Abstract—Recently, users require the recipe recommendation system that provides the recipes reflecting their own purpose. In order to realize such a system, our system uses the metadata of the recipes. However, it is not realistic to add metadata for the huge number of recipes, manually. Therefore, in this paper, we propose an automatic recipe metadata generating method by considering user’s various moods. Our system adds the metadata, which expresses the user’s moods along to the five aspects, using a similarity of the recipes. We discuss the adequateness of our proposed method based on an evaluation experiment.

Index Terms—cooking recipe recommendation, automatic metadata generation, similarity of recipes, five axis for the mood

I. INTRODUCTION

RECENTLY, numerous cooking websites that recommend cooking recipes have been launched. For example, Cookpad[1] and Rakuten Recipe[2] are very popular in Japan. Cookpad contains 2.2 million recipes and 50 million monthly access users, and Rakuten Recipe contains 1 million recipes. This reflects the high demand for recipe providing services. In order to improve the accuracy of recipe recommendation, we consider that the approach, which add the various metadata to the recipes, is effective approach for the recipe recommendation system. For example, if the recipe have a metadata like a “good for the bedtime snack”, the system can provide the effective recipes for user’s purpose, as shown in Fig.1.

In our previous work, we developed the system that provides the recipes that suit user’s mood[3]. The system contains the 493 recipes added the metadata relevant to the mood. Because the metadata was added manually by experts in nutrition, the metadata expresses precisely the moods. However, it is not realistic to add the metadata by manually for the huge number of recipes.

Therefore, in this paper, we propose an automatic recipe metadata generating method by considering user’s various moods. Basic concept of our method is to add the metadata using the similarities between recipes. Our system extracts the feature vector from each recipe by analyzing the recipe text in the recipe and cooking animation. Their final goal is to develop the system that generates cooking animation by analyzing recipes. Shidochi et al. proposed a method to find of master recipes(recipes that have been given metadata manually) and the feature vector of target unlabeled recipes. And second, in order to improve the accuracy of adding the metadata, we extract the feature vector focusing on the five aspects related to the moods; for example, body, taste, time, money, and routine. Our system extracts the feature vectors for each aspect of the moods. Then calculate the similarities for each aspect between the feature vector of master recipes and the feature vector of unlabeled recipes.

This paper is structured as follows: the related work is given in Section II. Then in Section III, we describe our method for calculating the similarity of recipes, and the automatic metadata generation. In Section IV, we describe the method to add the metadata according to the user’s various moods. And we offer our conclusions in Section V.

II. RELATED WORK

There are many researches about recipe recommendation. In our previous work, we proposed a recipe recommendation method based on the user’s culinary preferences and the quantity of each ingredient in a recipe[4]. The system estimates the user’s preference using the user’s recipe browsing and cooking history. Then, our method adds scores using the average and dispersion quantity of each ingredient in the recipe.

Karikome et al. proposed a system that helps users plan nutritionally balanced menu and visualize their dietary habits[5]. Their system calculates the nutritional value of each dish and records this information in a dietary log. The system then recommends recipes that foster nutrition. Shirai et al. developed the dictionary for the cooking actions[6]. This dictionary contains the information corresponding to the text in the recipe and cooking animation. Their final goal is to develop the system that generates cooking animation by analyzing recipes. Shidochi et al. proposed a method to find
replaceable materials in cooking recipe texts[7]. In order to find replaceable materials, they analyze the large amount of recipes. Then they extract materials and cooking actions in the same recipe group. In their method, the materials related to the same cooking action is the replaceable materials. Ueta et al. proposed a recipe recommendation system considering the nutritional information[8]. Their system accepts the natural language as a user’s input, such as “want to cure my acne”. In order to realize such system, they develop a co-occurrence database that contains nutritional information and nouns in the recipes. Tachibana et al. proposed a method to extract the “Naming Concepts” for recipes that express the characteristics of the recipe[9]. Their method extracts the Naming Concepts by extracting the difference between the element of target recipe and the typical elements.

III. EVALUATING RECIPE METADATA GENERATED BASED ON SIMILARITIES BETWEEN RECIPES

We explain the automatic metadata generating method based on similarities between recipes. In this research, we already have 493 recipes which have been already given metadata manually (i.e. master recipes). Our method can automatically generate recipe metadata for unlabeled recipes by using similar master recipes to the target unlabeled recipes.

A. Recipe metadata generating method based on similarities between recipes

Fig.2 shows a conceptual diagram of automatic recipe metadata generating system based on similarities between recipes. Our system uses the recipes that have been given metadata manually as master recipes. Metadata is expressed the user’s mood along to the five aspects. The value of each metadata is from -5 to 5. The five aspects are given below.

- body (Tired ↔ Cheerful)
- taste (Non-fatty ↔ Rich taste)
- time (Easy ↔ Genuine)
- money (Low priced ↔ Gorgeous)
- modify (Classic ↔ Modified)

Our method generate recipe metadata using the similarities between the master recipe and the target unlabeled recipe. In order to calculate the similarities between recipes, our method uses the feature vector of the recipes.

Cooking recipe contains many elements, for example, recipe name, ingredients, cooking steps, nutrition, images. However, it is difficult to consider every elements for calculating similarities. Hence, our method extracts the feature vector using the recipe name, ingredients, and cooking steps. We define the dimension of the feature vector on the basis of the feature vector of master recipes.

Fig.3 shows the method for extracting the feature vector of recipes. Our method analyzes the master recipes using the Japanese language morphological analyser “MeCab[10]”. We extract morpheme from master recipes, and remove the “stopword” that have no relation to the feature of recipe. We define the dimension of the feature vector as the noun, verb, and adjunction extracted from the recipes. In addition, we adopt cosine similarity as the method for calculating similarity between a master recipe and a unlabeled recipes.

Next, we describe how to generate recipe metadata. The metadata for an unlabeled recipe is calculated using the following formula.

$$ U(i) = \frac{S_1 \cdot M_1(i) + S_2 \cdot M_2(i) + S_3 \cdot M_3(i) + S_4 \cdot M_4(i) + S_5 \cdot M_5(i)}{S_1 + S_2 + S_3 + S_4 + S_5} $$

- $U(i)$: Score of an aspect of the moods suitable for the unlabeled recipe
- $M_n(i)$: Score of an aspect of the moods of the master recipe that has nth similarity ranking with the target unlabeled recipe.
- $i = \{\text{body, taste, time, money, modify}\}$
- S_m : Similarity between the target unlabeled recipe and a master recipe that has mth similarity ranking with the unlabeled recipe.

B. Experimental evaluation

This section describes an experimental evaluation to verify the appropriateness of metadata generated by method mentioned in section III-A.

1. Procedure of experimental evaluation: The procedure of the experimental evaluation is as follows:

1) The system shows a scenario, which has five kinds of metadata like {body, taste, time, money, modify} to a participant, and also recommends both 30 recipes out of 493 master recipes and 30 recipes out of 30,000 unlabeled recipes.
2. The participant gets into the main character of the scenario and gives a score (i.e., gain score) between 0 to 30 to the each recommended recipe by considering if it is suitable for main character or not.

The scenarios and their metadata are as follows.

Scenario 1
Profile: 26 years old, a working person, male
The person would like to find a recipe suitable for a person, who is dead tired from working.
Values of metadata:
body : -5, taste : -3, time : -5, money : 0, modify : -5

Scenario 2
Profile: 33 years old, housekeeper, female
The person would like to find a recipe suitable for her child’s birthday party.
Values of metadata:
body : 5, taste : 5, time : 3, money : 3, modify : 3

Scenario 3
Profile: 19 years old, student, male
The person would like to find a recipe, which can be made at a low price.
Values of metadata:
body : 0, taste : 0, time : 0, money : -5, modify : 0

Scenario 4
Profile: 22 years old, student, female
The person would like to find a recipe suitable for the supper after school.
Values of metadata:
body : 2, taste : -2, time : -1, money : 0, modify : 0

Scenario 5
Profile: 45 years old, teacher, male
The person would like to find a recipe suitable for snacks to go with the beer.
Values of metadata:
body : 1, taste : 5, time : -4, money : 0, modify : -3

Scenario 6
Profile: 20 years old, student, female
The person would like to find a recipe of a fancy breakfast, which can be made in a short time.
Values of metadata:
body : 5, taste : -4, time : -3, money : 0, modify : 2

Scenario 7
Profile: 28 years old, housekeeper, female
The person would like to find a recipe suitable for lunch box dishes, which can make her husband pleasant.
Values of metadata:
body : 4, taste : 3, time : 2, money : 4, modify : 5

2) Experimental result: Table I shows an example of the gain scores from 0 to 30 given to 30 recommended master recipes based on the each scenario by user.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Profile</th>
<th>Description</th>
<th>Values of metadata</th>
<th>Body</th>
<th>Taste</th>
<th>Time</th>
<th>Money</th>
<th>Modify</th>
<th>Gain Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Profile: 22 years old, student, female</td>
<td>The person would like to find a recipe suitable for her supper that can be made easily.</td>
<td>body : -5, taste : 1, time : -5, money : -2.5, modify : 0</td>
<td>-5</td>
<td>1</td>
<td>-5</td>
<td>-2.5</td>
<td>0</td>
<td>-5</td>
</tr>
<tr>
<td>9</td>
<td>Profile: 14 years old, student, female</td>
<td>The person would like to find a recipe, which can be easily made since she is poor at cooking.</td>
<td>body : 4, taste : 0, time : -5, money : -4, modify : 3.5</td>
<td>4</td>
<td>0</td>
<td>-5</td>
<td>-4</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>10</td>
<td>Profile: 30 years old, homekeeper, female</td>
<td>The person would like to find a recipe for lunch, which can be made easily.</td>
<td>body : -1.5, taste : -4.5, time : -5, money : -4.5, modify : 2.5</td>
<td>-1.5</td>
<td>-4.5</td>
<td>-5</td>
<td>-4.5</td>
<td>2.5</td>
<td>-13.25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ranking by proposed method</th>
<th>master recipe</th>
<th>gain score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>morokuku vinegar</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>shrimp grilled</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>Chirimenjako into grated radish</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>instant pickled</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>porridge</td>
<td>16</td>
</tr>
<tr>
<td>6</td>
<td>Hokke of dried fish</td>
<td>17</td>
</tr>
<tr>
<td>7</td>
<td>octopus and cucumber vinegared</td>
<td>13</td>
</tr>
<tr>
<td>8</td>
<td>chikiru cucumber</td>
<td>28</td>
</tr>
<tr>
<td>9</td>
<td>octopus carpaccio</td>
<td>12</td>
</tr>
<tr>
<td>10</td>
<td>dried mushroom compote</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>shelt of dried fish</td>
<td>18</td>
</tr>
<tr>
<td>12</td>
<td>bosiled tofu</td>
<td>11</td>
</tr>
<tr>
<td>13</td>
<td>horse mackerel and open</td>
<td>19</td>
</tr>
<tr>
<td>14</td>
<td>red and white trout</td>
<td>10</td>
</tr>
<tr>
<td>15</td>
<td>clam juice</td>
<td>9</td>
</tr>
<tr>
<td>16</td>
<td>Kasijoru</td>
<td>4</td>
</tr>
<tr>
<td>17</td>
<td>grated yam kelp juice</td>
<td>26</td>
</tr>
<tr>
<td>18</td>
<td>salt cucumber</td>
<td>27</td>
</tr>
<tr>
<td>19</td>
<td>fried squid and okery</td>
<td>3</td>
</tr>
<tr>
<td>20</td>
<td>tamago kake gohan</td>
<td>21</td>
</tr>
<tr>
<td>21</td>
<td>egg porridge</td>
<td>8</td>
</tr>
<tr>
<td>22</td>
<td>hot spring egg</td>
<td>7</td>
</tr>
<tr>
<td>23</td>
<td>natto rice</td>
<td>22</td>
</tr>
<tr>
<td>24</td>
<td>wheat Torogohan</td>
<td>20</td>
</tr>
<tr>
<td>25</td>
<td>cucumber with miso</td>
<td>25</td>
</tr>
<tr>
<td>26</td>
<td>seared cucumber</td>
<td>6</td>
</tr>
<tr>
<td>27</td>
<td>green beans sesame sauce</td>
<td>5</td>
</tr>
<tr>
<td>28</td>
<td>chicken hot pot</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>tofu</td>
<td>24</td>
</tr>
<tr>
<td>30</td>
<td>Grilled-Mushrooms</td>
<td>23</td>
</tr>
</tbody>
</table>

We adopt normalized Discounted Cumulated Gain (nDCG) in order to verify the metadata automatically generated based on our proposed method. Here, nDCG is corresponding to normalized DCG, which is a evaluation criterion for ranking. DCG is calculated based on the following formula.
\[
DG_{n} = rel_1 + \sum_{k=2}^{n} \frac{rel_k}{\log_2(k)}
\]

- \(D_{CG_n}\) corresponds to the value of \(D_{CG}\) of the top \(n\) rankings.
- \(rel_1\) corresponds to the gain score of the first ranking.
- \(rel_k\) corresponds to the gain score of the \(k\)th ranking.

\(nDCG\) is calculated based on the following formula.

\[
nD_{CG} = \frac{D_{CG}}{idealD_{CG}}
\]

- \(idealD_{CG}\) corresponds to the \(D_{CG}\) of the correct rankings.

Next, we explain how to calculate \(D_{CG}\) and \(nDCG\). Table II shows an example of gain score for top 5 rankings. Table III shows an example of ranking result with gain score.

<table>
<thead>
<tr>
<th>Data Name</th>
<th>Gain Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data A</td>
<td>5</td>
</tr>
<tr>
<td>Data B</td>
<td>4</td>
</tr>
<tr>
<td>Data C</td>
<td>3</td>
</tr>
<tr>
<td>Data D</td>
<td>2</td>
</tr>
<tr>
<td>Data E</td>
<td>1</td>
</tr>
</tbody>
</table>

Table III

<table>
<thead>
<tr>
<th>Ranking</th>
<th>Data Name</th>
<th>Correct/Incorrect</th>
<th>Gain Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Data B</td>
<td>Correct</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Data A</td>
<td>Correct</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Data A</td>
<td>Incorrect</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Data E</td>
<td>Correct</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>Data Z</td>
<td>Incorrect</td>
<td>0</td>
</tr>
</tbody>
</table>

In the case of Table II and Table III, \(D_{CG}\) is calculated as follows:

\[D_{CG} = 4 + \frac{5}{\log_2(5)} + \frac{2}{\log_2(4)} = 7.723\]

The data X and the data Z are incorrect, so that their gain scores are 0. In this way, \(D_{CG}\) can be evaluation criteria for not only correct answer ratio but also its correct ranking. The larger \(D_{CG}\) value indicates higher accuracy of the recommendation. The scope of \(nD_{CG}\) value is from 0 to 1 because \(nD_{CG}\) value is calculated by dividing \(D_{CG}\) value by \(idealD_{CG}\) value.

In this case, \(idealD_{CG}\) and \(nD_{CG}\) are calculated as follows:

\[idealD_{CG} = \frac{5}{\log_2(5)} + \frac{3}{\log_2(3)} + \frac{2}{\log_2(4)} + \frac{1}{\log_2(5)} = 14.530\]

\[nD_{CG} = \frac{7.723}{14.530} = 0.532\]

We perform an experimental evaluation. The procedure of the experiment is shown bellow:

1. We prepare 30,000 labeled recipes by generating recipe metadata for 30,000 unlabeled recipes.

2. Against 10 scenarios, system extracts top 30 recipe rankings from 493 master recipes and also top 30 recipe rankings from 30,000 labeled recipes.

3. We extract ideal rankings by ranking these 30 rankings manually.

4. We calculate and compare two kinds of \(nD_{CG}\)s of both master recipes and labeled recipes.

Result of the experimental evaluation is shown in Fig. 4. Fig. 4 indicates \(nD_{CG}\)s of labeled recipes are close to \(nD_{CG}\)s of master recipes in most scenarios, though average \(nD_{CG}\) of master recipes is better than average \(nD_{CG}\) of labeled recipes. Consequently, we may say that the rankings of labeled recipes as proposed method has good potentials, however we feel that we have to improve the recommendation accuracy for labeled recipe.

IV. AUTOMATIC RECIPE METADATA GENERATING BY CONSIDERING CHARACTERISTICS OF EACH ASPECT

As concluded in section III-B2, we should improve the recommendation accuracy for labeled recipe. Therefore, we propose a method that can automatically generate recipe metadata by using not one feature vector but five different feature vectors to represent five kinds of users’ various moods.

As mentioned in section III-A, metadata is expressed the user’s mood along to the five aspects. The value of each metadata is from -5 to 5.

- body (Tired ↔ Cheerful)
- taste (Non-fatty ↔ Rich taste)
- time (Easy ↔ Genuine)
- money (Low priced ↔ Gorgeous)
- modify (Classic ↔ Modified)

We describes how to generate recipe metadata by using five different feature vectors to represent five kinds of users' various moods in following section.

A. Feature vector extraction for each aspect

1) Feature vector for “body aspect” : As shown in Fig. 5, the feature vector for “body aspect” is defined by using characteristic expressions appeared in both high-tiredness recipes and high-cheerfulness recipes. They can express the body aspect of recipes more accurately. Thus, we believe that the system can achieve recipe metadata generating with high-accuracy by using such feature vector.

![Fig. 5. Method of feature vector extraction for body aspect](image-url)
2) Feature vector for “taste aspect”: As shown in Fig.6, the feature vector for “taste aspect” is defined by using characteristic expressions appeared in both non-fatty recipes and rich-taste recipes. They can express the taste aspect of recipes more accurately. Thus, we believe that the system can achieve recipe metadata generating with high-accuracy by using such feature vector.

3) Feature vector for “time aspect”: As shown in Fig.7, we extract verbs expressing cooking actions and give a score to each verb based on the taking time for the action. For example, a cooking action “cut” does not take long time, and a cooking action “steam” long time. By using the table, the system can analyze a recipe text and estimate the expected cooking time for the recipe.

4) Feature vector for “money aspect”: As shown in Fig.8, we survey a standard price of each ingredient and register the price into the standard price table at first. Therefore, system can calculate an estimated price of a dish based on the standard price table and the recipe. The value of feature vector for money aspect is normalized from -5 to 5 finally.

5) Feature vector for “arrangement aspect”: As shown in Fig.9, system searches by the name of unlabeled recipe and extracts the verbs and nouns from both unlabeled recipe and collected recipes with the same name. Then, value of arrangement aspect of unlabeled recipe is calculated based on the characteristic keywords and normalized from -5 to 5 finally.

B. Preliminary experimental evaluation against feature vector of “body aspect”

The each value of body aspect is normalized from -5 to 5. Thus, we extract characteristics keywords for each body aspect score span that are \([-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5]\) from master recipes, and calculate TF value of the keywords. Then, we adopt some characteristics keywords, whose TF value in high body aspect recipes is much more than the TF values in low body aspect recipes, as parameter of feature vector of body aspect.

We perform experimental evaluation for body aspect as a first step. At first, system generates feature vectors of body aspect against 25 unlabeled recipes based on 2 different methods. One is generating recipe metadata by using one overall feature vector of a target recipe (i.e., the previous method). Another one is generating recipe metadata by using
five feature vector customized to each aspect of a target
target recipe (i.e., the proposed method).

Then, we perform an experimental evaluation by comparing
between those metadata generating methods. The participants
compare two kinds of body aspect value and judge if which
is appropriate to the target recipe. The number of participants
is two. The number of trials are 50 (against 50 recipes).

| TABLE IV |
|-------------------|-------------------|
| RESULT OF COMPARATIVE EXPERIMENT BETWEEN THE PREVIOUS METHOD AND THE PROPOSED METHOD |
| The feature of a body axis is taken into consideration. | The rate of average |
| 60% |
| The feature of a body axis is not taken into consideration. | 40% |

Table IV shows the result of comparative experiment
between the previous method and the proposed method.
According to the result, the proposed method got better
result than the previous method. Namely, we may say that
we should use the recipe metadata generating method by
using five feature vector customized to each aspect of a
target recipe. As future work, we try to generate more
accurate metadata based on improving the five feature vector
customized to each aspect.

V. CONCLUSION

In this paper, we presented an automatic recipe metadata
generating method for a cooking recipe recommendation
system that considers users’ various moods. Our method
generates the metadata using the similarities between the
feature vector of master recipes and the feature vector of
the target unlabeled recipes.

At first, we developed a prototype system that recom-
mends the recipes based on the metadata generating by
one feature vector. In order to verify the effectivity of our
proposed method, we conducted a preliminary experiment.
We compared two recipe sets; (1) extract from master recipes
(generate metadata manually), (2) extract from unlabeled
recipes (generate metadata using our method). The nDCG
values of our method is 0.78, and the nDCG values of master
recipe is 0.84. In part of the result shows that our method
can generate metadata equivalently. In addition to the above,
we considered a method to generate metadata by calculating
the similarities using the feature vectors related to the five
aspects of users’ mood.

Our method generate the metadata for recommending the
recipes according to users’ mood. We will develop a proto-
type system to evaluate the accuracy of our recommendation
method that uses the metadata related to the five aspects of
users’ mood, in the future work.

REFERENCES

of Recipe Recommender System based on Users’ Moods and Market
Needs of Food Sales Functions by Using Cooking Recipe, IEICE Tech-
Method Focusing on the Relationship Between User Preference
and Ingredient Quantity”, Transactions on Engineering Technologies,
International MultiConference of Engineers and Computer Scientists
Habits: Planning Menus and Visualizing Nutritional Intake Balance.
Proceedings of the 4th International Conference on Ubiquitous Infor-
mation Management and Communication (ICIUMC 2010), pp.386-391,
[6] Kiyosaki SHIRAI and Hiroshi OOKAWA. Constructing a Lexicon of
Actions for the Cooking Domain toward Animation Generation, IPSJ
[7] Yuka SHIDOCHI, Ichiro IDE, Tomokazu TAKAHASHI and Hiroshi
MURASE, Finding Replaceable Materials by Cooking Recipe Mining,
[8] Tsuguya Ueta, Masashi Iwakami, and Takayuki Ito, A recipe recom-
mendation system based on automatic nutrition information extraction,
Sumiya, Extraction of Naming Concepts Based on Modifiers in Recipe
Titles, The 2014 IAENG International Conference on Internet Comput-
[10] MeCab: Yet Another Part-of-Speech and Morphological Analyzer,