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Abstract—Causal relationships are different from statistical
relationships. Distinguishing cause from effect is a fundamental
scientific problem that has attracted the interest of many
researchers. Among causal discovery problems, discovering
bivariate causal relationships is a special case because the well-
known independent tests are useless. We empirically tested
three existing state-of-the-art models, ANM, PNL model, and
IGCI model, for causal discovery in the bivariate case using
real world data and compared their performance using three
metrics: accuracy, area under ROC curve (AUC), and time
cost to make a decision. We concluded the strong points and
weaknesses of each method through our experiments. For the
efficiency of algorithm, we found that the IGCI model is the
fastest even when the dataset is large and that the PNL model
costs the most time to give a decision.

Index Terms—causal discovery, bivariate, accuracy, area
under curve, time cost.

I. INTRODUCTION

People are generally more concerned with causal rela-
tionships between variables than they are with statistical
relationships between variables, and “causality” [1], [2], [3],
[4] has attracted the interest of researchers in various fields,
including economics, sociology, and machine learning. The
best way to verify causal relationship between variables is
to conduct a controlled experiment. However, in the real
world, such experiments are often too expensive, unethi-
cal, or even impossible. Many researchers are thus using
statistical methods to analyze causal relationships between
variables [5], [6], [7], [8]. Some concepts of causality have
been formalized using directed acyclic graphs. As a general
algorithm for causal discovery, a conditional independence
test can be used to exclude irrelevant relationships between
variables [3], [4]. However, in the case of two variables, a
conditional independence test is impossible. Several models
have been proposed to solve this problem [9], [10], [11],
[12], [13], [14], [15].

For two variables X and Y, there are four possible re-
lationships, besides independence and feedback, between
them (Figure 1). The top two diagrams in Figure 1 show
the possible causal relationships between X and Y. The
remaining task is to decide the direction of the arrow. The
bottom two diagrams represent the “common cause” (left)
and “selection bias” (right) case. The unobserved variables
Z are “confounders”1 for causal discovery between X and
Y. The existing of “confounders”2 will bring spurious cor-
relation between X and Y. How to distinguish spurious
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1For the definition of confouding, please refer to [16], [17].
2The number of “confounders” is not limited to one.

Fig. 1. Four Possible Relationships between X and Y (Besides Indepen-
dence and Feedback).

correlation with “confounders” from actual causality is a
remaining challenging task in this field. Many current models
are based on the assumption that “confounders” do not exist.3

We compared the performance of three existing state-of-the-
art models, ANM, PNL and IGCI, under the assumption that
confounders do not exist. We used three metrics: accuracy,
area under ROC curve (AUC), and time cost to make a
decision.

In section II, we introduce some related work in causal
discovery. In section III, we briefly introduce the three
models: ANM, PNL and IGCI. In section IV, we describe the
dataset we used and the implementation of the three models.
In section V, we present the results and give a detailed
analysis of the performance of the three models. We conclude
in section VI by summarizing the advantages and weaknesses
of the three models and mentioning future tasks.

II. RELATED WORK

Granger causality [6] is proposed to detect causal direction
of time series data based on temporal ordering of variables.
Granger causality only works on the linear stochastic sys-
tems. Chen et al. [21] extends the model to work on nonlinear
systems. For Granger causality [6] and extended Granger
causality [21], temporal information is needed.

Shimizu et al. [18] proposed the LiNGAM (short for linear
non-gaussian acyclic model) which can detect causal direc-
tion of varialbes no matter whether temporal information
is available or not. The LiNGAM works when the causal
relationship between variables is linear, the distributions
of disturbance variables are non-Gaussian and the network
structure can be expressed using DAG (short for directed

3Dealing with confounders is an on-going work in this field. As far as we
know, Shimizu et al. extend the LiNGAM [18] to detect causal direction
when “common causes” exist [19], [20]. However, many current models
work under the assumption that no confounders exist.
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acyclic graph). Some extensions of LiNGAM has been
proposed [22], [19], [23], [20].

LiNGAM is based on the assumption of linear relation-
ships between variables. Hoyer et al. [12] propose additive-
noise model (ANM) to deal with non-linear relationships.
When the regression function is linear, ANM works in the
same way as LiNGAM. Zhang et al. propose the post non-
linear (PNL) model which takes into account the nonlinear
effect of causes, additive inner noise and external sensor
distortion. A brief introduction of ANM and PNL will be
given in section III.

The above methods are based on the structural equation
modeling (SEM) which requires structural constraints on
the data generating process. Another research direction is
based on the assumption of independent mechanisms of
nature to generate causes and effects. The idea is that the
shortest description of joint distribution p(cause, effect)
can be expressed by p(cause)p(effect|cause). Compared
with p(effect)p(cause|effect), p(cause)p(effect|cause)
has lower total complexity.

Janzing et al. [14], [15] propose information geometric
causal inference (IGCI) model to infer asymmetry between
cause and effect through the complexity loss of distributions.
A brief introduction of IGCI will be given in the following
section. Zhang et al. [24] propose a bootstrap-based approach
to detect causal direction based on the condition that the
parameters of the cause involved in the causality data gen-
erating process is exogenous from that of the cause to the
effect. Mooij et al. [11] propose a probabilistic latent variable
model (GPI) to distinguish between cause and effect using
standard Bayesian model selection.

In the above work, accuracy is usually used to evaluate
the performance of causal discovery models. Besides of
accuracy, we use an evaluation method for a binary classifier:
area under ROC curve (AUC) as another evaluation method
in our work. We compare existing methods using three
metrics: accuracy, AUC, and time cost to make a decision.

III. MODELS

The three models we choose in our experiments were
the additive-noise model (ANM) [12], the post non-linear
(PNL) model [13], [25], and the information geometric
causal inference (IGCI) model [14], [15]. The three models
are typical and state-of-the-art models for causal discovery in
bivariate case. The first two models define how causality data
is generated in nature. The last model finds the asymmetry
between cause and effect through the complexity loss of
distributions.

A. ANM

The additive noise model (ANM) of Hoyer et al. [12]
is based on two assumptions: the observed effects can be
expressed using functional models of the cause and additive
noise (Equation 1) and the cause and additive noise are
independent. If f() is a linear function and the noise has a
non-Gaussian distribution, ANM works in the same way as
the linear non-Gaussian acyclic model (LiNGAM) [18]. The
model is learned by performing regression in both directions
and calculating the independence between the assumed cause
and noise (residuals) for each direction. The decision rule

is to choose the direction with the larger independence
as the true causal direction. ANM cannot deal with the
linear Gaussian case since the data can fit the model in
both directions, so the asymmetry between cause and effect
disappears. In [26], Gretton et al. improved the algorithm
and extended ANM to work even in the linear Gaussian
case [26]. The improved model also works more efficiently
in the multivariate case.

effect = f(cause) + noise (1)

B. PNL Model

In the post-nonlinear (PNL) model of Zhang et al. [13],
[25], effects are nonlinear transformations of causes with
some inner additive noise, followed by an external nonlinear
distortion (Equation 2). From Equation 2, we can get that
noise = f2

−1(effect)− f1(cause), where cause and effect
are the two observed variables. To identify the cause and
effect, nonlinear independent component analysis (ICA) is
performed to extract two components that are as independent
as possible. The extracted components should be independent
for the true direction. The validity of the PNL model has been
proven [25].

effect = f2(f1(cause) + noise) (2)

C. IGCI Model

The IGCI model [14], [15] is based on the hypothesis
that if “X causes Y,” the marginal distribution p(x) and
the conditional distribution p(y|x) are independent. The
IGCI model gives an information-theoretic view of additive
noise and defines independence by using orthogonality. With
the ANM [12], if there is no additive noise, inference is
impossible while it is possible with the IGCI model.

The IGCI model determines the causal direction on the
basis of complexity loss. Let νx and νy be the reference
distributions for X and Y. D(Px || νx) :=

∫
log P (x)

ν(x)
P (x)dx

is the KL-distance between Px and νy , which works as a
feature of the complexity of the distribution. The complexity
loss from X to Y can be defined by

VX→Y := D(Px || νx)−D(Py || νy). (3)

The decision rule of the IGCI model is that, if VX→Y < 0,
infer “X causes Y,” else if VX→Y > 0 infer “Y causes X.”
This rule is rather theoretical. An applicable and explicit form
for the reference measure is entropy-based IGCI or slope-
based IGCI.

1) Entropy-based IGCI:

Ŝ(PX) := ψ(m)− ψ(1) + 1

m− 1

m−1∑
i=1

log|xi+1 − xi|

(4)

V̂X→Y := Ŝ(PY )− Ŝ(PX) = −V̂Y→X (5)

2) Slope-based IGCI:

V̂X→Y :=
1

m− 1

m−1∑
i=1

log

∣∣∣∣ yi+1 − yi
xi+1 − xi

∣∣∣∣ (6)
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The explicit form of IGCI is simpler, and we can see
that the two IGCI models coincide with each other. The
calculation does not cost much time even when dealing with
big data. However, the IGCI model prefers low-noise data
and may perform poorly in a high-noise situation. We discuss
the strengths and weaknesses of the IGCI model in section
V.

IV. EXPERIMENTS

In this section, we describe the data used in our experi-
ments and the implementation of each model. The results are
presented in section V.

A. Dataset

We used the CauseEffectPairs (CEP) [27] dataset, which
contains 97 pairs of real world causal variables with the
gold standard labeled for each pair. The data set is publicly
available online [27]. Some of the data were collected from
the UCI Machine Learning Repository [28]. The data comes
from various fields, including geography, biology, physics,
and economics. The dataset also contains time series data.
Most of the data contains much noise. An appendix contains
a detailed description of each pair of variables [29].

We used 91 of the pairs in our experiments since some
of the data (e.g, pair0052) in CEP [27] contains multi-
dimentional variables4. Scatter plots of the data are shown in
Figure 2. The variables range in size from 126 to 16,382. The
variety of data types makes causal analysis using real world
data challenging. Moreover, the dataset is not well balanced:
of the 91 pairs, the true label is “X causes Y” for 67 pairs
and “Y causes X” for the other 24 pairs.

B. Implementation Details

We implemented the three models as described in the
original work.

a) ANM: Using the reported experiment settings [12],
we performed Gaussian processes for machine learning
regression [30], [31]. We then used the Hilbert-Schmidt
Independence Criterion (HSIC) [32] to test the independence
between the assumed cause and residuals. The dataset used
had been labeled with the true causal direction for each pair
with no independence, or feedback. Using the decision rule
of ANM, we determined that the direction with the greater
independence was the true causal direction.

b) PNL: We used nonlinear ICA to extract the two
components that were assumed to be the cause and noise
if the model had been learned in the right direction. The
nonlinearities of f1 and f2−1 in Equation 2 were modeled by
multi-layer perceptrons. By minimizing the mutual informa-
tion between the two output components, we made the output
as independent as possible. After extracting two independent
components, we tested their independence by using HSIC
[32]. Finally, in the same way as for ANM, we determined
that the direction with the greater independence was the true
one.

4The three models we implemented in our experiment cannot deal with
multi-dimentional data.

Fig. 2. Scatter Plot of Data Used in Experiments

c) IGCI(entropy,uniform): Compared with the other
two models, the implementation of the IGCI model is sim-
pler. We used reported equations (4, 5) to calculate V̂X→Y
and V̂Y→X and determined that the direction in which
entropy decreased was the true direction. If V̂X→Y < 0,
the inferred causal direction was “X causes Y”; otherwise,
it was “Y causes X.” For the IGCI model, the data should
be normalized before calculating V̂X→Y and V̂Y→X . In
accordance with the reported experiment results, we used the
uniform distribution as the reference distribution because of
its good performance. For the repetitive data in the dataset,
we set log0 = 0.

d) IGCI(slope,uniform): The implementation of the
IGCI(slope, uniform) model was similar to that of the
IGCI(entropy, uniform) one. We used (6) to calculate V̂X→Y
and V̂Y→X and determined that the direction with a negative
value was the true one. For the same reason as above,
we mapped the data to [0,1] before calculating V̂X→Y and
V̂Y→X . To make (6) meaningful, we filtered out the repetitive
data.

V. RESULTS

Here, we first compare model accuracy for different deci-
sion rates. We changed the threshold continually and calcu-
lated the corresponding accuracy for each model. Although
the accuracy of the models for different decision rates has
been compared elsewhere, we used more real world data in
our experiments. In addition, we wanted to compare the per-
formance of the models using different evaluation methods.
The performance of the models for different decision rates
is discussed in subsection V-A.
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Since causal discovery models in the bivariate case give a
decision between two choices, we can regard these models
as binary classifiers and evaluate them using the area under
ROC curve (AUC). Although there is difference between
the outputs of the three models and a binary classifier, we
propose a way to overcome this problem. It is described in
subsection V-B.

Finally, we compare model efficiency by calculating the
average time needed to give a decision. This is described in
subsection V-C.

A. Accuracy For Different Decision Rates

We calculated the accuracy of each model for different
decision rates using (7) and (8) and plotted the results
(Figure 3). The decision rate changed when the threshold
was changed. The larger the threshold, the more stringent
the decision rule. In an ideal situation, accuracy decreases
as the decision rate increases, with the starting point at 1.0.
However, the results with real world data were not perfect
because there was much noise in the data.

As shown in Figure 3, the accuracy started from 1.0 for the
ANM and IGCI model and from 0.0 for the PNL model. This
means that the PNL model gave the wrong decision when it
had the highest confidence. Investigation showed that PNL
model made a wrong decision with the highest confidence
because of the discretization of data5. Besides, we can see
that, although the accuracy of the IGCI model started from
1.0, the accuracy dropped sharply when the decision rate
was between 0.0 and 0.2. The reason why accuracy drops
is that IGCI made wrong decisions with large confidence
when dealing with pair0056-pair0063. These eight pairs of
variables contain much noise which makes IGCI give bad
performance. Besides, there are some “outliers” for the eight
pairs which affect the decision result much6. After reaching
a minimum, the accuracy increased continuously and became
more stable. Compared with the other models, the accuracy
of ANM was relatively stable with a starting value of 1.0.
When all decisions have been made, the accuracies of these
models are ranked IGCI > ANM > PNL.

DecisionRate :=
NDecision
NData

(7)

Accuracy :=
NTrueDecision
NDecision

(8)

B. Area Under ROC Curve (AUC)

Besides calculating the accuracy of the three models for
different decision rates, we used the area under ROC curve
(AUC) to evaluate their performance.

As described in IV-A, the dataset is not well balanced.
Although the three models did not train a classifier from the
data, the inference method can be seen as a binary classifier.
For a binary classifier, a well- known evaluation method is
the area under ROC curve (AUC). The ROC curve is plotted

5PNL makes wrong decision with the largest confidence when dealing
with pair0070 in [27]. One variable of pair0070 contains only two values:
0 and 1. The variable is easy to be inferred as the cause according to the
mechanism of PNL model.

6This is because that the calculation methods of IGCI (Equation 4,5,6) is
susceptible to “outliers”.

Fig. 3. Accuracy of Three Models for Different Decision Rates.

Fig. 4. Process to Label Every Pair of Variables.

by calculating the true positive rate (TPR) and false positive
rate (FPR) for different thresholds. The output of a binary
classifier is a value in the interval [0,1]. In contrast, for the
three models evaluated here, the outputs were the two values
calculated for the two possible causal directions. Despite this
difference, we used the following steps to get the ROC curve
and at the same time not break the decision rule of the three
models.

1) Divide the data into two groups: a) inferred as “X
causes Y” and b) inferred as “Y causes X” in accor-
dance with the decision rule of the model.

2) Let VX−>Y and VY−>X be the outputs of the models.
Calculate the absolute value of the difference between
VX−>Y and VY−>X (Equation 9) and map Vdif to
[0,1].

3) Label every pair of data in accordance with the process
diagrammed in Figure 4.

4) Use Vdif and the generated labels in 1) to calculate the
TPR and FPR for different thresholds. Plot the ROC
curve and calculate the corresponding AUC value.

Vdif = |VX−>Y − VY−>X | (9)

In step 1), we divided the data into two groups because the
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basic rule of causal discovery models needs to be observed.
For example, we cannot use the division of VX−>Y and
VY−>X in the same way as the output of a binary classifier.
If we did, the decision rule of the models would be broken
if the threshold was set very large or small. However, if
we divide the data into two groups in accordance with the
decision result, we not only take into consideration different
levels of punishment but also observe the original decision
rule.

In step 2), we used the absolute value of the difference
between VX−>Y and VY−>X as the “confidence” of the
model when giving a decision. The larger the Vdif , the
greater the confidence. We did not use division because, if
one of VX−>Y and VY−>X was very small, the division
result would be very large. We mapped Vdif to [0,1] to
make the calculation more convenient. In this way, Vdif
could be used in the same way as the output of a binary
classifier. For causal discovery, the larger the Vdif , the greater
the confidence in the decision. At the same time, more
punishment should be given when the decision is wrong.

In step 3), we labeled the data in accordance with the
diagram in Figure 4. For the decision “X causes Y,” the
positive class was “X causes Y.” We checked the dataset
to see whether the true label was “X causes Y.” If it was,
the data was labeled as a positive class, otherwise it was
labeled as a negative class. The same process was done with
the decision “Y causes X”; however, the label was opposite
since in this group “Y causes X” is the positive class.

In step 4), we used the normalized Vdif as the confidence
of a decision and the label assigned in step 3) to calculate
TPR and FPR for different thresholds. We plotted TPR and
FPR to get the ROC curve and calculated the corresponding
AUC value.

The results are plotted in Figures 5 and 6. The corre-
sponding data sizes and AUC values are shown in Tables
I and II. The IGCI model performed poorly when it gave
“X causes Y.” The AUC values for the IGCI model when
the decision was “X causes Y” were smaller than 0.5, which
means its performance was even worse than that of a random
classifier. However, as described in subsection V-A, when we
used different decision rates, the IGCI model had the best
performance.

We checked the decisions made by the IGCI model
and found that it made several wrong decisions when the
threshold was large. Such decisions with a large threshold
are punished severely when using the area under ROC curve
(AUC) metric. As shown in Figure 3, although the accuracy
of the IGCI model started from 1.0, it dropped sharply when
the decision rate was between 0.0 and 0.2. A wrong decision
with a small decision rate was not be punished much when
evaluating accuracy for different decision rates. However, for
the area under ROC curve (AUC), a wrong decision when
the threshold was large was punished more than when the
threshold was small. For these reasons, the starting point of
the ROC curve for IGCI model in Figure 5 has been shifted
to the right, making AUC less than 0.5. For the decision “Y
causes X,” the models performed better when evaluating with
the area under ROC curve (AUC), especially the IGCI one.
In this group, the IGCI(entropy) model had the largest AUC
(0.7222). Compared with the other models, ANM had similar
AUC values for both groups, demonstrating the stableness of

Fig. 5. ROC of Three Models When Decision was “X Causes Y.”

Fig. 6. ROC of Three Models When Decision was “Y Causes X.”

TABLE I
AUC OF THREE MODELS WHEN DECISION WAS “X CAUSES Y.”

Model Number of Data Pairs AUC

ANM 62 0.5383

IGCI(entropy) 66 0.3163

IGCI(slope) 70 0.2928

PNL 59 0.5468

TABLE II
AUC OF THREE MODELS WHEN DECISION WAS “Y CAUSES X.”

Model Number of Data Pairs AUC

ANM 29 0.5404

IGCI(entropy) 25 0.7222

IGCI(slope) 21 0.6923

PNL 32 0.6537

ANM. For the PNL model, the AUC value was larger but
not as high as the one for the IGCI model.

C. Algorithm Efficiency

Besides comparing the accuracy and ROC of the three
models, we also compared the average time cost for the
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TABLE III
TIME COST TO MAKE A DECISION

Model Time Cost

ANM 10.7± 7.4s

PNL 80.5± 19.5s

IGCI(entropy) 0.0014± 0.0019s

IGCI(slope) 0.0014± 0.0017s

algorithm to give a decision. We performed the experiment
on the MATLAB platform with an Intel Core i7-4770 3.40
GHz2 CPU and 8.00 GB memory. From Table III, we can see
that the IGCI model was the most efficient one while the PNL
model was the least efficient. ANM was in the middle. The
high time cost of the PNL model was due to the modeling
nonlinearity of f2−1 and f1 in Equation 2.

VI. CONCLUSION

We compared three existing state-of-the-art models (ANM,
PNL model, IGCI model) for causal discovery in the binary
case with real world data. Testing using different decision
rates showed that the IGCI model had the best performance.
To check whether the decisions made were reasonable, we
used a binary classifier metric: the area under ROC curve
(AUC). The IGCI model had a small AUC value for the
decision “X causes Y” because it made several wrong
decisions when the threshold was high. Compared with the
other models, the ANM results were relatively stable. Finally,
we compared the time cost when making a decision. The
IGCI model was the fastest even when the dataset was large.
The PNL model cost the most time to give a decision.

Of the three models, the IGCI one had the best perfor-
mance when there was little noise and the data were not
discretized much. Improving the performance of the IGCI
model when there is much noise and how to deal with
discretized data are future tasks. Although the performance
of ANM was relatively stable, overfitting should be avoided
for ANM. Of the three models, the PNL model is the most
generalized one as it takes into account the nonlinear effect
of causes, additive inner noise, and external sensor distortion.
However, modeling the nonlinearities of f1 and f2

−1 takes
much time for the PNL model.
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