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Abstract— The problem of control of plane motions of a 

dumbbell shaped artificial satellite is considered in this note. 
The satellite is modeled by weight rod with two point masses. 
They are fixed on the rod. A third mass point can move along 
the rod. The control is realized by varying continuously the 
distance from the centre of mass of the satellite to the movable 
mass. New limited control laws processes of excitation and 
damping, diametrically reorientation and gravitational 
stabilization to the local vertical of the dumbbell shaped 
artificial satellite pendulum are constructed. The problem is 
solved by the method of Lyapunov’s functions of the classical 
theory of stability. The theoretical results are illustrated by 
graphical representation of the numerical results. 
 

Index Terms—Orbit, dumbbell shaped satellite, 
gravitational torque, asymptotic stability 

I. INTRODUCTION 

HE problem of the stability of the relative equilibria and 
different motions of a satellite about the centre of mass 

in a Keplerian orbit under the action of gravitational, 
aerodynamic, and other torques has been the subject of 
publications by numerous investigators [1-8]. In this paper 
we study the problem of gravitational stabilization of the 
relative equilibrium of the dumbbell shaped satellite in a 
circular orbit. The problem of its reorientation by a movable 
mass swings principle solved. Swing can be simulated 
single-mass [9] or the two-mass [10, 11] pendulum of 
variable length. Many mechanical systems include flat 
pendulum motion, so swing models can be applied in the 
study of the dynamics and methods of control of such 
systems. Problems of swing and damping dual-mass 
pendulum resolved in [11], using the original continuous 
control law moving mass. The problem of the diametrical 
reorientation and stabilization of the gravitational plane 
motion of the satellite in a circular orbit was solved by the 
authors [12], using the same law [11]. In [13], the solution 
of the problem of orbital maneuvering the satellite using 
space tether system with a movable mass. The problem of 
gravitational stabilization of two opposite radial position of 
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relative equilibrium of a dumbbell shaped satellite in a 
circular orbit solved a similar control in [14]. There is flaw 
in the [11-14]. The movable mass can move without 
limitations. Limited control on the principle of double 
pendulum swing was constructed in [15]. 

In this paper, the model of the dumbbell shaped satellite 
as well as [14]. We build the limited laws of the movable 
mass motion for the control plane motion of the satellite in a 
circular orbit. The satellite consists of two point masses 
connected by a weighty tether, along which a fourth point 
mass can be moved. Satellite is modeled rigid rod. The 
center of mass of the satellite moves in an orbit under the 
action of forces of central Newtonian gravity. Control is the 
distance from the common center of mass of the two ends of 
the rod to the cargo and moving cargo. Control imposed 
limitation. On the movement of the movable mass limitation 
imposed on both sides. 

The new law for the model of the satellite [14] solves the 
problem of gravitational stabilization of the radial 
equilibrium position of the satellite relative to flat 
perturbations. 

Control is built, which solves the problem of "swing" of 
the dumbbell shaped satellite and its reorientation in a 
diametrically opposite position with respect to an 
asymptotically stable equilibrium (a revolution of the 
satellite at an angle  ) in orbit. 

II. THE EQUATION OF PLANE MOTION OF DUMBBELL SHAPED 

SATELLITE WITH A MOVABLE MASS 

Consider dumbbell shaped satellite motion in a central 
Newtonian gravitational field with center O. Dumbbell 
shaped satellite is modeled rigid rod with a mass 3m , as 

well as in the article [14]. Point mass 1m  and 2m  fixed to 

the ends of the rod. The movable mass 4m  is moved along 

the rod (Fig. 1). The common center of mass of payload and 
the rod is at the point 1O . We denote the distance from the 

point 1O  to the load 4m  as l  and distance from the point 1O  

to the center of mass 2O  as d . For them, the following 

relation holds true: 

 1 2 3 4 ( )m m m d m l d     (1) 

The orbital coordinate system 2O XYZ  was selected. The 

axis 2O X  is tangential to the orbit. The axis 2O Y  is 

perpendicular to the plane of the orbit. The axis 2O Z  

completes the system of coordinates to the right hand third 
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axis. 1O xyz  is coordinate system associated with the 

dumbbell shaped satellite. The axes of the system are 
directed at the main central axes of inertia of a satellite. 

The movement of the coordinate system 1O xyz  relative to 

the orbital coordinates will be described by Euler angles  , 

 ,  . we assume that the principal central moments of 

inertia of the system without movable mass: 1 0,B   

 
2

23 1 2 1 3 2 3
1 1
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L m m m m m m m
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here L  – length of the rod. 

 
We obtain from relation (1): 
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here 
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  
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Equation of plane motion about the center of mass of the 
dumbbell shaped satellite in a circular orbit by the 
gravitational moment of the article [14]: 

 2
1

2 1 3sin cos
mll

A ml
   


    


 (4) 

here the prime denotes the derivative with respect to new 
variable  - true anomaly. 

The distance from 1O  to the moving mass 4m , is 

considered the control: 
( , )l l    (5) 

III. THE GRAVITATIONAL STABILIZATION OF A DUMBBELL 

SHAPED SATELLITE 

We will solve the problem of stabilization of the planar 
oscillations of a dumbbell shaped satellite relative radial 
position of equilibrium using a movable mass by swings 
principle. Control (5) are constructed according to the 
equations: 
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here 0 0, 0l const a const    . Taking into account the 

equality: 
2''sin ' cos ,  

' when sin ,  a b>0;

0,  when sin sin .

a a
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rewrite (4): 
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3sin cos ,
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 (8) 

Equation (7) has a zero solution 0    

corresponding to the investigated relative satellite 
equilibrium. It is the equation of perturbed motion in the 
neighborhood of this equilibrium state. We will find a 
solution to the problem by using the second method of the 
classical theory of stability. We chose the Lyapunov 
function: 
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The function ( , )V    can be represented by a power 

series in the neighborhood of the relative equilibrium 
state 0   . The power series begins a positive definite 

quadratic form, so the function is positive definite according 
to the basis of definite function [16]. 

The derivative function (9) looks up to terms of the fourth 
degree in the variables  ,  , by virtue of (7): 

4 3 2 2 3 41 9 12 21 4 1
' ' ' '

4 4 2

F F
V

Fn G G
             

here 0 0F mal  , 2
1 0 0G A ml   , n  – the mean motion 

[2]. Derivative of Lyapunov function will be determined 
negatively function of its variables, if the equality 

6, 4G F  holds, according to the Sylvester’s criterion. 

The relative equilibrium state 0    dumbbell shaped 

satellite in a circular orbit is asymptotically stable based on 
Lyapunov's theorem on asymptotic stability [16]. Trivial 
solution 0    is not asymptotic stability in general, 

but numerical calculations showed, that the for any initial 
deviations and velocity motion in the vicinity of the lower 
equilibrium position dumbbell shaped satellite is damped. 

A numerical integration equations of motion performed in 
the interval  0;300   rad for the following numerical 

values of system parameters 1 400m   kg, 2 300m   kg, 

3 100m   kg, 4 200m   kg,  32L   m, 0 9l   m, 5a   

ms, 1,5b   and initial data: 0( ) 1,5t   rad, 0( ) 0.1t   

rad/s. These values were taken as an illustrative example. 
The phase portrait of system (7) with control (6) is shown in 

 
Fig. 1.  Satellite. 
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figure 2, which illustrating asymptotic damping of the 
amplitude and velocity vibrations of the of the dumbbell 
shaped satellite around a zero equilibrium state. Amplitude 
and speed begins with sufficiently large initial deviations. 

 

IV. SWINGING AND REORIENTATION OF THE DUMBBELL 

SHAPED SATELLITE 

It is known [2] that the satellite has two radial equilibrium 
state. The first, is the relative equilibrium state in the orbit at 
which rod is directed along the radius of the local vertical. 
The second, the diametrically opposite equilibrium state. 
We solve the problem of the swinging of a satellite from an 
arbitrary neighborhood of the relative equilibrium position 
and its diametrical reorientation. We will assume that in 
control law (2.1) the parameter. 

0a const   (10) 
The equation of controlled motion of the satellite 

maintains the form (4). The function (9) is positive-definite 
in the vicinity of equilibrium 0   . We calculate the 

derivative of this function with respect to time by virtue of 
(1.4) up to terms of the fourth order we have the relation: 

2 2 2
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here 0 0F mal  .  

Derivative (11) will be negative-definite, when the 

inequality 
2

4
15

G F  satisfying, by Sylvester’s criterion 

[16]. According to the Chetayev theorem of instability [16] 
the relative equilibrium state 0    of the satellite in a 

circular orbit is unstable. Thus, the process of swinging of 
the satellite with respect to radial position is implemented. 
Numerical calculations show that as a result of this swing 
comes diametric reversal of the satellite relative to its center 
of mass. 

Let us show that after the satellite diametric reversal 
control (6) under the conditions (10) stabilizes the satellite 
in the neighborhood of the opposite equilibrium state 

  , 0  . We write the equation of perturbation 

motion by introducing the deviation x   : 

1 0

2 2
1

( ( 3 sin 2 sin ))

3
2 cos ( 1) ( )sin 2

2

x A ml l ax x a x

mla x x x A ml x

    

    
 (12) 

Because now 0a const  , then equation (12) with 
control (6) coincides with the first equation of the system 
(7) where 0a const  . The solution 0x x   will be 
asymptotically stable according to the results obtained in 
Section 2. 

Thus, the control (6) under condition (10) implements 
asymptotically stable reorientation diametrically dumbbell 
shaped satellite. 

This process in Fig. 3-4 is illustrated by graphs of 
numerical calculations. The integration was performed in 
the range  0;200   rad, parameter 5a    ms and the 

initial values: 0( ) 0.4    rad, 0( ) 0.1    rad/s. Other 

parameters of the system were the same as they were before 
in Section 2. In the phase portrait (Fig.3) shows the 
behavior of the angle  . It shows swinging around the zero 

equilibrium state 0    followed by an asymptotic 

approach to a new equilibrium state   , 0  . 

Fig. 4 shows the behavior of the distance l  as a function 
of the angle  . Initially, as the satellite swings, the 

deviations of the distance l  from the value 0l  in the vicinity 

of equilibrium 0   increase periodically, and after the 

turning of the satellite and its transit into the vicinity of 
position   . The distance l  converges asymptotically to 

0l . The value l  is in the vicinity of the value 0l , which is 

 

 

Fig. 4. Value ( )l  . 

Fig. 3. Phase portrait. 

 
Fig. 2. Phase portrait. 
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defined by a constant 1,5b  . The satellite reorientation is 

carried out counterclockwise. 
Another result of the numerical research is a numerical 

integration of controlled motions for different values of the 
parameter a . It showed the choice of the values of this 
parameter can be used for control the direction of rotation of 
the satellite at the same initial conditions. 

V. CONCLUSION 

The equation of controlled planar motions relative to the 
center of mass of the dumbbell shaped satellite with a 
moving mass in a circular orbit under the action of the 
gravitational torque was obtained in this paper. New control 
laws of a moving mass under the conditions limitations this 
motion was constructed. These laws are solve problems of 
gravitational stabilization with respect to planar 
perturbations of relative equilibrium of the dumbbell shaped 
satellite in a circular orbit and its diametrical reorientation 
by controlling motion of a movable mass. The Lyapunov 
functions necessary for a rigorous proof of the asymptotic 
stability and instability of studied movements were 
constructed for the proposed control. A numerical 
integration confirmed the findings. 
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