
 
Abstract – This paper presents how spatial data mining is 

achieved using spatial clustering. The study utilized partitive 

clustering technique such as K-Means and Self-Organizing 

Map Algorithms in Artificial Neural Network to map landslide 

hazard areas using the datasets of eight causative landslide 

indicators such as slope gradient, vertical displacement, 

drainage density, the rate of weathering, lithology, ground 

stability, soil type, and vegetation. Each technique has 

limitations and concentrates only on particular kind of 

computation.  Based on the result, vertical displacement and 

slope gradient are the two major aspects that trigger the 

landslide and dominate in all factors. With these techniques, 

landslide hazard zone are identified. Hence, the model can 

map the areas under study and can be a tool to visualize the 

identified causative factors of landslides. 

 

Keywords: artificial neural network, landslide hazard 

zonation, k-means, partitive clustering, self-organizing map 

 

I.  INTRODUCTION 

ANDSLIDE is one of the major natural disasters in the 

world which causes economic damage and loss of life.  

The Philippines is known to be a landslide prone nation, 

making the country the fourth most exposed to landslide 

after Indonesia, India, and China [1]. At the same time, the 

country is also among the richest in mineral resources, a 

deadly mix [1].  The country needs continuous monitoring 

of high-risk areas and a more comprehensive study on the 

causes and effects of the landslide.  

 Since mining is booming in the Philippines, small scale 

mining (SSM) activities exist in some areas of Surigao del 

Norte province. SSM practices involve deep tunneling such 

as sinking and drifting, trenching, and hydraulic mining in 

the mountains. These happenings are documented. Due to 

the inherent digging of soil and sluicing involved in SSM, 

water siltation, erosion, and land degradation are issues of 

environmental destruction [2]. There also have been 

unreported incidents of fatalities due to the landslide caused 

by unregulated SSM activities [3]. Miners and their families 

who live at the peak of mountains in mining areas are 

directly affected by this. To avoid such phenomenon to 

happen, a landslide  
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hazard investigation is significant.  Natural disasters can be 

avoided or prevented through the use of information and 

technology available. A review of landslide hazard zonation 

emphasizes the importance of assessment (qualitative) and 

evaluation (quantitative) of hazards from landslides [5][6]. 

Researchers who studied about landslide have applied a 

model for predicting landslide hazard. Some of them use 

probabilistic models. Various models used are the logistic 

regression [15], neuro-fuzzy [8], fuzzy logic [9], geographic 

information system [9][10], self-organizing map [12] and 

artificial neural network models [15].  Artificial neural 

networks (ANN) have broad applicability to real-world 

business problems. In fact, they have been successfully 

applied in many industries [14]. Since neural networks are 

best for identifying patterns or trends in data, they are well 

suited for prediction or forecasting including sales 

forecasting, industrial process control, customer research, 

data validation, risk management [15][16] and target 

marketing [17].  The Kohonen self-organizing maps (SOM) 

as part of the unsupervised learning algorithm of ANN has 

been applied as a clustering algorithm of high dimensional 

data, as well as an alternative tool to classical multivariate 

statistical techniques [18]. SOM algorithm is also employed 

as a tool for eco-morphological investigation concerning 

the life history of fish [19], as model for post-fire 

hydrologic and geomorphic hazards [20], as a tool for 

forecasting the reservoir inflow during typhoon periods 

[16], and for visualizing the topical structure of the medical 

sciences [21]. On the other hand, the K-means clustering 

algorithm is presented for image segmentation based on an 

adaptive approach [22], landslide detection [7] and spatial 

prediction for landslide hazard [13]. As evidenced by the 

above lists of references, modeling utilizing SOM and K-

Means have recently been applied to a broad range of geo-

environmental fields. 

With the advent of technology, some studies have 

invented software to map landslide risk associated with 

improper environmental practices.  However, with SSM 

activities, they are less likely monitored, and there is a lack 

of existing profiling and mapping of the occurrence. The 

continued investigation into the occurrence and 

implications of geohazards, about the mining explorations, 

led to specific mitigation studies and establishing relevant 

prevention mechanisms.  

Thus, in this study, it aims to identify landslide areas 

and apply clustering techniques to group the areas 

susceptible to landslide and assess the geo-environmental 

factors in the preparation of landslide hazard zonation. The 

latter is a significant step towards landslide hazard and risk 

management.  The partitive clustering-based technique is 

used to achieve landslide hazard zonation in the small scale 

mining areas of Surigao del Norte.  It clusters using two 

kinds of algorithms the K-Means and the Self-organizing 
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Map for visualization of landslide hazard.  The method will 

be useful in aiding the government in their decision making 

for disaster risk management and control. 

 

II. METHODS 

   The study employed the partitive clustering based 

techniques in artificial neural networks using K-Means and 

Self-organizing Map algorithms.  The researchers 

developed the system in the .Net Framework using 

Microsoft Visual Studio 2010 as the integrated 

development environment and running on Windows 8 

Operating System. Visual C# used as the programming 

language for implementation. The datasets used to test the 

algorithm are the primary data from the comprehensive 

survey conducted. Data are imported from Microsoft Excel 

or Notepad and interpreted by the K-Means and SOM for 

clustering. 

A. Location of the Study 

Surigao del Norte is a province of the Philippines 

located in the Caraga region of Mindanao between 125º15’ 

to 126º15’ east longitude and 9º18’ to 10º30’ north latitude 

[23].  It is bounded on the north and east by the Pacific 

Ocean, on the south by the provinces of Agusan del Norte 

and Surigao del Sur, and on the west by the Surigao Strait.  

The province has abundant mineral reserves including gold, 

iron, manganese, silica, cobalt, copper, chromite, limestone, 

silver and among the world's largest nickel deposits [23].  

The province falls under the tropical climate type and prone 

to brief afternoon downpours and thunderstorms [23].  Most 

of the active mining areas are located in moderate to steep 

rugged terrain underlain by volcanic rocks and terrace 

gravel deposits and structurally controlled along Philippine 

fault line.  Figures 1 and 2 show the map of Surigao del 

Norte and the panoramic views of some identified landslide 

prone mining areas respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Map of Surigao del Norte, Philippines 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 2.  Panoramic view of some mining areas (a) GoldDustSlide1, 

Magsaysay, Placer; (b) BrazilSlide2, Sitio Brazil, Mat-i, Surigao City, (c) 

CansayongSlide2, Brgy. Cansayong, Malimono; (d) SanPedroSlide2, 

Brgy. San Pedro, Alegria 

 

B. Data Preparation 

The primary data are gathered from the comprehensive 

survey in the mining areas.  The eight causative factors are 

considered in this study.  The following indicators that may 

cause landslide hazard are: slope gradient (SG), which 

classes are flat and undulating (FU), moderately sloping 

(MS), hilly and moderately steep (HS), and steep (SP).  

For vertical displacement (VD), the classifications are 

shallow (SH), moderate (MV), deep (DP), and very deep 

(VD). On the other hand, for drainage density (DD), it has 

low (LD) moderate (MD), high (HD), and very high (VD) 

classes. While, for the rate of weathering (RW), the classes 

are from slightly weathered (SW), moderately weathered 

(MW), highly weathered (HW), to completely weathered 

(CW). 

The lithology (LI) in the areas are andesite porphyry, 

diorite, agglomerate, hydrothermal breccia, sandstone, 

siltstone, alluvium, terrace gravel and ultramafic which tend 

to be weakly fractured/weathered (WF), moderately 

fractured/weathered (MF), highly weathered/fractured and 

delighting structure (HF), and highly fractured and highly 

weathered  with tension cracks/or landslide scarp (VF).   

The ground stability (GS) classes are Stable with no 

identified landslide scars, it is either old, recent or active 

(ST), Soil creep and other indications for possible landslide 

occurrence are present (SC), Inactive landslides evident; 

tension cracks present (IL) and Active landslides are 

evident with tension cracks, bulges, terracettes, seepage are 

present (AL).   

For soil type (ST), the classes are Silts and Clays (50% 

or more of material is smaller than No. 200 sieve size) with 

liquid limit of 50% or greater (SG), Silts and Clays (50% or 

more of material are lower than No. 200 sieve size) with 

liquid limit of less than 50% (SL), Sands (SD), and Gravels 

(GV) based on the Unified Soil Classification System [4]. 

In vegetation (VE), the classes are Primary Growth (PG), 

Secondary Growth (SG), and Tertiary Growth (TG). 

The rate of the slope gradient, vertical displacement, and 

drainage density uses the actual quantitative rate while the 
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rate of weathering, lithology, ground stability and soil type 

since it is in qualitative type indicators, their classes use an 

ordinal number (1,3,6,9) likewise in vegetation (1,5,9) 

which has only three classes. Table I presents the rate of 

landslide hazard parameters. 
 

TABLE I 

RATE OF LANDSLIDE HAZARD PARAMETERS 

Indicators Classes Rate Indicators Classes Rate 

SG 

FU 0° - < 8°  

LI 

WF 1 

MS 8° - < 18° MF 3 

HS 18° -< 26° HF 6 

SP 26° -<= 90° VF 9 

VD 

SH <2 m 

GS 

ST 1 

MV 2-9 m SC 3 

DP 10-25 m IL 6 

VD >25 m AL 9 

DD 

LD 0-1 drainage 

ST 

SG 1 

MD 2-4 drainages SL 3 

HD 5-10  drainages SD 6 

VD >10  drainages VG 9 

RW 

SW 1 

VE 

PG 1 

MW 3 SG 5 

HW 6 
TG 9 

CW 9 

 

C. Application of K-Means Clustering Algorithm for 

Landslide Hazard Zonation 

This study uses the multivariate statistical analysis of 

the interaction of the factors. In this, landslide hazard 

zonation compares each data layer of a causative factor to 

the existing landslide distribution. Weights of the landslide 

causative factors are assigned based on landslide density. 

K-Means clustering is a significant statistical method used 

in landslide hazard zoning. 

The K-means algorithm commences by placing K points 

at random locations in space. Then perform the following 

steps iteratively: (1) assign it to a cluster with the nearest 

centroid, and (2) move each centroid to the mean of the 

instances assigned to it. The algorithm continues until no 

instances change cluster membership. 

This algorithm attempts to minimize the intra-cluster 

variance. The algorithm converges to a local minimum; 

therefore different initializations will result in different 

clustering. K-means does not guarantee that similar 

instances will end up in the same cluster.  It is a method of 

vector quantization, initially pattern from signal processing 

that is famous for cluster analysis in data mining.  K-Means 

aims to partition n observations into k clusters in which 

each observation fit into the cluster with the nearest mean; 

that serves as a prototype of the group. Below are the steps 

of using the K-Means algorithm. 

 

1. Initialize the K weight vectors, e.g. to randomly chosen 

examples. Each weight vector represents a cluster. 

2. Assign each input example x to the cluster c(x) with the 

nearest corresponding weight vector refer to equation 1. 

(1) 

 

3. Update the weights: See equation 2. 

 

(2) 

 

 

 

4. Increment n by 1 and go until no noticeable changes of 

weight vectors occur. 

D. Application of Self-Organizing Map Algorithm for 

Landslide Hazard Zonation 

Multivariate statistical analysis for landslide hazard 

zonation considers relative contribution of each thematic 

data layer to the total landslide susceptibility and use for the 

classification or clustering of hazard for the given area. 

Self-Organizing Map is the method used for landslide 

hazard zoning. 

Prof. Teuvo Kohonen introduced the self-organizing 

map in 1982 also known as Kohonen feature map.  SOM is 

under unsupervised neural network for clustering tool of 

high-dimensional and complex data. The self-organizing 

map provides a high-dimensional input space of clustering 

data in most cases a two-dimensional, output space.  This 

output space is in a rectangular grid of units, a 

representation that is easily understandable for its users due 

to its analogy 2-D maps.  Each of the units on the map is 

assigned a weight vector, which is of the same 

dimensionality as the vectors in the input space [11]. 

The universal application of a self-organizing map 

(SOM) of Kohonen is for mapping n-dimensional input 

vectors to two-dimensional neurons or maps. This map 

describes the variations in the information of the input data, 

and the topology of the original data is preserved on the 

SOM through the connection of the input vectors which 

shares common features of the similar or neighboring 

neurons. This is motivated by the feature of the human 

brain wherein the neurons are organized in one or multi-

dimensional lattice.  The neurons compete among 

themselves to be activated according to a competitive 

learning scheme.  The weight vector associated with 

winning neuron is only updated in the scheme winner-

takes-all. 

Typically, the SOM algorithm performs some 

successive iterations until the reference vectors associated 

with the neuron of a two-dimensional map represent, as 

much as possible, the input patterns that are closer to those 

neurons.  The aim is to learn a feature map from the 

spatially continuous input space, in which the input vectors 

live, to the low dimensional spatially discrete output space, 

which is formed by arranging the computational neurons 

into a grid.  Figure 3 illustrates the concept of SOM.  

 

 

 

 

 

 

 

 
 

 

 

Fig. 3. Block diagram of Self-Organizing Map 

 

The stages of the SOM algorithm that achieves this can 

be summarized as follows: 

1. Initialization.  Choose random values for the initial 

weight vectors wj. 
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2. Sampling. Draw a sample training input vector x from the 

input space. 

3. Matching. Find the winning neuron that has weight 

vector closest to the input vector. To determine the best 

matching unit, one method is to iterate through all the nodes 

and calculate the Euclidean distance between each node's 

weight vector and the current input vector. The node with a 

weight vector closest to the input vector is tagged as the 

best matching unit. See Equation 3, the Euclidean distance 

is given as: 

                             

deuc (x, w) =      𝑛
𝑖=1                                 (3) 

 

where x is the current input vector and w is the node's 

weight vector. 

4. Updating. Apply the weight update equation. See 

equation 4. 

 (4) 

 

where hi(x) is a Gaussian neighborhood and is the learning 

rate ƞ. 

5. Continuation. Keep returning to step 2 until the feature 

map stops changing. 

 

E. System Architecture 

    Figure 4 illustrates the architectural design which has two 

functions; landslide hazard assessment and landslide hazard 

zonation.  The datasets for the eight causative factors are 

used to input into the system, and it will be simulated using 

the two types of a partitive clustering algorithm, the K-

Means and Self-organizing Map.  A sort of testing for the 

system was done to provide a robust and accurate result 

after coming up a decision what type of landslide hazard 

rate to assert for each mining areas. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4. System architecture  

III. SIMULATION AND RESULTS 

This part presented the running output of the two 

clustering algorithms.  Table II shows the number of 

identified landslide areas wherein areas fall on their 

corresponding classes.  
 

TABLE II 

IDENTIFIED SMALL SCALE AREAS AND ITS CLASSES 

Indicators Classes Number of identified landslide areas 

SG 

FU 0 

MS 3 

HS 6 

SP 90 

VD 

SH 1 

MV 63 

DP 26 

VD 9 

DD 

LD 69 

MD 28 

HD 0 

VD 2 

RW 

SW 0 

17 

82 

0 

MW 

HW 

CW 

LI 

WF 0 

0 

0 

99 

MF 

HF 

VF 

GS 

ST 0 

0 

0 

99 

SC 

IL 

AL 

ST 

SG 42 

31 

16 

10 

SL 

SD 

VG 

VE 

PG 0 

19 

80 

SG 

TG 

 

Based on the result, as shown in Table II, there are 90 

identified areas in a steep slope, while 63 areas are in 

moderate vertical displacement. In drainage density, 69 

areas are low in drainages while 82 identified areas are 

highly weathered. 

Lithology which plays a role as slip surface wherein 

rock composed of sandstone is more exposed to erosion so 

as to more susceptible to landslide. All of the mining areas 

are highly weathered and highly fractured. Most of these 

are sandstone; terrace gravel; highly fractured and highly 

weathered siltstone; andesite porphyry; ultramafic; 

agglomerate; diorite; hydrothermal breccia with tension 

cracks/or landslide scarp. Likewise, in ground stability, 

active landslides are evident in all areas with tension cracks, 

bulges, terracettes, seepage are present. As such, it is also 

an indirect indicator of slope stability, but this will also 

contribute to slope instability with a particular condition to 

landslide since mining exists in the areas. 

In soil types, there are also 42 identified areas under the 

class of silts and clays (50% or more of material is smaller 

than No. 200 sieve size) with a liquid limit of 50% or 

greater. These are elastic silt and elastic silt with sand, 

likewise in vegetation 80 identified areas are in tertiary 

growth. 

The zonation for landslide hazards is clustered into four 

(4) to represent for low, moderate, high, and very high 

regions.  Figure 5 shows a demonstration of C# program 

that uses the k-means algorithm to cluster the data. The 

output from K-Means clustering program is provided in 

 )(-x(n) )( )()()1( )()( nwdhnnwnw jjxixijj 

Input landslide causative factors 

(SG, VD, DD, RW, LI, GS, ST, VE) 

SOM K-Means 

Landslide hazard zonation 

Landslide Hazard Assessment 

(xi-wi)
2 
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Table III, which presents the numerical output data to 

interpret the similarity and dissimilarity within clusters.  

The eight variables are tested which reveal four major 

clusters.  It can be shown in cluster 1 that the higher value 

of soil type will contribute to the higher susceptibility rate 

of vegetation and rate of weathering. This further concludes 

that the increase rate of soil type enhances the effect of 

weathering and vegetation. However, considering the slope 

gradient and drainage density, cluster 1 indicates that the 

soil type and the said variables inversely vary. It follows 

that those with a higher value of soil type has the lesser 

value of slope gradient which also have a tendency of low 

drainage density.  

While in cluster 3 vertical displacement has the highest 

value whereas the rate of weathering, soil type, and 

vegetation have the lowest value.  This implies that vertical 

displacement indirectly varies from the rate of weathering, 

soil type, and vegetation. In effect, the area with high 

vertical displacement is the one with a lesser rate of 

weathering, soil type, and vegetation.  

 

 
Fig. 5 shows a demo of C# program that uses the k-means algorithm to 

cluster the data 

TABLE III  

CLUSTER CENTROIDS 

 

Variable Cluster1 Cluster2 Cluster 3 Cluster4 Grand 

centroid 

SG 22.4286 64.3095 62.0833 38.9677 50.1818 

VD 5.6071 8.9524 34.1667 8.6129 11.4293 

DD 0.9286 1.6667 1.7500 2.0645 1.6970 

RW 5.7857 5.3571 5.0000 5.7097 5.4848 

LI 9.0000 9.0000 9.0000 9.0000 9.0000 

GS 9.0000 9.0000 9.0000 9.0000 9.0000 

ST 4.6429 2.5238 2.3333 3.6774 3.1616 

VE 9.0000 7.8571 7.0000 8.8710 8.2323 

 

As seen in Table III, the vertical displacement obtained 

the highest mean of 34.1667 which is in Cluster 3 and 

centroid of 11.4293. In the same way, among all the factors, 

vertical displacement is the most diverse from its centroid, 

and so, it is the primary factor that affects the landslide 

hazard susceptibility. Moreover, the slope gradient obtained 

the highest mean of 64.3095 which is in Cluster 2 and 

centroid of 50.1818; this means that the slope gradient is 

the second most diverse from its centroid, and so, it is the 

secondary factor that affects the landslide hazard 

susceptibility.  

Another approach that aids in the interpretation of the 

maps provided that particular external information like 

class labels is to plot the labels on the organized map. The 

distribution of the samples of each class, plotted on the map 

may also help in the interpretation process.  

Figure 6 is a representation for visualizing the SOM 

output to determine the clustering of the data. There are 16 

barangays from the different six towns of the province 

engage in SSM activities.  Ninety-nine landslide areas 

observed during the comprehensive survey. Cansayong 

Slide 1 has been pushed to the top right of the highest mean 

in all of the eight causative factors, and this probably results 

to most elevated affected landslide area. While Layab Slide 

6 has a decrease in mean value, has been pushed to the 

bottom left. Directly below on the bottom right-hand 

corner, Tugonan Slide 1 obtains the highest score in 

drainage density. The remaining neurons live between these 

extremes, with a landslide hazard zone occupying the center 

ground.  

 
Fig. 6. Simulation of SOM algorithm to cluster the data 

 

In this paper, the top 12 landslide areas are presented. 

The following are Cansayong Slide 1 in Brgy. Cansayong, 

Malimono; Gold Dust Slide 1 in Brgy. Magsaysay, Placer;  

Ellaperal Slide 5 in Brgy. Ellaperal, Placer; Brazil Slide 2 in 

Brgy. Mabini, Surigao City; Tapian-Slide 7, Slide 10, Slide 

3, Slide 6, Slide 5, Slide 1 in Brgy. Tapian, Mainit; San 

Pedro Slide 2 in Brgy. San Pedro, Alegria; and Alipao Slide 

1 in Brgy. Alipao, Alegria. Figure 7 point out the 

geographic location of the landslides identified areas in 

SSM.   

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 7. Geographic location of the identified landslide areas in small scale 

mining 

During simulation process, K-means is used as 

interaction model reading the landslide datasets from two or 

more factors, and adjust the cluster number. The algorithm 

maps correctly even data are combined in discrete and 

ordinal form. The k-means algorithm can give different 

answers when initiated at different starting values. This 
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means that the algorithm does not always find the minimum 

value of the total sum of squares within a cluster.  While in 

SOM, it uses a more local rule, the neighborhood functions 

wherein locations of the neurons are tuned become ordered, 

and a meaningful coordinate system for the input features 

created on the lattice. Thus, SOM forms the required 

topographic map of the input patterns.  Neurons are 

visualized as changing in positions in the weight space as 

learning takes place. However, it caused overlapping if real 

data is used to test since there can have the same rate. 

Moreover, a test is also conducted in which the output from 

the K-means is used to feed into the SOM environment.  

Findings will not accord since this two algorithm 

concentrates on a particular kind of computation.  

Findings assert that the mining areas are in high to very 

highly hazard to a landslide. These identified causative 

factors of the landslide are naturally occurring. One or two 

factors may be present in an area, but unregulated SSM 

activities can make the mining sites susceptible to 

landslides as the consequence of miner’s activities. In fact, 

unregulated SSM activities can cause the presence of the 

eight causative factors of landslides.  

 

IV. CONCLUSION 

This paper concludes that the model can map the areas 

and can be used as tools to visualize the identified causative 

factors of the landslide. The performance of the two 

partitive clustering algorithms differs since K-Means is 

sensitive to initialization. It depends on initializing patterns 

according to statistical information calculated from data. 

SOM provides a more robust learning, yet visual inspection 

has to be done carefully because it needs a prior checking 

of the topology preservation property of the trained map 

before starting the visual inspection. The performance of 

clustering algorithms depends on the topology of data.  The 

advanced multivariate techniques using partitive clustering 

method are proving to be useful in spatial prediction of 

landslides with a great extent of precision. Performance 

analysis of the K-Means depends a lot on a priori 

knowledge (K) and is very stable while Self-Organizing 

Map has stability and convergence which assured in the 

principle of self-ordering but slow and many iterations 

needed for convergence likewise computationally intensive.  

 

REFERENCES 
 

[1] IRINnews.org, "PHILIPPINES: Artisanal mining compounds 

landslide risk,” Date of Access: August 9, 2013, Retrieved from 

http://www.irinnews.org/report/94629/philippines-artisanal-mining-

compounds- landslide-risk, 2012.  

[2] T. Hentschel, F. Hruschka, M. Priester, “Global Report on Artisanal 

and Small-Scale Mining,” 2002, http//pubs.iied.org/pdfs/G00723. 

[3] D. Petley, “Mining-related landslides in the Philippines,” 

http://blogs.agu.org/landslideblog/2011/04/28/mining-related-

landslides- in-the-philippines/2011. 

[4] Unified Soil Classification System, Date accessed: February 8, 2015, 

Retrieved from http://gozips. uakron .edu/~mcbelch/ documents/ 

UnifiedSoilClassification.pdf. 

[5] F. Guzzetti, “Landslide Hazard and Risk Assessment. Concepts, 

Methods and Tools for the Detection and Mapping of Landslides, for 

Landslide Susceptibility Zonation and Hazard Assessment, and for 

Landslide Risk Evaluation,” Earth Sciences, 2014, Retrieved from 

https://itunes.apple.com/au/book/landslide-hazard-risk-

assessment/id944699313?mt=13.  

[6] S.D. Pardeshi1, S.E. Autade, and S.S. Pardeshi, “Landslide hazard 

assessment: recent trends and techniques,” Pardeshi et al. 

SpringerPlus. 2:523 doi:10.1186/2193-1801-2-523. 

http://www.springerplus.com/content/ 2/1/523, 2013. 

[7] P.V. Gorservski, P.E. Gessler, P. Jankowski, “Integrating a fuzzy k-

means classification and a Bayesian approach for spatial prediction 

of landslide hazard,” J Geograph Syst, (2003), 5:223-251DOI: 

10.1007/s10109-003-0113-0, Retrieved from 

http://link.springer.com/article/ 

[8] F. Sdao, D.S. Lioi, S. Pascale, S. Caniani and I.M. Mancini, 

“Landslide susceptibility assessment by using a neuro-fuzzy model:  

a case study in the Rupestrian heritage rich area of Matera,” Nat. 

Hazards Earth Syst. Sci., 13, 395–407, 2013. 

[9] P. Kayastha, “Application of fuzzy logic approach for landslide 

susceptibility mapping in Garuwa sub-basin, East Nepal,” Front. 

Earth Sci. 6(4): 420–432, 2012.  

[10] P. Kayastha, S.M. Bijukchhen, M.R. Dhital, and F. De Smedt, “GIS 

Based Landslide Susceptibility Mapping using a Fuzzy Logic 

Approach: A Case Study from Ghurmi-Dhad Khola Area, Eastern 

Nepal,” Journal Geological Society of India, Vol. 82, September 

2013, pp.249-261. 

[11] R.A. Mayer, T.S. Aziz, A.G. Rauber, “Visualizing Class Distribution 

on Self-Organizing Maps,” 2011. 

[12] M.J. Friedel, “Modeling hydrologic and geomorphic hazards across 

post-fire landscapes using a self-organizing map approach,” 

Environmental Modeling & Software, Volume 26, Issue 12, 

December 2011, pp. 1660-1674. 

[13] T.R. Martha, N. Kerle, C.J. van Westen, V. Jetten, K.V. Kumar, 

“Segment Optimization and Data-driven Thresholding for 

Knowledge-based Landslide Detection by Object-based Image 

Analysis,” Geoscience and Remote Sensing, IEEE Transactions on 

(Volume:49, Issue: 12 ), 2011, DOI: 10.1109/TGRS.2011.2151866 

[14] A. Vella and C. Vella, “Neural Networks,” University of London 

International Programmes, 2009, www.londoninternational.ac.uk 

[15] D.T. Bui, T.A. Tuan, H. Klempe, B. Pradhan, and I. Revhaug, 

“Spatial Prediction Models for Shallow Landslide Hazards: A 

Comparative Assessment of the Efficacy of Support Vector 

Machines, Artificial Neural Networks, Kernel Logistic Regression, 

and Logistic Model Tree,” 2015, 

http://link.springer.com/article/10.1007/s10346-015-0557-6. 

[16] G.F. Lin, T.C. Wang, and L.H. Chen, “A Forecasting Approach 

Combining Self-Organizing Map with Support Vector Regression for 

Reservoir Inflow during Typhoon Periods,” Advances in 

Meteorology, Volume 2016, 2016, Article ID 7575126, 12 pages. 

http://www.hindawi.com/journals/amete/ 2016/7575126/abs/. 

[17] I. Stamova, H. Akca and G. Stamov, “Qualitative Analysis of 

Dynamic Activity Patterns in Neural Networks,” Journal of Applied 

Mathematics, Volume Article ID 208517, 2 pages, 2010, 

http://dx.doi.org/10.1155/2011/208517. http://www.hindawi.com/ 

journals/jam/2011/208517/ 

[18] S.A. Sayad, “Self-Organizing Map (SOM),” Bahen Centre 

Information Technology, Toronto, Ontario, Canada, 2010. 

[19] T. Russo, M. Scardi, and S. Cataudella, “Applications of Self-

Organizing Maps for Ecomorphological Investigations through Early 

Ontogeny of Fish,” PLoS ONE 9(1):e86646.doi:10.1371/ 

journal.pone. 0086646, 2014. 

[20] M.J. Friedel, “Modeling Hydrologic and Geomorphic Hazards 

Across Post-Fire Landscapes Using a Self-organizing Map 

Approach,” doi:10.1016/j.envsoft.2011.07.001, 2011, http://www. 

sciencedirect.com/science/article/pii/S1364815211001629. 

[21] A. Skupin, J.R. Biberstine, and K. Borner, “Visualizing the Topical 

Structure of the Medical Sciences: A Self-Organizing Map 

Approach,” DOI: 10.1371/journal.pone.0058779, 2013. 

[22] A.S.B. Samma and R.A. Salam, “Adaptation of K-Means Algorithm 

for Image Segmentation,” World Academy of Science, Engineering 

and Technology 50, 2009. http://citeseerx.ist.psu.edu/ 

viewdoc/download?doi=10.1.1.193.2635&rep=rep1&type=pdf. 

[23] Monalee A. dela Cerna, and Elmer A. Maravillas, "Landslide Hazard 

GIS-based Mapping using Mamdani Fuzzy Logic in Small Scale 

Mining Areas of Surigao del Norte, Philippines," Lecture Notes in 

Engineering and Computer Science: Proceedings of The World 

Congress on Engineering and Computer Science 2015, 21-23 

October, 2015, San Francisco, USA, pp901-906 

 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I, 
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

http://blogs.agu.org/landslideblog/2011/04/28/mining-related-landslides-in-the-philippines/
http://blogs.agu.org/landslideblog/2011/04/28/mining-related-landslides-%20in-the-philippines/2011
http://blogs.agu.org/landslideblog/2011/04/28/mining-related-landslides-%20in-the-philippines/2011
https://itunes.apple.com/au/book/landslide-hazard-risk-assessment/id944699313?mt=13
https://itunes.apple.com/au/book/landslide-hazard-risk-assessment/id944699313?mt=13
http://www.springerplus.com/content/
http://link.springer.com/article/
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Martha,%20T.R..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Kerle,%20N..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.van%20Westen,%20C.J..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Jetten,%20V..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Kumar,%20K.V..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Kumar,%20K.V..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=36
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6079321
http://dx.doi.org/10.1109/TGRS.2011.2151866
http://link.springer.com/article/10.1007/s10346-015-0557-6
http://www.hindawi.com/journals/amete/
http://www.hindawi.com/53252761/
http://www.hindawi.com/94751918/
http://dx.doi.org/10.1155/2011/208517
http://www.hindawi.com/
http://www.sciencedirect.com/science/article/pii/S1364815211001629
http://dx.doi.org/10.1016/j.envsoft.2011.07.001
http://citeseerx.ist.psu.edu/



