :
(t1) Define the cost functions of performance as follows

V j
i (t) =

1
β1

Θ̃j
i (t)>Θ̃j

i (t) +
1
β2

ψ̃j
i (t)

2 +
1
β3

θ̃j
i (t)

2

Then, the difference betweenV j+1(t) and V j(t) can be
derived as follows :

V j+1
i (t)− V j

i (t)

=
1
β1

(
Θ̃j+1

i (t)>Θ̃j+1
i (t)− Θ̃j

i (t)>Θ̃j
i (t)

)

+
1
β2

(
ψ̃j+1

i (t)2 − ψ̃j
i (t)

2
)

+
1
β3

(
θ̃j+1

i (t)2 − θ̃j
i (t)

2
)

=
2ej

φi(t + 1)Θ̃j
i (t)>Φj(t)

1 +
∣∣Φj(t)

∣∣2 +
∣∣rj

i (t)
∣∣2 +

(∣∣Θj
i (t)

∣∣ + 1
)2

+
β1e

j
φi(t + 1)2

∣∣Φj(t)
∣∣2

(
1 +

∣∣Φj(t)
∣∣2 +

∣∣rj
i (t)

∣∣2 +
(∣∣Θj

i (t)
∣∣ + 1

)2
)2
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+
2ej

φi(t + 1)ψ̃j
i (t)r

j
i (t)

1 +
∣∣Φj(t)

∣∣2 +
∣∣rj

i (t)
∣∣2 +

(∣∣Θj
i (t)

∣∣ + 1
)2

+
β2e

j
φi(t + 1)2

∣∣∣rj
i (t)

∣∣∣
2

(
1 +

∣∣Φj(t)
∣∣2 +

∣∣rj
i (t)

∣∣2 +
(∣∣Θj

i (t)
∣∣ + 1

)2
)2

+
2|ej

φi(t + 1)|θ̃j
i (t)

(∣∣Θj
i (t)

∣∣ + 1
)

1 +
∣∣Φj(t)

∣∣2 +
∣∣rj

i (t)
∣∣2 +

(∣∣Θj
i (t)

∣∣ + 1
)2

+
β3e

j
φi(t + 1)2

(∣∣Θj
i (t)

∣∣ + 1
)2

(
1 +

∣∣Φj(t)
∣∣2 +

∣∣rj
i (t)

∣∣2 +
(∣∣Θj

i (t)
∣∣ + 1

)2
)2

(17)

Since (5) can be rewritten as

Θ̃j
i (t)>Φj(t) + ψ̃j

i (t)r
j
i (t) = −ej

i (t + 1) + δj
Li(t) (18)

This implies that

ej
φi(t + 1)Θ̃j

i (t)>Φj(t) + ej
φi(t + 1)ψ̃j

i (t)r
j
i (t)

= −ej
i (t + 1)ej

φi(t + 1) + ej
φi(t + 1)δj

Li(t) (19)

Substituting (19) into (17), we have

V j+1
i (t)− V j

i (t)

≤ −2ej
i (t + 1)ej

φi(t + 1) + 2ej
φi(t + 1)δj

Li(t)

1 +
∣∣Φj(t)

∣∣2 +
∣∣rj

i (t)
∣∣2 +

(∣∣Θj
i (t)

∣∣ + 1
)2

+
β1e

j
φi(t + 1)2

∣∣Φj(t)
∣∣2

(
1 +

∣∣Φj(t)
∣∣2 +

∣∣rj
i (t)

∣∣2 +
(∣∣Θj

i (t)
∣∣ + 1

)2
)2

+
β2e

j
φi(t + 1)2

∣∣rj
i (t)

∣∣2
(
1 +

∣∣Φj(t)
∣∣2 +

∣∣rj
i (t)

∣∣2 +
(∣∣Θj

i (t)
∣∣ + 1

)2
)2

+
2|ej

φi(t + 1)|θ̃j
i (t)

(∣∣Θj
i (t)

∣∣ + 1
)

1 +
∣∣Φj(t)

∣∣2 +
∣∣rj

i (t)
∣∣2 +

(∣∣Θj
i (t)

∣∣ + 1
)2

+
β3e

j
φi(t + 1)2

(∣∣Θj
i (t)

∣∣ + 1
)2

(
1 +

∣∣Φj(t)
∣∣2 +

∣∣rj
i (t)

∣∣2 +
(∣∣Θj

i (t)
∣∣ + 1

)2
)2

(20)

If we substitue (8) into (20) and using the fact that|δj
Li(t)| ≤

θ∗i
(∣∣Θj

i (t)
∣∣ + 1

)
in (7), we can derive that

V j+1
i (t)− V j

i (t)

≤ −2ej
φi(t + 1)2

1 +
∣∣Φj(t)

∣∣2 +
∣∣rj

i (t)
∣∣2 +

(∣∣Θj
i (t)

∣∣ + 1
)2

− 2|ej
φi(t + 1)|θj

i (t)
(∣∣Θj

i (t)
∣∣ + 1

)

1 +
∣∣Φj(t)

∣∣2 +
∣∣rj

i (t)
∣∣2 +

(∣∣Θj
i (t)

∣∣ + 1
)2

+
2|ej

φi(t + 1)|θ∗i
(∣∣Θj

i (t)
∣∣ + 1

)

1 +
∣∣Φj(t)

∣∣2 +
∣∣rj

i (t)
∣∣2 +

(∣∣Θj
i (t)

∣∣ + 1
)2

+
2|ej

φi(t + 1)|θ̃j
i (t)

(∣∣Θj
i (t)

∣∣ + 1
)

1 +
∣∣Φj(t)

∣∣2 +
∣∣rj

i (t)
∣∣2 +

(∣∣Θj
i (t)

∣∣ + 1
)2

+
β1e

j
φi(t + 1)2

∣∣Φj(t)
∣∣2

(
1 +

∣∣Φj(t)
∣∣2 +

∣∣rj
i (t)

∣∣2 +
(∣∣Θj

i (t)
∣∣ + 1

)2
)2

+
β2e

j
φi(t + 1)2

∣∣∣rj
i (t)

∣∣∣
2

(
1 +

∣∣Φj(t)
∣∣2 +

∣∣rj
i (t)

∣∣2 +
(∣∣Θj

i (t)
∣∣ + 1

)2
)2

+
β3e

j
φi(t + 1)2

(
1 +

∣∣Φj(t)
∣∣2 +

∣∣rj
i (t)

∣∣2 +
(∣∣Θj

i (t)
∣∣ + 1

)2
)2

≤ −(2− β1 − β2 − β3)e
j
φi(t + 1)2

1 +
∣∣Φj(t)

∣∣2 +
∣∣rj

i (t)
∣∣2 +

(∣∣Θj
i (t)

∣∣ + 1
)2 (21)

If we chooseβ1, β2 andβ3 such thatk ≡ 2−β1−β2−β3 > 0,
then we have

V j+1
i (t)− V j

i (t)

≤ −kej
φi(t + 1)2

1 +
∣∣Φj(t)

∣∣2 +
∣∣rj

i (t)
∣∣2 +

(∣∣Θj
i (t)

∣∣ + 1
)2 ≤ 0(22)

for j ≥ 1. SinceV 1(t) is bounded∀t ∈ {0, 1, 2, · · · , N} due
to Θ̃1(t) = Θ1(t)−Θ∗

i = Θ1
i −Θ∗

i , ψ̃1(t) = ψ1(t)− T
Li

=
ψ1 − T

Li
and θ̃1

i (t) = θ1
i (t) − θ∗i = θ1

i − θ∗i are bounded
∀t ∈ {0, 1, 2, · · · , N}, we conclude that from (22) thatV j(t),
and hencẽΘj

i (t), ψ̃j
i (t) and θ̃j

i (t), are bounded∀j ≥ 1. The
boundedness ofrj

i (t) is then guaranteed by using (4). This
proves(t1) of the main theorem.
(t2) By summing (22) from1 to j leads to

V j
i (t) ≤ V 1

i (t)−
j∑

i=1

−kej
φi(t + 1)2

1 +
∣∣Φj(t)

∣∣2 +
∣∣rj

i (t)
∣∣2 +

(∣∣Θj
i (t)

∣∣ + 1
)2

SinceV 1
i (t) is bounded andV j(t) must be nonnegative, we

have

lim
j→∞

ej
φi(t + 1)2

1 +
∣∣Φj(t)

∣∣2 +
∣∣rj

i (t)
∣∣2 +

(∣∣Θj
i (t)

∣∣ + 1
)2 = 0

∀t ∈ {0, 1, 2, · · · , N}. Since 1 +
∣∣Φj(t)

∣∣2 +
∣∣rj

i (t)
∣∣2 +(∣∣Θj

i (t)
∣∣ + 1

)2
are bounded for allj ≥ 1 and t ∈

{0, 1, 2, · · · , N}, this readily implies thatlimj→∞ ej
φi(t +

1)2 = 0
(t3) The boundedness ofej

i (t + 1) at each iteration over
{0, 1, 2, · · · , N} can be concluded from (8) becauseφj

i (t+1)
is bounded. This implies that the bound ofe∞(t + 1) will
satisfy limj→∞ |ej

i (t + 1)| = |e∞i (t + 1)| ≤ φ∞i (t + 1) =
θ∞i (t) (|Θ∞

i (t)|+ 1), ∀ t ∈ {0, 1, 2, · · · , N}. This proves
(t3) of the main theorem. Q.E.D.
Remark 1 : According to (t3) of the main theorem, it is
necessary to prevent the boundary layers to be large values in
the learning process. Hence we usually set the initial values
of θ1

i and the adaptation gainβ3 in (12) as small constants.
This implies thatθj

i (t)(|Θj
i (t)| + 1), t ∈ {0, 1, · · · , N} will

remain in a reasonable small value for allj ≥ 1.
Remark 2 : In our early work [10], the design of adaptation
gain is dependent of the upper bound of the input gain
function. However, in this proposed controller, the upper
bounds of input gainsT

Li
are not necessary for our fuzzy

neural AILC design. In other words, the convergent condition
in 16 is less restricted than that given in our previous work
[10].
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V. SIMULATION EXAMPLE

In this section, we apply the proposed AILC for an
unknown long segment of a single lane freeway in [5], [6],
[7] which is subdivided into 12 sections. The difference
equation of theith traffic flow subsystem of a single lane
freeway with one on-ramp and one off-ramp is given as
follows,

ρj
i (t + 1) = ρj

i (t) +
T

Li

[
qj
i−1(t)− qj

i (t) + rj
i (t)− sj

i (t)
]

qj
i (t) = ρj

i (t)ν
j
i (t)

νj
i (t + 1) = νj

i (t) +
T

τ

[
V (ρj

i (t))− νj
i (t)

]

+
T

Li
νj

i (t)
[
νj

i−1(t)− νj
i (t)

]

− νT

τLi

[
ρj

i+1(t)− ρj
i (t)

]
[
ρj

i (t) + κ
]

V
(
ρj

i (t)
)

= νfree


1−

[
ρj

i (t)
ρjam

]l



m

where ρj
i (t), ν

j
i (t), qj

i (t), r
j
i (t), s

j
i (t) are respectively the

traffic density, space mean speed, traffic flow, on-ramp
traffic volume, off-ramp traffic volume,i = 1, · · · , 12.
Here, the iterative-varying desired traffic density trajectory
of the ith traffic flow subsystem is chosen asρj

di(t) =
25+0.1 sin(2πj/5)veh/km. In this simulation, we select the
length of theith section, the sampling period, the free speed
and maximum possible density per lane to beLi = 0.5km,
T = 15/3600h, νfree = 80km/h and ρjam = 80veh/km
respectively. The freeway traffic flow system parametersτ =
0.01h, ν = 35km2/h, κ = 13veh/km,l = 1.8, m = 1.7 ∈ R
are respectively the street geometry, vehicle characteristics,
drivers’ behaviors, etc.. Besides, we assume that the traffic
flow entering the first section isqj

0(t) = 1500veh/h. Further-
more, the initial traffic density and space mean speed of the
ith traffic flow subsystem at the beginning of each iteration
are chosen asρj

i (0) = 22.516 + 0.1 sin(2πj/5)veh/km,
νj

i (0) = 66.619+0.3 sin(2πj/5)km/h, respectively. The off-
ramp traffic volume of theith section issj

i (t) = 0 for
i = 1, · · · , 3, 5, · · · , 12 and the off-ramp traffic volume of
the 4th sectionsj

4(t) is shown in Figure 1(a). The control
objective is to make the traffic densityρj

i (t) of the ith
traffic flow subsystem to track as close as possible the
desired iterative-varying traffic density trajectoryρj

di(t) for
all t ∈ {1, · · · , 500}. In order to achieve the control objective,
the fuzzy-neural discrete AILC in (4), (8), (10), (11), and
(12) is applied with the design parametersβ1 = 0.9499,
β2 = 0.9499, β3 = 0.0001 so thatk ≡ 2− β1 − β2 − β3 =
0.1. Furthermore, we setδ = 0.00001 in (4) and the
initial control parameters at the first iteration are chosen as
Θ1

i (t) = Θ1
i = [0.5, 0.5, 0.5, 0.5, 0.5]>, ψ1

i (t) = ψ1
i = 0.1

and θ1
i (t) = θ1

i = 1.5, i = 1, · · · , 12, respectively. In
the following, we only investigate the learning performance
of the 7th traffic flow subsystem due to the limitations on
length of the paper. In order to verify the robustness against
iteration-varying initial resetting traffic density errorsej

7(0)
and the bounded off-ramp traffic volumessj

7(t) of the 7th
traffic flow subsystem, we showmaxt∈{1,···,500} |ej

φ7(t)| with
respective to iterationj in Figure 1 (b). It implies that the
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asymptoticalconvergence proves the technical result given
in (t2) of the main theorem. Because the learning process
is almost completed at the 5th iteration, the traffic density
errors of the7th sectione5

7(t) is shown in Figure 1(c) to
prove the result in(t3) of the main theorem. It is clear that the
trajectory ofe5

7(t) satisfies−θ5
7(t)

(∣∣Θ5
7 (t)

∣∣ + 1
) ≤ e5

7(t) ≤
θ5
7(t)

(∣∣Θ5
7 (t)

∣∣+1
)
, t ∈ {1, · · · , 500} in Figure 1 (c). In order

to verify the nice traffic density tracking performance at the
5th iteration, we show the relation between traffic density
ρ5
7(t) and desired traffic density trajectoryρ5

d7(t) in Figure
1 (d) for t ∈ {0, 1, 2, · · · , 500}. To see the control behavior
thatρ5

7(t) is close toρ5
d7(t) for t ∈ {0, 1, 2, · · · , 500} except

the initial fifty discrete-time, the trajectories betweenρ5
7(t)

and ρ5
d7(t) are shown again in Figure 1 (e) only for the

time sequencet ∈ {0, 1, 2, · · · , 100}. It is clear thatρ5
7(t)

converges toρ5
d7(t) after t ≥ 50. Finally, Figure 1(f) shows

the bounded learned control inputr5
7(t) for the 7th traffic

flow subsystem.

VI. CONCLUSION

A discrete fuzzy neural AILC is proposed in this paper
for repeatable traffic flow systems with initial resetting traffic
density errors, iteration-varying desired trajectories and ran-
dom off-ramp traffic volumes. We first derive a tracking error
model to establish the main control structure. The MIMO
FNN is applied in the main structure to compensate for the
lumped uncertainties from unknown system nonlinearities.
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Fig. 1. (a) sj
4(t) versus time t; (b)maxt∈{1,···,500} |ej

φ7
(t)| ver-

sus control iterationj; (c)e57(t) (solid line) and θ5
7(t)

(∣∣Θ5
7 (t)

∣∣ +

1
)
,−θ5

7(t)
(∣∣Θ5

7 (t)
∣∣ + 1

)
(dotted lines) versus timet ∈ {1, 2, · · · , 500};

(d)ρ5
7(t) (solid line) and ρj

d7(t) (dotted line) versus timet ∈
{0, 1, · · · , 500} at the 5th control iteration; (e)ρ5

7(t) (◦ ◦ ◦) and ρ5
d7(t)

(· · ·) versus timet ∈ {0, 1, · · · , 100} at the 5th control iteration; (f)r5
7(t)

versus timet.

For further compensation of the lumped uncertainties in-
duced by function approximation errors and random off-ramp
traffic volumes of the freeway, a dead-zone like auxiliary
traffic density error functions with time-varying boundaries
are then constructed. By the auxiliary traffic density error
functions, the adaptive laws for the control parameters and
time-varying boundary layer are designed to guarantee the
closed-loop stability and learning error convergence. Based
on a Lyapunov like analysis, we show that all adjustable
parameters and the internal signals remain bounded and the
traffic density tracking errors asymptotically converge to a
residual set whose size depends on the width of boundary
layer as iteration goes to infinity.
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