
Extensible Real Time Software Design
Inconsistency Checker: A Model Driven Approach

1G. Ramesh 2T. V. Rajini Kanth 3A. Ananda Rao, Member, IAENG

Abstract—Unidentified inconsistencies in software design
models can obstruct the desired time-to-market attribute of
software. The consequences of them are far reaching besides
being reflected in the implementation. Detecting and tracking
inconsistencies in model-driven software development has been
challenging. However, there is an encouraging fact that the
emergence of Unified Modelling Language (UML) brought
uniform notations to be used across the globe. Many UML
based design consistency checkers came into existence.
However an effective automated approach for consistency
checking is still desired as it can lead to early detection of
inconsistencies. Thus frequently occurring cost and budget
overruns in software industry can be eliminated. Towards this
end this paper implemented a framework named Extensible
Real Time Software Design Inconsistency Checker
(XRTSDIC). The framework enables software engineers to
have real time feedback on model inconsistencies throw light
into the issues early as it is wise to use a stitch in time and
avoid eight. The consistency checker not only exploits
consistency rules but also viewpoints besides supporting a
degree of formal tolerance for inconsistencies. This makes the
proposed system flexible with user description while resolving
inconsistencies. Our empirical evaluation shows that
implemented approach is comparable with previous
approaches with significant improvement in speed, scalability
and accuracy in detecting inconsistencies in software design
models. The prototype demonstrates the proof of concept.

Index Terms – tracking inconsistencies, unified modelling
language, software design models.

I. INTRODUCTION

Model Driven Engineering (MDE) is a widely used
approach in software development. Most of the software
development companies across the globe use UML for
object oriented analysis and design. Based on UML
specifications provided by Object Management Group
(OMG), many vendors are providing UML modelling tools
that can be used by software engineers to design or model
any software before implementing it. In fact software
engineers might use diversified modelling tools based on
their acquaintance on particular tool or other requirement.
As the software development is based on the modelling of
software systems, it is essential to validate models before
transforming them into the next phase in software
development life cycle. Stated differently, the
inconsistencies in the design model will eventually reflect in
the software implementation or coding. The inconsistencies

Manuscript submitted on December 8, 2015.
1 Mr. G. Ramesh is Research Scholar with JNTUA, Ananthapuramu,
Andhra Pradesh, India (phone: 0440862112; e-
mail:ramesh680@gmail.com).
2 Dr. T.. V. Rajini Kanth is professor in CSE with SNIST Ghatkesar,
Hyderabad, Telangana State, India (e-mail: rajinitv@gmail.com).
3Dr. A. Ananda Rao is Director and professor in CSE with JNTUA,
Ananthapuramu, Andhra Pradesh, India (e-mail: akepogu@gmail.com).

identified in the coding phase prove costly in terms of time
and effort for fixing them. This result in budget overruns
increased cost and thus may cause failure as well. Therefore
it is essential to detect and track inconsistencies in design
itself and make necessary changes early in the life cycle.

Many approaches came into existence for consistency
checking in software design models. We studied many
models found in the literature. From the review of literature
we found that all solutions are focusing on the method
followed to identify inconsistencies. We believed that there
is need for building a comprehensive framework that can
cater to the diversified needs of software engineers with
flexible personalized configuration for choosing modelling
tool, language for consistency rules and visualization
methods. Towards this end we proposed and implemented a
framework that is scalable, flexible, and supports real time
detection and tracking of model inconsistencies.

Our contributions in the paper include that we proposed a
framework named Extensible Real Time Software Design
Inconsistency Checker (XRTSDIC) which has provision for
personalized configuration and execution model. This
framework is flexible, scalable and supports extensible
features in terms of supporting modelling tools, consistency
rules and visualization techniques. To our knowledge it is
for the first time we proposed such comprehensive
framework using which model construction and consistency
checking can be done using the modelling tool of user’s
choice. As the framework is extensible, it becomes more
and more flexible and useful as new possibilities are added
to it. The remainder of the paper is structured as follows.
Section II reviews literature on prior works on consistency
checking. Section III provides preliminaries. Section IV
presents the proposed framework. Section V provides
prototype implementation. Section VI provides
experimental results while section VII concludes the paper
besides providing directions for future work.

II. RELATED WORKS

Many researchers contributed towards consistency checking
in software design models. Nentwich, Emmerich, and
Finkelstein [6] explored static consistency checking using
first-order-logic to represent relationships between elements
of XML documents that correspond to UML models. Mens
et al. [7] proposed an approach that analyzes dependencies
among various resolution rules. They employed
transformation dependency analysis to detect and resolve
inconsistencies in design models. Heckel et al. [8] explored
view-oriented approach in identifying inconsistencies in
design models. They tried to translate UML models into
semantic domains in order to check inconsistencies.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

Kaneiwa and Satoh [9] focused on detecting inconsistencies
in UML class diagrams. They achieved it by translating the
classes into first-order-predicate logic. Towards this end
they defined algorithms that can check inconsistencies
among restricted UML class diagrams. Kielland [10]
employed XML Metadata Interchange (XMI) format for
checking inconsistencies of UML models. Hnatkowska et
al. [11] employed Object Constraint Language (OCL) for
formulating consistency conditions that can be used to find
discrepancies between components of UML model.
Baclawski et al. [12] proposed a method that checks
consistencies in ontologies modelled using UML. Pap et al.
[13] explored ways and means to find inconsistencies in
state chart specifications. Their focus was on consistency
based on structure which is static and safety related
reachability attributes verified dynamically. Khan and
Porres [14] logic reasoners built using web ontology
language named OWL for inconsistency checking in UML
models. Though the scope of their approach is limited it is
fully automatic solution. Straeten et al. [15] employed
description logic to ascertain inconsistencies among UML
models and concluded that description logic tools can play
significant role in checking inconsistencies in software
design models. Similar kind of research was carried out in
[16] and [28].

Zhao et al. [17] proposed a formalism known as Split
Automata that is employed to check consistency between
sequence and state chart diagrams. Diskin et al. [18]
conceived software design model as a collection of views or
models that contain local elements. As these models overlap
they might have inconsistencies when a global constraint set
is considered. They proposed an approach that explores
global consistency checking. Egyed [19] presented an
automatic approach that helps in determining consistency
rules to be applied automatically when model elements
change. Their approach gives appropriate feedback as
model elements are being drawn. Gryce et al. [20]
employed xlinkit tool for checking consistency of UML
models. They proposed an approach that makes use of
xlinkit to achieve this. Graph transformation approach was
used by Chama et al. [22] for model checking. They
focused on both static and dynamic models for
inconsistency checking. It was a meta-modelling approach
that could help in model checking. Blanc et al. [23]
proposed an operation-based model construction that could
help in detecting inconsistencies in design models.

In the literature, Petri Nets is found to be an alternative
approach for model checking. Thierry-Mieg et al. [24]
employed instantiable Petri Nets to capture model dynamics
accurately before checking inconsistencies. Sourrouille and
Caplat [25] explored a pragmatic approach to checking
UML models for inconsistencies. They concluded that
transformation of UML models into some kind of formal
language can help in consistency checking. Defining

consistency rules play a vital role in model checking as
UML tools do not provide them by default. A formal
method for specifying constancy rules was explored in [26].
Similar kind of work can be found in [1] as well. Egyed [27]
built a tool for model checking. The tool was named View
Integra which proved to be scalable. Egyed [29] proposed
an analyzer tool for instance checking of inconsistencies in
UML models. The tools reviewed in this section were useful
in inconsistency checking. However, we felt a
comprehensive and flexible tool that can provide
personalized configuration and execution model as
significant underlying parts is desired. In this paper we
proposed such framework.

III. PRELIMINARIES

This section provides details on preliminary information
that can help understand the proposed approach. The
subsections provide details of inconsistencies, various
consistency rules pertaining to UML diagrams such as use
case, sequence, collaboration and state chart besides the
need for tolerating certain design inconsistencies.

Consistency Rules

UML modelling involves many diagrams that are made up
of standard notions. The diagrams include Use Case, Class,
Activity, State Machine, Sequence, Collaboration, and so
on. UML modelling tools generally support drawing UML
diagrams without consistency as well. For instance, they
might support drawing a sequence diagram with class
instances for which actual classes do not exist in the model.
Thus it is very important to focus on design models made up
of UML for detecting inconsistencies. Unidentified
inconsistencies in software design models can obstruct the
desired time-to-market attribute of software. The
consequences of them are far reaching besides being
reflected in the implementation. To overcome this problem,
consistency rules can be defined and applied to model-
driven software development process. Consistency rules are
defined in many research papers. However, we consider the
rules explored in [1] for our experiments. The rules are
briefly described in Table 1. Before looking at the rules,
different kinds of inconsistencies can be visualized in Fig. 1.

As shown in Fig. 1, it is evident that there is no class by
name C. However, an instance of C is used in the sequence
diagram. In the same fashion, the class C instance is used in
sequence diagram of Fig. (b) which even does not reflect in
the collaboration. Instead, the collaboration diagram shows
an instance of class D. These are clearly reflecting model
inconsistencies. These inconsistencies in the modelling are
quite common when novice users participate in modelling.
Unfortunately UML modelling tools are allowing such
inconsistencies to be drawn.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

Fig. 1 – Inconsistencies between class and sequence diagrams (a); and between sequence and collaboration diagrams (b)

Table 1 – Consistency Rules

Rule

01

An object in the sequence diagram should

exist as a concrete class in class diagram.

Class vs.

Sequence

Rule

02

When a class name is modified in class

diagram, it should reflect in all instance of

sequence diagram synchronously.

Class vs.

Sequence

Rule

03

When an object sends message to another

object, there must be dependency

relationship between them and there must

be at least one message between such

classes.

Class vs.

Sequence

Rule

04

In sequence diagram a message should

have corresponding operation in the

receiver and it should be visible to sender.

Class vs.

Sequence

Rule

05

When an object is deleted from a class

diagram, its instances should be removed

automatically from sequence diagrams.

Class vs.

Sequence

Rule

06

An object represented in sequence and

collaboration diagrams should correspond

to same class in class diagram.

Sequence vs.

Collaboration

Rule

07

An object represented in state machine

must be an instance of concrete class in

class diagram.

Sequence vs.

Collaboration

Rule

08

When a class is deleted from class

diagram, corresponding state machine

diagrams should be deleted automatically.

Sequence vs.

Collaboration

Rule

09

A state represented in state machine

diagram should be a legitimate value of

an attribute of corresponding class in

class diagram.

Sequence vs.

Collaboration

Rule

10

The operation used in the state machine

diagram should be consistent with the

Class vs.

State

operation in the class diagram in all

aspects.

Machine

Rule

11

An activity in state machine diagram must

be a message represented in the sequence

diagram.

Sequence vs.

State

Machine

Rule

12

Use cases represented in use case diagram

should be reflected in the operations of

class diagrams.

Use case vs.

Class

Rule

13

Activities and swim lanes in an activity

diagram must have corresponding

operations in respective classes.

Activity vs.

Class

There are four methods, as explored in [1] for consistency
checking. They are manual check, compulsory restriction,
automatic maintenance and dynamic check. Compulsory
restriction does mean that UML modelling tool does not
allow invalid design. Automatic maintenance does mean
that the modelling tool makes changes automatically to
conform to user initiated changes. Dynamic check means
the modelling tool can capture user operations in real time
and detect inconsistencies. Rule 1, rule 4, rule 6, rule 10,
and rule 11 are best applied under compulsory restriction.
Rule 7, rule 9, rule 12 and rule 13 are best enforced through
manual check. Rule 2, rule 4, rule 5, and rule 8 are ideally
enforced through automatic maintenance while dynamic
check method is best employed for rule 6, rule 10 and rule
11. These are optimum methods though multiple methods
can be employed to enforce a rule.

Tolerance of Inconsistencies

In the wake of the notion “it is possible living with
inconsistencies” explored in [2], [3] and [5], our framework
also strives to include support for this notion to the extent
feasible. This support is also missing in many research
papers including the recent one [4]. Sometimes it is
essential to ignore some model inconstancy and complete
the model element in order to view the proposed concept.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

Thus the flexibility of model checking tools to support
inconsistencies (reminding that it should be for temporarily)
so as to read the benefits in temporary basis. However, we
are not advocating tolerance of inconsistencies in any
stretch of imagination. We only intend to have temporary
support for having limited what if analysis or something of
that sort. We believe that the notion of “living with
inconsistencies” has to be seen on temporary basis and thus
the proposed tool can have a little bit flexibility towards
violating consistency rules if the software engineers desire
so without having this provision forcibly.

IV. FRAMEWORK FOR EXTENSIBLE REAL TIME
SOFTWARE DESIGN INCONSISTENCY CHECKING

Automatically detecting and tracking inconsistencies in
software design models has been given importance in
research and academia. The model proposed by Egyed [1] is
one of the recent efforts to detect design inconsistencies
automatically. However, this model can be further improved
in terms of personalized configuration and visualization
besides making it much more flexible. Our architecture
shown in Fig. 2 is aimed at providing user the ability to
choose design tool, consistency rule language and
visualization preferences. This makes the proposed
architecture very flexible and scalable. Our architecture is
named eXtensible Real Time Software Design
Inconsistency Checker (XRTSDIC) which is designed to be
flexible, scalable and extensible with real time response to
the model dynamics with regard to detection of
inconsistencies.

Since developers work in collaborative fashion with
different skill sets, it is possible that they might prefer
different notations for modelling. They might use different
language to define consistency rules and have different
requirements for visualization. The architecture is designed
keeping these in mind. The XRTSDIC provides flexibility
to have personalized preferences in terms of modelling tool
selection, visualization and consistency rule language
selection. Based on this architecture, we built a tool that
demonstrates the proof of concept. This tool makes the life
of developers easy.

Fig. 2 – Overview of proposed framework

Personalized configuration is the ability of the proposed
architecture that lets software engineers to choose the
design model they need besides selecting the language for
consistency rule making and visualization technique. The
execution model will be at work once user chooses
preferences for design model, language for consistency
rules and appropriate visualization technique. These
preferences are personalized and they are automatically
made available to the execution model. In the execution
model, real time inconsistency verification and visualization
of them is made. The process is as described here. As
software engineers draw design models, the real time
feedback is expected to be given to them. As the model is
built, the model dynamics tracker is at work to record the
changes being made to the design. The rule detector module
takes the model dynamics at runtime and lets consistency
checker know the details and rules. The consistency checker
does its job to verify consistency and lets the modelling tool
to know it and the same is visualized using the visualizer
module.

V. PROTOTYPE IMPLEMENTATION

A prototype application is implemnted using Java
programming langauge. SWING API is used for user-
friendly interface. The implementation has interface for
both personalized configurations and actual modeling
activities. With respect to personalized configuration, the
Configuration menu has provision to view Current
Preferences… and Change Preferences… The Start
Modeling… option under Model Driven SE invokes the
modeling tool based on the user preferences.

As shown in Fig. 3, the application has menu-driven
interface that allows users to have personal preferences
besides changing them if required. Then the users of the
application can start modeling any system desired with
specified modeling tool, rule definition language and
visualization tool. Out of all the modeling tools that can be
conFig.d and used though the prototype application, the
default modeling tool is the one we built to demonstrate the
proof of concept.

Fig. 3 – Menu-driven UI of the prototype

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

However the “Tracking Inconsistencies” module can be
integrated with any modeling tool thus making it very
flexible.

Fig. 4 – The default modelling tool with inconsistency

presented

On choosing Start Modelling... in the main prototype
application, the default modelling tool with interface as
shown in Fig. 4 is presented. Here the end users can perform
various modelling operations. The modelling tool supports
the 13 rules specified earlier in this paper. The
implementation is made in “Tracking Inconsistencies”
module that contains classes which encapsulate various
functionalities of execution model of the proposed
framework XRTSDIC. The functionalities include model
dynamics tracking, rule detection, consistency checking,
and visualization. The ModelDynamicsTracker class is
responsible to monitor real time changes in the model and
inform the rule detector. The RuleDetector class
encapsulates the functionalities of detection of rules to be
applied. The rules to be applied are to be known to
ConsistencyChecker class which checks inconsistencies
based on the defined rules and informs ModelingTool class
of any violations. ModelingTool class encapsulates a
modelling tool. The whole process is cyclic in nature and
the checking of design inconsistencies is done real time as
model elements are being constructed. After obtaining
violations, the ModelingTool class invokes Visualizer class
to show the inconsistencies with presentation that is in tune
with the visualization tool preferred by the user.

The Tracking Inconsistencies module is the common API
built as part of the prototype application that can be
integrated with any open source modelling tool built in
Java. Thus our prototype is capable of supporting
ArgoUML, UMLet, UML Designer, and our own tool
(default). The prototype has provision to add new modelling
tool support in future thus making it unique and flexible
which caters to the diversified needs of workforce in
software engineering domain.

VI. EXPERIMENTAL RESULTS

The prototype application was used for experiments. The
user preferences are used in the execution model of the
framework. As per user preferences, the modelling tool is
loaded and language for consistency rules is set besides
following the chosen visualization method. The proposed
framework is tested with default modelling tool and ten
UML models. The models are shown in Table 2.

Table 2 – Models used for experiments

Model

Name

Class

Diagram

Sequence

Diagram

State

chart

Diagram

Model

Elements

ATM Yes Yes Yes 145

Video on

Demand

Yes Yes Yes 46

Online

Courses

Yes Yes Yes 185

Billing

System

Yes Yes Yes 230

Hospital

Management

Yes Yes Yes 540

Hotel

Management

Yes Yes Yes 890

University

Portal

Yes Yes Yes 1230

Defect

Tracking

System

Yes Yes Yes 450

Valuation

Portal

Yes Yes Yes 1125

School

Management

Yes Yes Yes 1500

As consistency checking feasibility depends on
computational cost utilization of resources, we performed
validation with the 10 models listed in Table 2. The models
were evaluated with consistency rules pertaining to class,
sequence and state chart diagrams. The rule detector plays a
vital role in identifying the consistency rule that needs to be
evaluated based on the model change. As the model
evaluation takes place with an intelligent approach, the
model evaluation time decreases significantly. We say that
it is an intelligent approach as it uses a hierarchical and
incremental approach with the help of accumulated
heuristics. This will also improve scalability and accuracy.
This is achieved with an incremental and heuristic approach
that can eliminate the unnecessary verifications.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

Fig. 5 – Performance comparison

The evaluation time for model changes is presented in Fig.
5. The evaluation time is computed with different
percentages of model changes. The average of 10
experiments at each percentage of changes is considered.
The results revealed that the proposed approach to evaluate
model changes is comparable with the approach followed in
[4]. As the results reveal, the evaluation time is negligible
and thus the system can run in scalable fashion for large
models as well. From the experiments, it is understood that
the memory cost linearly increases as model size increases.

Fig. 6 – Model size vs. memory consumption

As shown in Fig. 6, it is evident that the model size has
influence in the memory consumption. However,
considering availability of main memory in the modern
computers, the memory consumption is not an issue. The
memory consumption is involved as the approach is
heuristic and incremental model instead of batch processing
model. This will affect scalability to some extent.
Nevertheless, the proposed system is still scalable as the
model changes affect only the rules that are to be evaluated
and no unnecessary processing is done.

VII. CONCLUSIONS AND FUTURE WORK

Detecting and tracking inconsistencies in the software
design models can help software engineers to unearth bugs
early in the life cycle of the system. This will result in the
optimization of time, cost and effort required to complete

projects successfully. In this paper we studied existing tools
and approaches that are used to check inconsistencies in
UML design models. Most of the existing approaches were
focusing on different aspects of consistency checking using
certain techniques. However, a holistic and comprehensive
approach is missing. Since UML modelling tools do not
provide consistency checking features, it is inevitable to
have consistency rules to be defined. There are many
modelling tools available and the software engineers may
choose any one of them. In this paper we proposed a
framework that facilitates software engineers to choose a
modelling tool from a set of tools, and to choose a language
for specifying consistency rules and a method for
visualization. To achieve this framework has two things
such as personalized configuration and execution model.
The former allows users to determine preferences with
respect to modelling tool, language for consistency rules
and a visualization method while the latter takes care of
detection and tracking of consistencies in the design models.
We built a prototype application that demonstrates the
flexible and real time consistency checking in UML models.
Our empirical results revealed that there is significant
improvement in speed, accuracy and scalability in the
proposed model. Moreover it is extensible with other
models, rules, visualization methods. This research can be
extended further to enhance the proposed framework with
support for more consistency rule languages, visualization
methods and modelling tools.

REFERENCES

[1] Xianhong Liu, Identification and Check of Inconsistencies
between UML Diagrams. Journal of Software Engineering
and Applications. p1-5, 2013.

[2] W. Shen, K. Wang, and A. Egyed, “An Efficient and
Scalable Approach to Correct Class Model Refinement,”
IEEE Trans. Software Eng., vol. 35, no. 4, pp. 515-533,
July/Aug. 2009.

[3] R.N. Taylor, R.W. Selby, M. Young, F.C. Belz, L.A. Clarce,
J.C.Wileden, L. Osterweil, and A.L. Wolf, “Foundations of
the Arcadia Environment Architecture,” Proc. Fourth Symp.
Software Development Environments, ACM, 1998.

 [4] Alexander Egyed, “Automatically Detecting and Tracking
Inconsistencies in software Design Models. IEEE. 37 (2),
p188-204, 2011.

[5]. Bashar Nuseibeh, Steve Easterbrook, Alessandra Russo.
(2001). Making inconsistency respectable in software
development. Elsevier. p1-5, 2001.

[6]. Christian Nentwich, Wolfgang Emmerich and Anthony
Finkelstein, Static Consistency Checking for Distributed
Specifications.Research Paper. p1-10, 2000.

[7]. Tom Mens, Ragnhild Van Der Straeten, and Maja D’Hondt,
“Detecting and Resolving Model Inconsistencies Using
Transformation Dependency Analysis”, Springer. p1-15,
2006.

[8]. Reiko Heckel, Jochen Kuster, Gabriele Taentzer, “Towards
Automatic Translation of UML Models into Semantic
Domains”, Research Paper. P1-5, 2000.

[9]. Ken Kaneiwa and Ken Satoh, “Consistency Checking
Algorithms for Restricted UML Class Diagrams”, Research
Paper. p1-21, 2000.

[10]. Masters thesis Torger Kielland, “Consistency checking of
UML models on the XMI format”, Research Paper. p1-83,
2000.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

[11]. Bogumila Hnatkowska, Zbigniew Huzar, Jan Magott,
“Consistency Checking in UML Models”, Research Paper.
p1-6, 2000.

[12]. Kenneth Baclawski, Mieczyslaw M. Kokar, “Consistency
Checking of Ontologies Expressed in UML.”, Research
Paper. p1-9, 2000.

[13]. Zs. Pap, I. Majzik1, A. Pataricza and A. Szegi,
“Completeness and Consistency Analysis of UML Statechart
Specifications”, Research Paper. p1-15, 2000.

[14]. Ali Hanzala Khan, Ivan Porres, ‘Consistency of UML class,
object and statechart diagrams using ontology reasoners”,
Elsevier. p4-5, 2015.

[15]. Ragnhild Van Der Straeten, Jocelyn Simmonds, “Detecting
Inconsistencies between UML Models Using Description
Logic”, Research Paper. p1-9, 2013.

[16]. Jocelyn Simmonds and M. Cecilia Bastarrica, “Description
Logics for Consistency Checking of Architectural Features
in UML 2.0 Models”, Research Paper. p1-15, 2005.

[17]. Xiangpeng Zhao, Quan Long, and Zongyan Qiu, “Model
Checking Dynamic UML Consistency”, Research Paper.
p1-20, 2005.

[18]. Zinovy Diskin, Yingfei Xiong, and Krzysztof Czarnecki,
“Specifying Overlaps of Heterogeneous Models for Global
Consistency Checking”, Research Paper. p1-15, 2005.

[19]. Alexander Egyed, “Instant Consistency Checking for the
UML.”, ACM. p1-5, 2006.

[20]. Clare Gryce, Anthony Finkelstein and Christian Nentwich,
“Lightweight Checking for UML Based Software
Development”, Research Paper. p1-9, 2006.

[21]. Francisco J. Lucas , Fernando Molina , Ambrosio Toval, “A
systematic review of UML model consistency
management”, Elsevier. p1-10, 2009.

[22]. Wafa Chama, Raida Elmansouri and Allaoua Chaoui.,
“Model checking and code generation for uml diagrams
using graph transformation”, International Journal of
Software Engineering & Applications. 3 (6), p1-17, 2012.

[23]. Xavier Blanc, Isabelle Mounier, Alix Mougenot and Tom
Mens, “Detecting Model Inconsistency through Operation-
Based Model Construction”, ACM. p1-9, 2008.

[24]. Yann Thierry-Mieg Lom-Messan Hillah, “UML Behavioral
Consistency Checking using Instantiable Petri Nets”,
 Research Paper. p1-5, 2006.

[25]. Jean Louis SOURROUILLE, “A Pragmatic View about
Consistency Checking of UML Models.”, Research Paper.
p1-8, 2006.

[26]. R. Dubauskaite, O. Vasilecas., “Method on Specifying
Consistency Rules among Different Aspect Models”,
expressed in UML.ISSN. 19 (3), p1-5, 2013.

[27]. Alexander Egyed, “Scalable Consistency Checking between
Diagrams – The VIEWINTEGRA Approach”, IEEE. p1-4,
2001.

[28]. JOCELYN SIMMONDS, “A tool based on dl for uml model
consistency checking.”, Research Paper. p1-5, 2005.

[29]. Alexander Egyed, “UML/Analyzer: A Tool for the Instant
Consistency Checking of UML Models”, ICSE, P1-5, 2007.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

