

 

Abstract—Changes always occur in software development.

Software consists of functions which are defined in term of

capabilities, inputs, and outputs. A function which is verified by

test cases is always associated with attributes in a database. If

inputs of functional requirements are changed, they will effect

to the database schema and test cases directly. Therefore, the

impact to database schema and test cases are needed to clarify

before software testing. Thus, this paper proposes an approach

to analyze an impact to database schema and test cases from

inputs of functional requirements which are changed. After

that database schema is updated to cooperate with the functions

properly. Finally, test cases related to the functions are verified

to check if they need to be updated.

Index Terms— functional requirements, database, test case,

impact analysis

I. INTRODUCTION

hanges always occur in software development. They

might occur not only in a development phase but also in

a software design phase. The impact may effect to

functions and their inputs as well as outputs. The function is

always associated with attributes of a database schema for

handling data. If inputs of a function are changed, they may

affect the function execution as well as the database. Thus, it

is necessary to analyze an impact to the database, and then

update the database so that the function and the database can

work together properly.

Software Testing is an important process in the software

development, because the objective of software testing is

verify if the accuracy of the system meets the user needs and

to find errors in a function by using test cases as an

equipment to verify the function’s operation. Black box test

cases are constructed based on functional requirements.

When inputs of a function are changed, test cases are

affected directly. Therefore, it is necessary to analyze an

impact to the test cases.

This paper proposes an approach to analyze the impact to

database schema and test cases when inputs of functional

requirements are changed. We analyze the changes to the

database schema, and then create a SQL statement to update

the database schema in order to reflect the changes. The test

cases related to the changes are updated as well.

Manuscript received December 10, 2015.

A. Kampeera and T. Suwannasart are with the Software Engineering

Laboratory Center of Excellence in Software Engineering, Faculty of

Engineering, Chulalongkorn University, Bangkok, Thailand (e-mail:

apirak.k@student.chula.ac.th, taratip.s@chula.ac.th).

The reminder of this paper is organized as follows.

Section 2 provides related work while section 3 explains

background related to this paper. Section 4 presents an

approach for impact analysis to database schema and test

cases from inputs of functional requirements changes.

Finally, a conclusion and future work are described in

section 5.

II. RELATED WORK

There are several related studies that inspired this

research. J. Jainae and T. Suwannasart[1] proposed a tool

that provides a test case analysis from schema changes. Use

case description is a source used to create new test cases for

replacing original test cases. This research gets a set of SQL

queries, analyzes the database schema changes, compares a

consistency of attributes in the database schema, and then

finds and compares the use case description. The tool selects

the affected use case description to compare data in the

database. It shows type of SQL commands such as DROP,

ADD, and UPDATE. The next step is to analyze the test

case by comparing between test data and the use case

description conditions. The result shows affected test cases

and unaffected test cases. At last, generates new test cases.

 Another approach proposed by M. Raengkla and T.

Suwannasart[2] presents a method for selecting test cases to

verify use case description by importing use case

description, test case, and requirement validation matrix.

The method analyzes use case description changes to focus

on an input, an output and a use case description steps. After

that, affected test cases are discovered by using a

requirements validation matrix. Then the test cases are

verified by comparing input, output, and steps to use case

description.

 S. Phetmanee and T. Suwannasart[3] presented a

methodology of the document file comparison. Values from

two versions of HTML files and XML Schema files are

compared to find the differences. The result obtained from

this tool consists of several changed values. This research

suggests 7 patterns of the change of a web application as

follows.

1. The change of variable name.

2. The change of data type.

3. The change of variable value.

4. The change of variable tag.

5. The change of order.

6. The change of link.

7. The change of variable number.

Impact Analysis to Database Schema and Test

Cases from Inputs of Functional Requirements

Changes

Apirak Kampeera, Taratip Suwannasart

C

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

III. BACKGROUND

A. Requirement Traceability Matrix[4]

Requirements Traceability Matrix (RTM) is a document

that links functional requirements throughout the validation

process, to ensure that all requirements defined for a system

are tested. The traceability matrix is a tool for the validation

team, to ensure that requirements are not lost during the

validation process, and for auditors, to review the validation

documentation. An example of requirements traceability

matrix is shown in table I.

Table I Requirements Traceability Matrix
Requirement

ID

Requirement

description

TC 001

(user

login)

TC 002

(add

user)

TC 003

(delete

user)

SR-1.1 User should be able to

login using LDAP user

x

SR-1.2 User should be able to

see error message

when fail to login

x

SR-1.3 Admin user should be

able to add user on

admin page

 x

SR-1.4 Admin user can not

add duplicate user on

admin page

 x

IV. APPROACH FOR IMPACT ANALYSIS TO DATABASE

SCHEMA AND TEST CASES

1. Analyze an Impact

of Function’s Input

Changes to Schema

2. Generate SQL

Command

3. Update Database

Schema

4. Update Affected

Functions

5. Analyze an Impact

to Test Case and

Update Test Case

Import documents

Functional

Requirements

Requirements

Traceability

Metrix

System

Database

Test Case

Database

Update Database

List of

Functional

Requirements

Functional

Requirements

Update Functional

Requirements

Functional

Requirements

Database Schema

Functional Requirements 2 versions

Update Test Case

Test Case

Fig. 3 Framework for Impact Analysis to Database schema

and Test Cases

 In order to analysis impact for database schema and test

cases, fig.3 depicts a concept to analyze an impact. The

concept consists of 5 processes. First, to find which inputs

are changed. Next, changes of the inputs are compared to the

database. Then, SQL command to update in the schema is

generated to reflect the changes. Then, test cases related to

the function are analyzed.

1) Analyze Impact of Function’s Input Changes to

Database Schema

At the beginning, user imports 2 versions of functional

requirements which have different inputs. A functional

requirement consists of a function number, a function name,

an objective, a function version and input specifications

which include an input name, data type, length, and

constraints. A functional requirement is illustrated in table II.

TABLE II An Example of Functional Requirements
Function No. FC_01

Function Name Add Customer

Objective User able to add new customer profile

Function Version 1.0

Input Specifications

Input Name Type Length Constraints Table Name

CUSTOMER_

ID

int CUSTOMER

CUSTOMER_

NAME

varchar 50 CUSTOMER

CUSTOMER

CREDIT

LIMIT

decimal 10,2 min=20.00

&&max=5

00.00

CUSTOMER

Output Specifications

Output Name Type Length Validation

Input changes are only compared between 2 versions of

functional requirements that exclude the database. The result

shows five types of changes which are explained as follows

A. Add inputs

B. Delete inputs

C. Update names of inputs

D. Update types of inputs

E. Update length of inputs

F. Update constraints

Table III shows the result of comparisons between two

versions of the functional requirements that there are 3

changes. First, a CUSTOMER_ID in CUSTOMER table is

changed to CUSTOMER_NUMBER. Second, a

CUSTOMER_BIRTHDAY is added into a CUSTOMER table.

Finally, a CUSTOMER_CREDIT_LIMIT in CUSTOMER table is

removed.

 TABLE III An Example of List of Input Changes

No Table
The Original

Input Name

Changes

Type Description

1 CUSTOMER CUSTOMER_

ID

Alter Edit field name

from Customer_id

to

Customer_number

2 CUSTOMER CUSTOMER_

BIRTHDAY

Add Add field

Customer_birthday

as CUSTOMER

3 CUSTOMER CUSTOMER

CREDIT

LIMIT

Delete Delele Field

After comparison of inputs’ changes, the next step is

analyzing the changes of input to a database schema by

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

using SQL statement to check field properties and relations

in the database, and creating a condition for generating SQL

command to update database.

There are 3 operations for analyzing impact to a database

schema which are divided by the changes of input as shown

in Fig. 4 – 6.

1.1) Analysis updating database by adding input

Dose attribute exist in table schema?

Is attribute a Primary Key?

No

Report schema checking

Yes

Is data updated to attribute?

Yes

Save command sequences to set primary key to fields.

Save command sequences to update data.

Yes

Has field got a default value, check

constraint and foreign key

No

No

Save command sequences to

create additional fields.

Ordering creation of SQL command

Save command sequences to set default

value, chack value and foreign key.

Fig. 4 Activity for analysis for updating database in case of

adding inputs of function

1.2) Analysis update database by deleting input

Does attribute exist in table schema?

Is attribute a primary key?

Yes

Report schema checking

No

Yes

Is referential integrity constraint

a DELETE CASCADE?

Save command sequences

to delete field as DELETE

CASCADE

YesNo

Yes

Ordering creation of

SQL command

Save command sequences

to delete field.

Is a attribute defined a

referential integrity constraint?

No

Save command sequences

to delete referential integrity

constraint.

Fig. 5 Activity for analysis a database update in case of

deleting inputs of function.

1.3) Analysis update database by updating input

Does attribute exist in table schema?

Is attribute a primary key?

Yes

Report schema checking

No

Yes

No

Ordering creation of

SQL command

Save command sequences to

update attribute (If any)

Is attribute defined referential

integrity constraint?

Yes

Save command sequences

to delete referential

integrity constraint.

Save command sequences to

increase/decrease attribute’s

length (If any)

Save command sequences to

update default constraint

(If any)

Save command sequences to return

relation to attribute (If any)

Save command sequences

to back up data.

Does data exist the

database table?

Yes

Fig. 6 Activity for analysis a database update in case of

updating inputs of function.

Fig.4 shows an activity to analyze the database in case of

adding inputs of a function. Firstly, the activity checks an

existing of attributes related to the new inputs in a database

table. If the attributes do not appear in the database table, an

expression to add the attributes is created. Secondly, the

activity checks if the new inputs are a primary key. If they

are a primary key, an expression to assign a primary key

constraint is created. Then the activity checks an updating

data to attributes. If attribute need to be updated, an

expression to update data is assigned for updating data to the

attributes. Finally, the activity checks the database

constraints of inputs such as a DEFAULT constraint, a

CHECK constraint, and a FOREIGN KEY constraint. If any

constraints exist, an expression to add those constraints is

created.

Fig.5 shows an activity to analyze the database schema in

case of deleting inputs of a function. Firstly, the activity

checks an existing of attributes in a database table. Then the

activity checks if the attributes are a primary key. If they are

not a primary key, the activity checks a referential integrity

constraint of the attributes. If there are any referential

integrity constraints, an expression to delete those referential

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

integrity constraints is created. Then the activity checks if a

referential integrity constraint is a DELETE CASCADE. In

case of a referential integrity constraint is a DELETE

CASCADE, an expression to delete as DELETE CASCADE

is created. In case of schema is not a DELETE CASCADE,

an expression to delete attributes is created.

Fig.6 shows an activity to analyze database in case of

updating inputs of a function. Firstly, the activity checks an

existing of attributes related to the inputs in a database table.

Then the activity checks if the attributes are a primary key. If

they are a primary key, the activity checks a referential

integrity constraint of the attributes. If there are any

referential integrity constraints, an expression to delete those

referential integrity constraints is created. Then the activity

checks data in the database table. If there are data in the

database, an expression to back up the data is created. If

there are DEFAULT constraints, increment or decrement a

length of attribute, updating attribute, and returning the

relations to the attribute, an expression to response those

action is created.

Table IV Sequences of Actions to Generate SQL Command
Ordering

No
Action Table Field and Properties

1 Check Exist CUSTOMER.CUSTOMER_ID

2 Drop constraint CUSTOMER_CUSTID_PK

3 Alter field name CUSTOMER.CUSTOMER_NUMBER

4 Create constraint CUSTOMER_CUSTID_PK

 Table IV shows an example output for analysis an impact

of function’s input changes. The output is a sequential for

generating SQL command, Table IV includes of 4 steps.

First, CUSTOMER_ID is checked an existing in a

CUSTOMER table. Second, drop the field’s constraint.

Third, alter CUSTOMER table by adding field

CUSTOMER_NUMBER. Finally, a constraint is assigned to

the attribute.

2) Generate SQL Command

The result from analysis an impact of function’s input

changes to schema is a list of creation SQL command.

According to table IV CUSTOMER_ID is changed to

CUSTOMER_NUMBER, which can be generated SQL

command shown in Fig.7.

/*---Check Exist---*/

If exists(select * from INFORMATION_SCHEMA.COLUMNS

where TABLE_NAME='CUSTOMER' and

COLUMN_NAME='CUSTOMER_ID')

BEGIN

/*---Drop Constraint---*/

ALTER TABLE CUSTOMER

DROP FOREIGN KEY CUSTOMER_PRIMARY_KEY

/*Alter Field*/

SP_RENAME CUSTOMER_ID, CUSTOMER_CODE

/*--Create Constraint--*/

ALTER TABLE CUSTOMER

ADD CONSTRAINT CUSTOMER_PRIMARY_KEY PRIMARY KEY

(CUSTOMER_NUMBER)

END

Fig. 7 Example of SQL command which is generated from

table IV

3) Update Database Schema

In order to update the database schema, there are two

steps. First, the original database schema is backed up for

restoring database when error occurs in updating the

database. Second, the database schema is updated by

executing SQL command that is generated from the previous

step.

4) Update an Affected Function

Does input exist in function?

Is input updated?

Yes

Report result

No

No

Update an input

Yes

Delete an input

Fig. 8 Activity for updating an affected function

The inputs of a function do not exist in a single function.

Hence, finding of affected functions is performed for

updating the functions.

According to update the affected functions, fig.8 shows

the first step is checking existing inputs of a function. If

inputs are in the function, they will be checked types of

inputs’ change. If the change is an updating, the inputs of

function will be updated. If the change is a deleting, the

inputs of function will be deleted. After that, the function

will be set a new version.

5) Analyze an impact to test cases and update test cases

This step is a comparison of the relationship between a

function and test cases. Affected test cases are determined

by using a requirement traceability matrix as shown table V.

Table V is a matrix which shows a relation between function

number FC_01 to test cases number TC01.

Then, the test cases are compared by types of inputs’

change which consist of 3 types as follows.

1) Analysis changes of adding inputs, inputs are added

into test case and test data are assigned to the inputs.

2) Analysis change of deleting inputs, the inputs are

checked if the inputs exist in a test case, they will be

removed from the test case.

3) Analysis changes of editing inputs, the original inputs

are deleted. New inputs are added into a test case and test

data are assigned to the new inputs.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

Table V A Requirement Traceability Matrix
 Test Case Number

TC01 TC02 TC03 TC04 TC05 TC06

Function

Number
FC_01 x

FC_02 x x

FC_03 x x x

Table VI An Original Test Case
Test case no. TC01

 Test case name Test Case Customer Profile - New

Test case objective To test for adding a new customer

Test case version 1.0

Function no. FC_01

Function version 1.0

Test data Input Name Value

CUSTOMER_ID 000001

CUSTOMER_NAME John

CUSTOMER_CREDIT_

LIMIT

50.00

Expect result Able to add a new customer

Table VI shows an original test case, which consists of a

test case no, a test case name, a test case objective, a test

case version, a function no., a function version, test data, and

an expected result.

If the inputs of a function have been changed, the test

cases will be updated. Test case will be updated test data

according to type of change in table III as follows.

A. Adding Input

In case of adding inputs, a test case is added a test data.

In row 2 of table III shows input CUSTOMER_BIRTHDAY

is added into table named CUSTOMER, therefore the test

case is add the input named CUSTOMER_BIRTHDAY as

well.

B. Deleting Input

In case of deleting input, in row 3 of table III shows field

named CUSTOMER_CREDIT_LIMIT is deleted, therefore

an input named CUSTOMER_CREDIT_LIMIT is deleted

from a test case.

C. Updating Input

In case of updating inputs, the existed input is deleted, and

then a new input is added into a test case. In row 1 of table

III shows an input CUSTOMER_ID which is become

CUSTOMER_NUMBER. Therefore, an input

CUSTOMER_ID is deleted from a test case. Then an input

CUSTOMER_NUMBER is added into a test case.

Table VII A New Test Case
Test case no. TC01

Test case name Test Case Customer Profile - New

Test case objective To test for adding a new customer

Test case version 2.0

Function no. FC_01

Function version 2.0

Test data Input Name Value

CUSTOMER_NUMBER 000001

CUSTOMER_NAME John

CUSTOMER_BIRTHDAY 01/01/2000

Expect result Able to add a new customer

After the test cases are updated, they will be generated

into a new version as shown in test case version. Table VII

shows a test case is updated, which contains three inputs –

CUSTOMER_NUMBER, CUSTOMER_NAME, and

CUSTOMER_BIRTHDAY.

V. CONCLUSION AND FUTURE WORK

Changes is always happen every moment in software

development, therefore an impact analysis from changes is

important. This paper presents an approach to analyze an

impact to database schema and test cases from inputs of

functional requirement changes. The approach shows

comparison between 2 versions of inputs, checks an impact

to database, records an action sequentially, generates SQL

command, and then updates functional requirements.

Moreover, test cases must be identified by requirement

traceability matrix. Finally, test cases are updated.

The future research will be applied the presented

approach to develop an actual software tool.

REFERENCES

[1] J. Jainae and T. Suwannasart, "A tool for test case impact analysis of

database schema changes using use cases," in ICISA 2014 - 2014 5th

International Conference on Information Science and Applications,

2014.

[2] M. Raengkla and T. Suwannasart, "A test case selection from using use

case description changes," in Lecture Notes in Engineering and

Computer Science, 2013, pp. 507-510.

[3] S. Phetmanee and T. Suwannasart, "A tool for impact analysis of test

cases based on changes of a web application," in Lecture Notes in

Engineering and Computer Science, 2014, pp. 497-500.

[4] O. S. Inc. Requirements Traceability Matrix. Available:

http://www.ofnisystems.com/services/validation/traceability-matrix/

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

http://www.ofnisystems.com/services/validation/traceability-matrix/

