
 

  

Abstract—This paper presents a systematic approach of fault 

detection for the customized manufacturing. The proposed 

approach involves offline calculation and online 

implementation. The discrete sampled signals are first collected 

from machine for offline calculation. Based on the control 

system theory, the settling time and the control limits of the 

system dynamic behavior can be estimated without realizing the 

exact model of the machine. These calculated values are used as 

the thresholds for online implementation. In our simulations, 

malfunctions occurring in the transient state and in the steady 

state can be correctly detected. For customized manufacturing, 

this approach can monitor the manufacturing under different 

process settings. 

 
Index Terms—Fault detection, customized manufacturing, 

transient state, steady state 

 

I. INTRODUCTION 

HE improvement of technology, transportation, and 

computer nowadays connects culture and economic from 

different countries into an intertwined and interdependent 

network. Globalization enhances the competitiveness of 

industry environment, leading to a transformation toward 

manufacturing customization. Unlike past years, firms today 

shift their focus from increasing productivity to optimization 

and innovation. 

The concept of “the fourth industrial revolution (Industry 

4.0)” launched out by Germany leads the world in such a 

transformation. Industry 4.0 emphasizes the use of 

cyber-physical system and Internet of Things to ultimately 

build a self-intelligent and self-learning “Smart Factory” [1–

3]. Cyber-physical system combines scientific computation 

with sensor networks and actuators to create a network of 

computational elements interacting with the physical world. 

By collecting and analyzing information from physical 

entities, machines are capable of predicting their own 

degradation and making the optimal decision, turning 

themselves into self-aware and self-maintained. In addition, 

the Internet of Things embeds machines with computer 

systems, especially the Internet, and allows machines 

continuing to collect and exchange data. By doing so, the 

Internet of Things improves machines’ performance and 

efficiency. Altogether, cyber-physical system combining 
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with the Internet of Things becomes a large and complex 

network known as the “Smart Factory”. 

As mentioned earlier, manufacturing customization will 

enhance firms’ competencies. However, the variety of 

products and the complexity of manufacture will also make 

the manufacturing process of customization hard to manage. 

Furthermore, any equipment faults or malfunctions will 

degrade machine’s health and performance and lead to defect 

products or scraps so that the manufacturing cost increases. 

Under such a highly complex manufacturing environment, 

manufacturing processes usually suffer from a high level of 

nonlinearity and a wide range of variation on process 

parameters. 

For process monitoring and fault detection, there are 

several kinds of techniques available but, however, lots of 

methods only work under limited conditions. In the real 

world, similar machines may be required to perform different 

tasks under different environment. As a result, incorrect 

method may cause false prediction and wrong diagnosis, 

leading to an incorrect outcome. 

It is not surprising that the model-based method is 

popularly used in the industry. It utilizes an explicit 

mathematical model of the monitored system. Once the 

model is precisely built-up, any system fault would be 

difficult to flee from the detector. However, the performance 

of the model-based approach depends strongly on the 

accuracy of the models. 

Currently, model-free methods, or called data-driven 

approaches, are widely used in practice, for example, 

statistical process control (SPC) is one of the most commonly 

seen methods for machines maintenance and manufacturing 

process monitoring, by controlling and improving a process 

through statistical analysis [4].  Engineers will measure the 

mean and variance from collected data and compare them 

with the control chart to detect data outliers and thus make the 

optimal decision. However, the main issue of statistical 

process control is that it is based on the assumption that the 

data must be identically, independently and normal 

distributed.  As a result, SPC does not work properly on most 

of the waveform signals. 

Obviously, correct machine maintenance and fault 

detection are challenging and hard to achieve. Creating an 

effective and proper fault detection technique is yet required 

further research. With these issues presented above, this 

paper is dedicated to develop a simple computation method 

for machine monitoring and fault detection, especially for the 

case of manufacturing customization in Industry 4.0. 
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II. METHOD AND PROCEDURE 

A fault is an abnormal change in the characteristics of a 

machine leading to undesirable performance and products. 

This paper proposes a methodology that can be used to detect 

machine’s problems in manufacturing process and avoid 

false alarm. We herein use the temperature control as an 

example. Usually, the time response of a process can be 

divided into two parts: the transient response and the 

steady-state response. When the machine is first turned on, it 

will undergo a process of heating up before getting to the 

ideal and steady temperature for works. During that period of 

time when machine is heating up, the status of machine is 

known as being in the transient state. In transient state, 

machine’s temperature is relatively inconsistent comparing to 

the steady-state temperature. Generally speaking, monitoring 

the steady state is quite easier than the transient state. For the 

steady state, it is fair to say that the machine is functioning 

incorrectly if the temperature changes dramatically. This rule, 

however, cannot apply for machine in the transient state since 

machine’s temperature is continuously increasing in that time 

span. As a result, different methodologies are required for 

fault detection of the machine in both the transient and the 

steady states and it is important to monitor the entire machine 

dynamics. 

To implement process monitoring and fault detection, the 

data of machine’s temperature at certain period of time must 

be collected first. This proposed method checks the transient 

state and the steady state, respectively, without realizing the 

exact model of the machine. The procedure, as shown in Fig. 

1, contains two steps: offline calculation and online 

implementation. The step of offline calculation is to estimate 

some critical parameters that will be used in the online 

implementation for process monitoring. 

 

 

Fig. 1. Procedure for process monitoring. 

 

In this study, we consider the second-order control systems 

whose analysis generally helps to form a basis for the 

understanding of analysis of higher-order systems. The block 

diagram is shown schematically in Fig. 2. The closed-loop 

transfer function of a second-order system with unity 

feedback can be written as 

�(�)

�(�)
=

��
	

�	 + 2���� + ��
	
 

where �	and �� are real constants, called damping ratio and 

undamped natural frequency, respectively. Obviously, the 

dynamic behavior of the second-order system is related to the 

parameters �	 and �� . If 0 < � < 1 , the system has 

oscillatory transient response. It becomes more difficult to 

draw out the signal characteristics. Nevertheless, the transient 

response is necessarily important, since both the amplitude 

and the time duration of the transient response must be kept 

within tolerable limits.  

 

 

Fig. 2. Second-order control systems. 

 

The step-function input to the second-order control system 

is considered. It represents an instantaneous change in the 

input. For example, if we activate an electric heater through 

the operation of a switch, a step-function constant voltage is 

applied to the heater. Thus, for the example of the 

temperature control, an engineer must provide the settings of 

desired temperature and heating duration to the control 

system. It is desirable that the transient response of heating 

process be sufficiently fast. Otherwise, the substrate to be 

heated might not gain enough thermal energy. A critical 

parameter in the transient response is then the settling time 

which is defined as the time required for the response to reach 

and stay within a range of 5% of the desired temperature. 

Furthermore, the range of 5% of the desired temperature is 

also adopted as the control limit to monitor the steady-state 

response. 

Moreover, the time output signals of control systems 

normally are not analytical signals. That is, the mathematical 

expressions of these signals are difficult to be derived. In 

practice, the output signals are usually acquired by sensors, 

resulting in the discrete sampled-data. Hence, the discrete 

sampled-data of temperature are collected from the machine 

in the offline calculation stage. The logical settling time must 

be calculated using the sampled-data as the threshold for the 

online implementation. 

A. Estimating the threshold of settling time 

Using the sampled-data collected in the offline calculation 

stage, one can realize the time at which the output response 

reaches the 5% range of the desired temperature. However, it 

is not suitable to be used as the threshold value because 

different products might require different temperature 

settings. Moreover, the machine performance might degrade 

after long term operation. Therefore, a flexible threshold 

value should be considered. 

Based on the theory of control systems [5,6], the damping 

ratio must be between 0.4 and 0.8 for a desirable transient 

response of a second-order system. Thus, a reasonable 

settling time for different temperature settings can be 

estimated as: 

�� =
3

���

	(5%	criterion) 

where ��	 is the settling time and �	 is equal to 0.4. 

Unfortunately, the undamped natural frequency ��  is 

unknown. 

To estimate �� , another specification defined in the 

control system theory can be utilized. The rise time  �� is the 

time required for the response to rise from 10% to 90% of its 

final value. For the second-order system, the rise time can be 

approximated as: 
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�� =
31 − 0.4167� + 2.917�	

��

,					0 < � < 1. 

From the collected sampled-data, we estimate the rise time 

to be the time at which the sample: 

(sample(i) > 80% * final value) AND 

(sample(i) < 0.9 * final value) 

or 

90% * ∆t/sample(1) 

where ∆t is the sampling time of the sensor. Thus, the 

undamped natural frequency ��  can be estimated. Finally, 

the settling time can be estimated for the damping ratio being 

0.4 and 0.8, respectively, and the maximum value is chosen 

as the threshold. 

B. Estimating the steady-state control limits 

The damping ratio dominates the dynamic behavior of the 

transient response. The transient response is oscillatory if 

0 < � < 1 . Therefore, we cannot determine whether the 

response is in the steady state or not if: 

(sample(i) > 0.95 * final value) AND 

(sample(i) < 1.05 * final value). 

If the response reaches the stays within a range of 5% of 

the final value, the maximal oscillatory change must also 

satisfy: 

sample(*) − sample(* − 1)

Δ�
<
0.1 × final	value

Δ�
 

Fig. 3 shows the concept. 

 

 
Fig. 3. Steady-state control limits 

 

III. SIMULATIONS AND RESULTS 

Once the threshold values for the transient state and the 

steady state are determined, they can be used for online 

implementation. In our simulation, we assume that the 

temperature control system is: 

�(�)

�(�)
=

25

�	 + 4� + 25
 

Actually, this mathematical model is unknown to us. We 

estimate the aforementioned threshold values using only the 

discrete sampled-data. Assume that the sampling time of the 

sensor is 0.5 sec. The input is the unit-step function. 

After the calculation, the threshold of the settling time is 

2.317 sec. Now, four cases are considered. Figures 4 – 7 

shows the results. In these figures, the solid line is the ideal 

response of the temperature control system, while the 

asterisks denote the actual sampled response data. 

 

Case 1: 

If the temperature control system is subjected to a 

disturbance, leading to have a larger oscillatory transient 

response. Then, the output has a larger maximum overshoot. 

It takes more time to reach the steady state. As shown in Fig. 

4, our method correctly detects the problem by comparing the 

settling time. Although the maximum overshoot is an 

important specification in the transient response, we do not 

need to calculate and monitor this value. 

 
Fig. 4. Case of larger oscillatory transient response. 

 

Case 2: 

If the temperature control system is subjected to a 

malfunction so that the temperature cannot be raised as soon 

as possible. The transient response exhibits no oscillation. 

Similarly, it takes more time to reach the steady state. Our 

method correctly detects the problem through the comparison 

of the settling time, as shown in Fig. 5. If the system has a 

serious malfunction, a longer settling time is needed. 

Obviously, this kind of cases can be monitored by our 

method. 

 
Fig. 5. Case of slow temperature raising. 

 

Case 3: 

If the temperature control system is subjected to a 

malfunction that occurs when the temperature has reached its 

steady state. The system is correctly heating up and the 

transient response exhibits normal oscillation. However, the 

temperature cannot keep steady. It is a worse case because the 

heated substrates do not have identical thermal energy 

piece-to-piece. 

For this case, the sampled response data are compared with 
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the control limits of steady state. The malfunction can be 

monitored by our method, as shown in Fig. 6. 

 
Fig. 6. Case of malfunction in the steady state. 

 

Case 4: 

For the customized manufacturing, the process might 

require different temperature settings and inconsistent 

heating durations. Once the malfunction occurs, the sequent 

machining process might be stringently affected. In this 

simulation, we assume that the temperature control system is 

subjected to a malfunction occurring at the steady state of the 

second manufacturing process. Furthermore, the temperature 

cannot be raised fast at the transient state of the third 

manufacturing process. It is a combined circumstance of the 

aforementioned cases and the malfunctions can be monitored 

by our method, as shown in Fig. 7. 

 
Fig. 7. Process monitoring for customized manufacturing. 

 

IV. CONCLUSION 

Industry 4.0 emphasizes the use of cyber-physical system 

and Internet of Things to ultimately build a self-intelligent 

and self-learning “Smart Factory” for the customized 

manufacturing. This proposed fault detection method is a 

data-driven approach. Based on the control system theory, 

the settling time and the control limits of the system dynamic 

behavior can be estimated without realizing the exact model 

of the machine. The method can detect the malfunctions 

effectively in the transient state and in the steady state. It can 

be easily involved into the system of Smart Factory. 
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