

Abstract—Composite web service is typically comprised of a

main orchestration description written in BPEL and its

associated set of simple and individual web services. A common

way to test the composite web service is to execute the BPEL

along with its fully implemented version of the individual web

services. Unfortunately, a particular web services orchestration

in BPEL is difficult to be tested beforehand alone, without the

availability of the related web services. In this paper, we

propose an alternative mean to verify the web services

orchestration in the early stage of the high level design process

using the formal verification of the BPEL and its imitated

stubs, called dummy web services. In our approach, a relevant

dummy web service is generated to cope with its defined

WSDL and the equivalence class partitioning technique is

specifically focused. Thus, the valid and invalid classes of the

invocation of the web services are simulated. The simple

transformation rules of the BPEL alone, without the detailed of

its associated individual web services, into Colored Petri Net

are proposed. The resulting Colored Petri Net of a BPEL is

correctly and consistently transformed and verifiable in CPN

Tool using the equivalence class partitioning technique.

Index Terms—Formal Verification, Dummy Service,

Composite Web Service

I. INTRODUCTION

ARADIGM for distributed computing, Service-Oriented

Computing (SOC)[1] provides a manner to create new

application architecture for cooperating services loosely

connected, creating dynamic business processes and agile

applications. The SOC promise requires the design of

Service-Oriented Architectures (SOAs) that allow the

development of simpler and cheaper distributed

applications. Web Service Composite Application

Framework (WS-CAF) [2] is an open framework, generic

framework for application that contains multiple services

used together. It triggers an emerging of various software

tools used to describe structural and behavioral of web

service application. Composite web service applications are

C. Dechsupa is a Ph.D. student at department of computer engineering

faculty of engineering, Chulalongkorn University, Bangkok, 10330

Thailand (e-mail: chanon.de@student.chula.ac.th).

W. Vatanawood is an associate professor at department of computer
engineering faculty of engineering, Chulalongkorn University, Bangkok,

10330, Thailand (to provide phone: (+66) 0-2218-6956-7; fax: (+66) 0-

2218-6955; e-mail: wiwat@chula.ac.th).
A. Thongtak is an assistant professor at department of computer

engineering faculty of engineering, Chulalongkorn University, Bangkok,

10330, Thailand (e-mail: arthit.t@chula.ac.th).

established from several individual web services. Generally,

these applications have a lot of sub-processes, data paths,

input vectors, and state transitions that affect application

complexity.

The standard for assembling a set of discrete services, the

Web Services Business Process Execution Language (WS-

BPEL) is used to model the behavior of both executable and

abstract processes. All paths of service component

architecture need to be aware of the business process,

operations to execute, messages to exchange, and the timing

of message exchanges. To ensure design, formal verification

is the methodology for model checking that is the

algorithmic analysis of programs to prove the properties of

their executions.
Model checking tools are distinguished formal

verification methods that can be ensured the correctness of

application. They are used to detect and diagnose the faults

in software and hardware. Currently, various verification

tools have been used to verify a model, which they support

automatic checking.

We propose methods for model abstraction and

verification of composite web service application described

as WS-BPEL. The WS-BPEL would be transformed into

Colored Petri-Net model and we also introduce the dummy

web service generation technique. The Colored Petri-Net

tool is used to draw the resulting model and check the

desired properties. The remaining of this paper is organized

as follows: Section II describes background for web service

verification. Section III reviews the related researches.

Section IV discusses the proposed approach and Section V

illustrates our implementation with a simple case study.

Section VI is our conclusion.

II. BACKGROUND

A. Web Service Business Process Execution Language

Business Process Execution Language is commonly

known as BPEL or WS-BPEL [3], which is used for

business processes definition as coordinated sets of Web

service interactions to achieve business goals. It uses an

XML-based language that supports the web services

technology stack, including SOAP, WSDL, UDDI, WS-

Reliable Messaging, WS-Addressing, WS-Coordination, and

WS-Transaction , these are used to define process definition,

model including the grammar for describing the application

behavior based on interactions between the process and its

partners.

In order to invoke the service partner, Web Services

Description Language (WSDL) [4] is a standard format for

describing a web services interface that specifies the

Formal Verification of Web Service

Orchestration Using Colored Petri Net

C. Dechsupa, W. Vatanawood, and A. Thongtak

P

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

location of the service, and the names of the methods of the

service. BPEL introduces a mechanism to define how

individual or composite activities within a process. Actually,

BPEL only requires WSDL port types, and those port types

map to their partner links in the BPEL process. How those

partner links are connected to physical services defined in a

WSDL document.

B. Dummy Web Service.

Dummy Web Service or Mockup Service is the rapid web

service prototyping that performs the static mock

implementation, adding the functionality of the desired

operations and the creation of the alternative responses. It

allows an implementing and a client testing that is no need

to wait for the completely actual service or to avoid the

directed service invocation during the testing phase. For

instance, The SOAP Service Mocking functionality in

soapUI [5] is called a ―MockService‖. It is used to simulate

the number of WSDL contracts; to build the scripting

functionality and to simulate basically any kind of the

desired behavior that roughly is programed by the designer.

Although the developers can use WSDL for obtaining the

interface of service, they cannot catch its original

implementation. Therefore, the dummy service should be

built to resemble the original service as possible.

C. Colored Petri-Net (CPN)

Colored Petri-Net or CPN [6] is the graphical language

for constructing models of concurrent systems and analyzing

their properties. CPN is extended classical Petri-net with

data, hierarchy and time; an attached data value is called a

token color. Color set is a place that contains token. CPN

provides the primitives for the description of the

synchronization of the concurrent processes, while CPN ML

programming language [7] provides the primitives for the

definition of data types and the manipulation of data values.

The CPN allows the designer to focus on the problem

models using CPN Tool [8] for editing, simulating, and

analyzing Colored Petri nets model.

III. LITERATURE REVIEW

Currently, many verification techniques have been used to

verify composite service. Researches in web service

composition mainly focus on formal verification of service

composition based on interaction activities from basic

activity in BPEL [9, 10]. Artifacts in service oriented system

described with formal mathematical model allowed the

structural and behavioral definition. Additionally, many

verification tools support the automatically correctness

checking of an abstract model. An example of model

correctness checking approach is the formal verification

with CPN tool, which the application is written in CPN

model and temporal properties are written in Computational

Tree Logic (CTL) to verify its properties.

Wei Tan et al. [11] provided an approach to analyze an

interservice compatibility and automatically compose

services. The service constraints were written in BPEL.

They transformed BPEL description to CPN model and

adopt mediation to make their compatible without changing

their internal logic, and then analyzed their composition

with the message passing of the mediator. Likewise,

Yingmin LI et al. [12] addressed the diagnosis of faulty data

and the faulty activities of orchestrated web services. They

proposed the inequations solving algorithm that helps to

improve the fault detection. They defined the color

propagation functions for each data dependency relation.

Mapping each primitive data to a place and each basic

activity to a transition are the mapping technique that was

used for transforming BPEL to CPN model, it was verified

by model-based diagnosis framework.

Formal verification technique has to depict all of the

behaviors of application. If an individual web service is the

service provided by an outside service provider, the

designers could only catch its interface. Dummy service

generation is the alternative mean to imitate the original

service. It can be used for development and web service

testing in the early stage of the high level design process.

Sylvain Hall [13] proposed an approach for generating

dummy service which was input-output patterns imitation. A

dummy service can be generated from a set of LTL-FO+

formula expressing the wide range of constraints, including

message sequences, parameter values, and

interdependencies.

In a similar way, our methods are defining simple rules of

the transformation for BPEL to create CPN model and

proposing the generating concept of the dummy web service

to abstract the implementation of individual web services,

the equivalence class partitioning technique is particularly

focused. Both techniques can be used understandably and

effectively.

IV. OUR APPROACH

The overview of our formal verification process is shown

in Fig. 1. The target BPEL file is expected and its BPEL

elements are extracted and considered. The BPEL elements

represent all of the possible activities, divided into two

classes: basic and structured. Basic activities describe

elemental steps of the process behavior, such as Invoke,

Assign, Receive, Reply, Wait, etc. While, structured

activities encode control flow logic, such as Choice, For

Each, Parallel, Sequence, While loop, Repeat until loop, etc.

The type of each BPEL element would be analyzed and

mapped into CPN element relevantly, according to our

proposed transformation rules. An Invoke or Reply activity

would be specifically considered with its associated

individual web service interface, shown as WSDL interface

file. A dummy service would be generated to each Invoke or

Reply activity in term of CPN elements as well.

A. Transform BPEL to CPN.

In this section, the definitions and one simple rules of

transformation of BPEL into CPN model are proposed.

Definition 1: BPEL model.

A BPEL model is a n-tuple BP= (BAct, SAct, Plnk, Var)

where

BAct is a set of basic activities {Invoke, Assign, Receive,

Reply, Wait, Validate ...}.

SAct is a set of structured activities {If-Else, Choice, For

Each, Parallel, Sequence, While loop, Repeat until loop,.}

Plnk is a set of partner links.

Var is a set of variables in BP.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

Definition 2: CPN model.

A CPN model is a n-tuple CP = (PL, TN, Arc, Colr, PLColr,

Grd, VV)

where

PL is a set of places.

TN is a set of transition.

Arc is a set of arcs (x,y) where (x,y) (PL x TN) (TN x

PL)

Colr is a set of color sets defined in BP.

PLColr is a color set function PL Colr.

Grd is a guard function T Gexp where Gexp is a

predicate guard expression, evaluated to Boolean True or

False.

VV is a set of variables in CP.

According to the definitions of BPEL and CPN models,

we define the simple rules of transformating BPEL into

CPN.

Transformation Rules from BP to CP:

1) For the set of the consecutive basic activities of

"Receive" and "Assign", a place in PL is defined in CP.

2) For a basic activity, other than "Receive" and

"Assign", a transition in TN is defined in CP.

3) For a partner link in Plnk, an additional dummy web

service is defined.

4) For structured activity of "If-Else", a transition in TN

are defined in CP.

5) For each pair of activities in BAct SAct, a buffer

place in PL is defined in CP.

6) For each variable in Var, a corresponding variable in

VV is defined in CP.

7) For each type of variable in Var, a corresponding

Colr is defined in CP.

Fig. 1. Formal verification of web service orchestration.

Some examples of BPEL to CPN elemental

transformation in terms of notations, are shown in Table 1.

Moreover, a sample of dummy web service defined for a

particular partner link would be described in the next

section.
TABLE I

TRANSFORMATION RULES AND THEIR EXAMPLES

Rule# BPEL CPN

1)
Receive

Assign

Info

2) Validate

Validate

3) Invoke PartnerLink

Invalid

Pa
rtn

er
Lin

k Valid
Fn()

Inv
ok

e

P

4)

If X

If X else

(X)
If X

(X’)

5) Assign

Validate

Assign

Validate

B

6) Types declaration in BPEL’s

XML
Colored sets in CPN

7) Variables declaration in

BPEL’s XML

Variables sets in CPN

B. Dummy Web Service Generation

The implementations of dummy web service are

imitatively generated from the WSDL of individual service.

The dummy web service generation consists of two steps.

1). Analyze the interfaces of the dummy web service

those are defined in interface tag and types tag. This step

produces the dummy web service name, the input

parameters, the data type of input parameters, the boundary

value of each input parameters, and the data type of return

value.

2). Fill in the details of the dummy web service those are

derived from the first step.

An equivalence class partitioning technique is used for

parameters analysis of the details of the dummy web

service. Each input parameter is used for analyzing the

range of equivalence class. This research focuses on six data

types of inputs and outputs: integer, double, decimal, byte,

string and enumeration. In case of integer or double or

decimal, the equivalence classes of input parameter are

partitioned into three classes which are the valid class, the

invalid class of lower-bound and the invalid class of upper-

bound.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

For instance, web service provider requires @salary

parameter declared as decimal and the boundary values

specified between 10 and 100, it means that the valid class is

{100>=@salary>=10 }, the invalid class of lower-bound is

{@salary<10} and the invalid class of upper-bound

is{@salary>100}. In case of string or enumeration, the

equivalence class is partitioned into two classes those are the

valid class comes from the default value or the choices of

such parameter, and invalid classes are the values those are

not in the default value or the choices of such parameter.

For instance, web service provider requires @LoanType

parameter declared as enumeration. It consists of three

choices: EML, NML, and SPL. It means that the valid class

is {@LoanType in (EML, NML, SPL)} and invalid class is

{@LoanType not in (EML, NML, SPL)}. Likewise, the

outputs of service can only be considered in the valid class

and single invalid class (compose the lower-bound and

upper-bound to a class) in order to control the output values

of dummy web service.

Fig. 2 illustrates the algorithm used. Line number 6-13

describe the input parameters those are defined as integer or

double or decimal, line number 14-18 describe parameter

which is defined as byte, line number 19-22 describe

parameter defined as string, and the input parameter defined

as enumeration describes in line number 23-28. The number

of parameter per service operation is fixed in two parameters

those are the limitation of this work.

1 AnalyzeParameter(inputList[]){
2 /*inputList[] is parameter list :parameter name, data type
3 ,min value, max value and set of choices (enumeration case) */
4 for j=0,j< = inputList.lenge, j++
5 nOfEqClass = the number of equivalence class
6 if inputList.[j] in ['integer', 'double', 'decimal']
7 set nOfEqClass[j]=3
8 set ParaVal[0] = (max<=@par_value<=min) -- Valid
9 set ParaVal[1] = (@par_value < min) -- Invalid Lower
10 set ParaVal[2] = (@par_value>max) -- Invalid Upper
11 end if
12 if inputList.[j] = 'byte' then
13 set nOfEqClass[j]=1
14 set ParaVal[0] = @par_value in (0,1) -- Valid
15 end if
16 if inputList.[j] = 'string' then
17 set nOfEqClass [j]=2
18 set ParaVal[0] =@par_value = Default value -- Valid
19 set ParaVal[1] =@par_value <> Default value -- Invalid
20 end if
21 if inputList.[j] = 'enumeration' then
22 set nOfEqClass = 2
23 set ParaVal[0] =@par_value in (choices.value) -- Valid
24 set ParaVal[1] =@par_value not in (choices.value) -- Invalid
25 end if
26 end for
27 return value case = nOfEqClass [0]* nOfEqClass [1]
28 }

Fig. 2. The algorithm for input parameter analysis.

An example of WSDL elements, Service provider

provides the web service for the loan credit limit calculation.

The interface name of service is CalculateCreditLimit and

the operation name is OpCheckLoanCredit. The input

parameters of this operation are LoanType declared as

enumeration and RequestAmt declared as decimal and the

return value of this service is chkResponse that is defined as

double. The value of LoanType is defined in three choices

(EML, NML, and SPL) and the value of RequestAmt is

defined in range between 1,000 and 100,000. The ranges of

RequestAmt are partitioned into three classes: valid class

(100,000>=RequestAmt>=1,000), invalid class of lower-

bound (RequestAmt<1,000) and invalid class of upper-

bound (RequestAmt>100,000). The WSDL element of loan

credit limit calculation demonstrates as Fig.3. The numbers

of possible cases of dummy web service are six cases

described in if-else guard conditions those are illustrated in

Fig. 4.

……
<xs:simpleType name="loanCode">
 <xs:restriction base="xs:string">
 <xs:enumeration value="NML"/>
 <xs:enumeration value="SML"/>
 </xs:restriction>
</xs:simpleType>
<xs:simpleType name='amount'>
 <xs:restriction base='decimal'>
 <xs:minInclusive value="1000"/>
 <xs:maxInclusive value="100000"/>
 </xs:restriction>
</xs:simpleType>
<xs:complexType name="chkRequest">
<xs:sequence>
<xs:element name="LoanType" type="tns:loanCode" />
<xs:element name="RequestAmt" type="tns:amount" />
</xs:sequence>
</xs:complexType>
<xs:element name="chkResponse" type="xs:double"/>
<xs:element name="InvalErr" type="xs:string"/>
</xs:schema>
</types>
<interface name = "CalculateCreditLimit" >
<fault name = "InvalErr" element = "ghns:InvalErr"/>
<operation name="opCheckLoanCredit".......>
<input messageLabel="In" element="ghns:chkRequest" />
<output messageLabel="Out" element="ghns:chkResponse" />
<outfault ref="tns:InvalErr" messageLabel="Out"/>
</operation>

Fig. 3. The Excerpt WSDL of simple loan service.

val chkRepesponse : int = 0; -- default 0 is invalid value of return

fun opCheckLoanCredit (loanType,requestAmt) =

 if loanType<> null andalso loanType<> null then
val SetLoanType = ["EML", "NML"]

 if loanType in SetLoanType then

 if requestAmt <= 999 then
 chkRepesponse = 0; --invalid

 else if (requestAmt >= 1000) andalso (requestAmt <= 100000)

 then

 …… } –fill in the detail of valid case;

 chkRepesponse = xxxxx.00;

 else if requestAmt >= 100001 then
 chkRepesponse = 0; --invalid

 else if loanType not in SetLoanType then

 if requestAmt <= 999 then
 chkRepesponse = 0; --invalid

 else if (requestAmt >= 1000) andalso (requestAmt <= 100000)

 then
 chkRepesponse = 0; --invalid

 else if requestAmt >= 100001

 then
 chkRepesponse = 0; --invalid

else
 chkRepesponse;

Fig. 4. The dummy web service using ML language.

The rough skeleton of dummy web service is represented

by the number of possible cases derived from the

combination of the number of equivalence classes of each

parameter. The designers have to fill in the details in each

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

possible case. When the orchestration abstraction and the

dummy web service are completed, for successfully model

abstraction, both parts would be composted as one CPN

model. Then CPN tool is used to verify the CPN model with

specifying the desired properties.

V. IMPLEMENTATION

This section describes the detail of the process

implemented using a case study. The composite service of

the loan credit calculation process is new web service

attempting to combine the existing web services. The first

activity is reviewing the infallibility of requesting loan,

requested documents those are submitted over the Coop-Net

banking system. The system requires related documents and

basic information such as loan type, requested amount, term

of payment, and the photocopy of identification card and so

on. In case of a requester omits a required document or

submits an incorrect document, this loan request would be

rejected. If the documents are accurate and complete, the

next step would be the checking of share values and the

deposit balance. Both mentioned steps can be executed

simultaneously. When the executions are complete, the

summation of their values as property is used for comparing

with the loan requested amount. If it is less than or equal the

requested amount, the system uses the term of payment and

the insurance code for requesting the insurance web service

for adding value to the property value. Then the system

compares the property value with loan requested amount

again. If the property is less than the requested amount, this

loan request would be rejected. When the property value

checking process is completely executed and the property

value is valid, the results of loan request processing are sent

for credit scoring calculation. The results of this activity are

a maximum credit, interest rate and installment type. After

that, the loan request is sent to the fund committee for

approval. The three out of five fund committee members

should authorize the condition for the loan request. Then

this loan request is inquired to create the new loan contract

and the acknowledgment message is sent to the requester.

The overview of new loan process is illustrated in Fig. 5

This loan process is written in BPEL process using

eclipse BPEL designer. It is created by the begins with a

process element defined with the name and target

namespace, then all components of process are defined such

as partner links, global variables, activities, flow and so on.

This loan process has one partner link; it is the insurance

web service that is provided by an outside service provider.

For model abstraction, we have developed simple

application using xml parser for elements extraction. The

application is used for extracting elements in the BPEL for

creating the orchestration abstraction, which the elements

are marked for mapping these to a place or a transition in the

CPN model. WSDL file of insurance web service is used for

dummy web service creation. The implementations of this

dummy web service are programmed in ML language as a

function. We include the dummy web service in CPN

model, which the function of the dummy web service is

called on the outputArc. For completed model, we describe

the details in model such as colored sets, guard conditions,

input arches, and output arches following the transformation

rules, the CPN model is illustrated in Fig. 6.

We determine the sets of desired properties those are used

for checking the CPN model such as a deadlock free, an

unreachable path and an incorrect behavior. Model checking

by CPN tool can simulate the execution and track each

desired variable, which the faulty activities are represented

with simulation mode or shown with red in model.

Fig. 5. Overview of loan request process.

Fig. 6. Loan request process described as CPN model.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

VI. CONCLUSION

Web service should be verified for achieving desired

service properties. An example model correctness checking

approach is the verifying with CPN tool. In composite web

service, if some activity is the invoking or replying and also

calling an outside service, it means that the designer maybe

unable to catch its original implementation. We propose the

method for verifying composite web service written in

BPEL process in the early stage of the high level design

process using the formal verification of the BPEL and its

generated stubs, without its associated individual web

services. This method produces two parts those are the

orchestration and the dummy web service. We present the

simple rules of the transforming of BPEL to CPN model; the

equivalence class partitioning technique is particularly

focused for stub generation which uses the WSDL of

individual service. They are correctly and consistently

transformed and verified in CPN Tool. This method is an

expressive inscription for the places and the transitions

expression in CPN model. The dummy web service not only

is a part of verification but also acts as the original service

that supports the designer to fill in the details including the

controller of return value. The limitation of the dummy web

service is its output only representing valid or invalid class.

Our future work will include applying the proposed method

to many service partners and many input parameters and

attempt to create an automated system.

REFERENCES

[1] M. N. Huhns and M. P. Singh, ―Service-oriented computing: key

concepts and principles,‖ IEEE Internet Computing, vol. 9, pp. 75-81,
Jan-Feb 2005.

[2] OASIS, ―Web Services Context Specification (WS-Context) Version

1.0,‖ 2015. [Online]. Available: http://docs.oasis-open.org/ws-caf/ws-
context/v1.0/wsctx.pdf.

[3] OASIS, ―Web Services Business Process Execution Language

Version 2.0,‖ 2015. [Online]. Available: http://docs.oasis-
open.org/wsbpel/2.0/wsbpel-v2.0.pdf.

[4] E. Newcomer, ―Understanding Web Services-XML, WSDL, SOAP

and UDDI,‖ Pearson Education, 2002.
[5] C. Kankanamge, "Web Services Testing with soapUI," Packt

Publishing, 2012.

[6] V. Gehlot and C. Nigro, ―An introduction to systems modeling and
simulation with Colored Petri Nets,‖ proceedings of Simulation

Conference (WSC), pp. 104–108, 2010.

[7] K. Jensen, L. M. Kristensen and L.Wells, ―Coloured Petri Nets and
CPN Tools for modelling and validation of concurrent systems,‖

Springer Published online: 13 March 2007, pp. 213–254, 2007.

[8] L. M. Kristensen, "State Space Methods for Coloured Petri Nets,"
Department of Computer Science, University of Aarhus, Aarhus,

Denmark, Ph.D. Dissertation 2000. CPN Tools. [Online]. Available:

http://cpntools.org/.

[9] M. Perepletchikov ―A Formal Model of Service-Oriented Design

Structure‖, Software Engineering Conference, 2007. ASWEC 2007.

18th Australian, pp.71 -80.
[10] H. Guan, S. Ying and C. Wang, ―A Correctness Verification

Approach of the BPEL Exception Handling CPN Model Based on

Temporal Property,‖ Journal of Networks, Vol.9, pp. 2743-2750,
2014.

[11] W. Tan, Y. Fan, and M. Zhou, ―A Petri Net-Based Method for

Compatibility Analysis and Composition of Web Services in Business
Process Execution Language,‖ IEEE Trans. on Automation Science

and Engineering, Vol.6, pp. 94–106, 2009.

[12] Y. Yan, P. Dague, Y. Pencole and M. -O. Cordier, ―A Model-based
Approach for Diagnosing Faults in Web Service Processes‖, JWSR. ,

vol. 6, pp. 87-110, 2009.

[13] S. Hallé, ―Automated Generation of Web Service Stubs Using LTL
Satisfiability Solving,‖ WS-FM 2010, pp. 42-55.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

