
Industry Based Regression Testing Using IIGRTCP
Algorithm and RFT Tool

K HemaShankari, R. ThirumalaiSelvi, N. V. Balasubramanian

Abstract- Software maintenance is an expensive activity

in Software Industry, estimated at nearly 60% of total cost.
Regression testing is an integral part of this activity. Any
modification to software is verified through Regression Testing.
Both the research community and the software industry have
paid substantial attention to it. This paper is a survey of the
current practice, and the commonality as well as gaps between
the two communities. The goal of our research is to improve
control of regression testing and reduce redundant testing
through proper selection strategies. The proposed Improvised
Industry oriented Genetic algorithm for Regression Test case
Prioritization (IIGRTP) is compared with previous approach of
using APFD metric combined with the use of Rational Functional
Tester (RFT), a Java Tool developed by IBM to automate the
generation of test cases. RFT not only enables regression test case
generation but also integrates with Rational Test Manager
(RTM). We demonstrate the improved performance of our
approach using a case study.

Index Terms—Test case prioritization, Regression
testing, Business rules, APFD metric, RFT tool

I. INTRODUCTION

Regression Testing is an integral part of any software
development methodology. With extreme programming
methodology, design documents are often replaced by
extensive, repeatable, and automated testing of entire software
package at every stage in the software development life cycle.

K HEMASHANKARI IS RESEARCH SCHOLAR, BHARTATH UNIVERSITY,
AND ASSISTANT PROFESSOR , DEPARTMENT OF COMPUTER SCIENCE,
WOMEN’S CHRISTIAN COLLEGE CHENNAI, INDIA (EMAIL:
HEMS_BANU@YAHOO.COM)

R. THIRUMALAISELVI IS RESEARCH SUPERVISOR, ASSISTANT

PROFESSOR, GOVT.ARTS COLLEGE (MEN), NANDHANAM, INDIA

(EMAIL: SARASSELVI@GMAIL.COM)

N. V. BALASUBRAMANIAN WAS FORMERLY, FOUNDING HEAD OF

COMPUTER SCIENCE DEPARTMENT, AND PROFESSOR, CITY UNIVERSITY

OF HONG KONG, AND PROFESSOR EMERITUS, R.M.K. ENGINEERING

COLLEGE, CHENNAI, INDIA (EMAIL:LAKS.BALU@GMAIL.COM)

Thus Regression Testing is not an isolated one-off feature, but
a full fledged activity varying in scope and preconditions, and
highly context dependent. Several techniques have been
proposed and evaluated empirically; but in many cases, they
are context specific and do not lend themselves to general use.
This research discusses the limitations of current approaches
on regression testing, and proposes a practical technique
which combines change-impact-analysis, business-rules-
model, cost-risk-assessment, and test-case-management. It
provides confidence in modified software. The later sections
of this paper elaborate how regression test cases are prioritised
based on factors such as rate of fault detection, percentage of
faults detected, and application of RFT Tool.

II.ISSUES FOR REGRESSION TESTING IN INDUSTRY

APPLICATION

A. Issues

There are typically two major problems for
regression testing of large-scale business systems. Firstly,
regression test coverage cannot be accurately defined with the
changes of system; Secondly, the number of test cases
expands dramatically with the combination of parameters, so it
is unable to complete regression testing of the minimum
coverage requirements within the determined period of time at
a reasonable cost.
Automated functional testing tools are frequently introduced
in the testing of large business systems. These tools provide a
basic means of testing, but t automatic function test
management framework is not available, which leads to the
fact that automated functional tests are often unable to be
effectively implemented and carried out. The root cause is that
functional testing is based on business, with a strong industry
relevance, but automated functional testing tools are not
related to business, so it cannot automatically adapt to the
specific business needs of each industry, and it requires a lot
of human intervention during the implementation of the
testing process, and the results are often difficult to meet
people's expectations.
Regression testing of large-scale business systems tends to be
restrained by the deadline and budget constraints, and
engineering properties of the test determine that it is
impossible to achieve completely as it describe in theory. With
the limited time and resources, in order to make more rational

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

arrangements for testing, a decision-making mechanism is of
great need in testing planning phase to constraints resources
(time, manpower, budget) based on the premise of risk
assessment and (test) cost estimation for decision making.

B. Methodology

The previously mentioned test models are relying on
software development process, so there is no practical
implementation approach for regression testing. Different
from the unit testing, integration testing and performance
testing in development process, regression testing repeatedly
emphasizes accumulation, which can be completed through
the structure and the business rules modeling methods, so that
the cycle of regression testing can proceed.

To build a supporting platform of regression testing
for decision-making, at first, you need to scan and analyze the
source code of the core business systems, and set up an
application description model; meanwhile, a bank of expert
knowledge of the industry should be established to collect and
refine business information. And then, a model of business
rules should be established to express business information.
Finally, risk assessment model will be established, according
to industry application and the characteristics of test
implementation. If business systems change with the
modification of demands, and with the changes of system
maintenance and other reasons; if new versions of the software
are produced by the development department, implementation
steps regression testing of are as follows:

(1) Scan and analyze the source codes in the new version, and
conduct analysis of changes bases on the application model,
automatic identify system changes;

(2) Analysis of change impacts analysis accurately pointed out
the scopes of functional business directly or indirectly
influenced by a change of version.

(3) With the application of business rules, the regression test
ranges are determined by experts and analysts

(4) Test suite is generated in the assessment model of cost and
risk, and it will be compressed with optimization algorithm;

(5) Complete automatic testing by refusing used test cases in
the library or developing new cases.

C. Limitations of the APFD Metric

The APFD metric just presented relies on two
assumptions: (1) all faults have equal severity, and (2) all test
cases have equal costs. In practice, however, there are cases in
which these ssumptions do not hold: cases in which faults vary
in severity and test cases vary in cost. In such cases, the APFD
metric can provide unsatisfactory results.

(i) Average Percentage Block Coverage (ABC).

This measures the rate at which a prioritized test suite covers
the blocks.

(ii) Average Percentage Decision Coverage (ADC).
This measures the rate at which a prioritized test suite covers
the decisions (branches).

(iii) Average Percentage Statement Coverage (ASC).

This measures the rate at which a prioritized test suite covers
the statements.

(iv) Average Percentage Loop Coverage (ALC).

This measures the rate at which a prioritized test suite covers
the loops.
(v) Average Percentage Condition Coverage (ACC).

This measures the rate at which a prioritized test suite covers
the conditions.

(vi) Problem Tracking Reports (PTR) Metric

The PTR metric is another way that the effectiveness
of a test prioritization may be analyzed. Recall that an
effective prioritization technique would place test cases that
are most likely to detect faults at the beginning of the test
sequence. It would be beneficial to calculate the percentage of
test cases that must be run before all faults have been revealed.
PTR is calculated as follows:

Ptr(t,p) = nd/n

Let t - be the test suite under evaluation, n - the total number
of test cases in the total number of test cases needed to detect
all faults in the program under test p

III. REGRESSION TESTING METHODS FOR INDUSTRY-
ORIENTED APPLICATION

Building a decision-support platform of regression testing
provides a viable solution to industrial applications of
regression testing. The construction involves models of
business rules, application description model, change-impact-
analysis, cost-risk-assessment, and test case management.

A. Extraction and Loading of Business Rules

Business rules are defined as constraints and norms for

business structure and operation. They are important resources
for enterprise business operations and management decisions.
Business rules should be managed by the rule-based system,
thereby separating application logic from the business process
logic of application system. Rules engine is an embedded
component in an application program. Its task is to test and
compare the object data which have been submitted by the
rule with the original rules, activate rules that meet the current

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

state of the data, and trigger corresponding actions in the
application program, according to the rules declared in the
executive logic.
To build business rules model supported by regression testing
is to inherit the accumulated knowledge of senior analysts, so
that there is an explicit expression for the actually used rules.
On this basis, combining test theories and rules integration and
optimization algorithms with the case, we can establish a
generation system, which is not less efficient than an average
level of case generation system in manual test.
The sources of business rules generally include:

(1) Rules derived from business needs (Rdbn)
(2) Rules derived from the theoretical testing principles (Rdtp)
(3) Rules from the industrial tradition (Rdit)
(4) Rules from the common sense of industry (Rcsi)
. This shows the Test Suite Reduction Technology has been
utilized in the real industry applications. has a process for
requesting and managing changes to an application during the
product development cycle.

The basis of business rules model is the accumulation
of a series of designing rules, industry standards, and special
constraints from operations in manual test cases. Business
rules model is used to express these rules in manual testing
age, and establish a structure of rule engine which can be
loaded rules. With these rules, a basic template case can be
generated in the supportive system of decision-making for a
specific business process.

Loading rules is to add a rule to the rule base. The key point is
how to express the applicable conditions and specify
optimization algorithms.

The expression of business rules is specific, and its basic form
is If (applicable conditions of rules) Then op, among which
Op both means generation of test points and case algorithms.
For a target system, it is impossible to exhaust all possibilities,
it can only advance progressively. Therefore, manual addition
should be allowed, and it is regarded as a learning process for
business rule model.For industrial applications, tools for the
source code analysis also need to extract some relationships of
business process and component, component and component,
component and class hierarchy, components and associated
database table.

IV. CASE STUDY

[13] presents a complex industry application, they

exemplify on the basis of a concrete case study (Siemens’
HPCO Application, a complex Call-Center Solution) how test
engineers can now work with the Integrated Test
Environment. The above figure is one scenario regression test
environment setting for the Call-Center Solution. We can see
that even the simple scenario demonstrates the complexity of
CTI platforms from the communication point of view because
there are several internal protocols involved. This case study
exposes the problem that in current industry practice,
regression testing is intended to integrate with complex test

environments. New methodology and technology should be
developed to solve this problem.

The process includes:

Step 1. Collect change requests

Step 2. Identify the scope of the next release and the scope of
the next release and determine which change requests will be
included in the next build.

Step 3. Document the requirements, functional requirements,
functional specification and implementation plans for each
grouping of change requests.

Step 4. Implement the change.

Step 5. Test or verify the change. Unit testing is done by the
person who made the change, usually the programmer.
Function testing tests a functional area of the system to see
that everything works as expected.

Step 6.Release.

A. Factors Taken For Proposed Approach

We consider three factors for proposed prioritization
technique. These factors are discussed as follows.

(i) Rate of Fault Detection

The rate of fault detection (RFD) is
defined as the average number of defects found
per minute by a test case For the test case k.

 RFDk =(Nk/ time k) * 6 (1)

(ii) Percentage of Fault Detected

 The percentage of fault detected (PFD) for test case
Tk can be computed by using number of

PFDk =(Nk) (2)

(iii) Risk Detection Ability

Risk value was allocated to every fault
depending on the fault‟s impact on software. To
every fault a Risk value has been allocated
based on a 10 point scale expressed as follows.

Very High Risk: RV of 10

High Risk: RV of 8

Medium Risk : RV of 6

Less Risk: RV of 4

Least Risk : RV of 2.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

For test case Tk, RDAk have been computed using
severity value Sk, Nk is the number of defects found
by Tk, and timek is the time needed by Tk to find
those defects. The equation for RDA can be
expressed as follows.

RDA = (Sk * Nk)/time k (3)

.
B.Test Case Ranking

Test case Ranking is the summation of the
three factors which are RFD, PFD and RDA. For test
case Tk, Test case ranking (TCRk) can be calculated
by the equation given below:

TCR k = RFD k + PFD K + RDA k (4)

C.IIGRTCP (Improvised Industry oriented Genetic
algorithm for Regression Test Case Prioritization)

The proposed prioritization technique expressed as follows.
Input: Test suite TK, and test case ranking (TCR) for every
test case are inputs of the algorithm.

Output: Prioritized order of test cases.

Algorithm:

Step1. Start

Step 2. Set TK empty

Step 3. For each test case Tk ε T1 do

Step 4. Calculate test case ranking using equation (4)

Step 5.end for

Step 6. Sort TK according to descending order of TCR value

Step 7. Let TK be T

Step 8.end

V. EXPERIMENT AND ANALYSIS

The Improvised Industrial Genetic Algorithm is well

suited for solving problems where solution space is huge and
time taken to search exhaustively is very high. For the purpose
of motivation this example assumes a priori knowledge of the
faults detected by T in the program P.

Table I: Fault Matrix

For example, suppose that regression test suite T contains six
test cases with the initial ordering {T1, T2, T3, T4, T5. T6} as
described in Table I.

 Table II: Binary representation of Test cases

Table III: Number of faults detected by every test case, the

time required to detect faults, and severity value of faults for
every test case

In Table III for the purposes of motivation, this

example assumes a priori knowledge of the faults detected by
T in the program P.

Faults

Test
cases

F1 F2 F3 F4 F5 F6 F7 F8

T1 X X X X X X
X

T2 X

T3 X X

T4 X X X

T5 X X
X

T6 X X X

Test cases Binary form
T1 11011111
T2 10000000
T3 10001000
T4 01100001

T5 00010101

T6 01010100

Test
cases

No of
faults

covered

Execution
time

Risk
severity

T1 2 12 8

T2 3 14 10

T3 1 11 4

T4 4 10 20

T5 2 10 12

T6 2 13 6

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

Table IV: RFD, PFD, RDA for test cases T1..T6

The values of rate of fault detection (RFD),

percentage of fault detected (PFD) and risk detection ability
(RDA) for test cases T1..T10 is calculated by using equation
(1), equation (2) and equation (4) respectively. Table 4
represents the values for all three factors which are RFD, PFD,
RDA for test case T1..T6 respectively.

Table V: Test case ranking for T1..T6 respectively

For test cases, T1..T6, TCR value computed from equation (4)
as given below. Table V shows test case ranking for each test
case.

Table VI: Test cases ordering for proposed approach and
previous work

For execution, test cases are arranged in decreasing
order of TCR. Test cases are ordered in such a manner, that
those with greater TCR value executes earlier

VI. RFT TOOL

A. Features of RFT
 Rational Functional Tester software is an automated tool
which provides testers with automated testing capabilities for
functional testing, regression testing, GUI testing and data
driven testing.

As an automated testing tool, RFT has several features below:
1) Provide robust testing support for Java, Web 2.0, SAP,
Siebel, terminal-based and Microsoft Visual
Studio .NET Windows Forms applications
2) Perform story board testing to combine natural
language test narrative with visual editing through
application screenshots
3) Use keywords to bridge the gap between manual and
automated testing
4) Manage validation of dynamic data with multiple
verification points and support for regular expression
pattern matching
5) Reduce rework, minimize the rerecording of scripts, and
reduce script maintenance

B. SAMPLE CODE:

Fig 1 : Code

 Fig 1 represents sample Code written

C. Comparison with the previous work

In this section, the proposed prioritized order is

compared with previous work Table VII represents proposed
order of test cases and the prioritized order proposed

Table VII: APFD % for no prioritization, Random and

proposed prioritization techniques

Test
cases

RFD PFD RDA

T1 1 2 1.333
T2 1.285 3 2.142
T3 0.54 1 0.3636
T4 2.4 4 8
T5 1.2 2 2.4
T6 0.9 2 0.923

Test cases Test case ranking
TCR=RFD+PFD+RDA

T1 4.33
T2 6.427
T3 1.909
T4 14.4
T5 5.6
T6 3.8

Test cases Prioritized order

T1 T4
T2 T2
T3 T5
T4 T1
T5 T6
T6 T3

Prioritization
Technique

APFD %

Non Priroritized 59%

Random
approach

66%

IIGRTP 88%

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

Fig 2: APFD Percentage for no order and the IIGRTP

In Fig 2 the percentage of APFD for both no order
and the IIGRTP .APFD % for no prioritization and proposed
prioritization techniques

VII. CONCLUSION

This paper presents a regression testing methodology
for industry-oriented applications to overcome current
limitations such as low degree of automation and difficulty of
defining test coverage. This methodology is compared with
different prioritization techniques making use of APFD
metric. We take the weighted average of the number of faults
detected during the execution of the test suite. The results
confirm the efficacy of this proposal. Test Case Prioritization
(TCP) is an effective and practical technique to monitor
regression testing. It is proposed that other factors such as
Weighted Defect Density (WDD), Defect Removal Efficiency
(DRE), Weighted Percentage based on Fault Severity (WPFS),
and popular risk metrics be incorporated in future. The
proposed methodology is easily integrated with RFT Tool.
Any attempt to improve functionality of regression testing that
optimises resources of time and labor will result in a better
software product.

REFERENCES

[1] G. Rothermel, R. Untch, C. Chu and M. Harrold, “Test case
prioritization: An empirical study,” In Software Maintenance, 1999.
(ICSM’ 99) proceedings. IEEE International conference, on pages 179-
188 IEEE, 1999.

[2] A.Pravin and Dr. S. Srinivasan,”An Efficient Algorithm for Reducing

the Test Cases which is Used for Performing Regression Testing,” 2nd
International Conference on Computational Techniques and Artificial
Intelligence (ICCTAI'2013) March 17-18, 2013

[3] S. Elbaum, A. Malishevsky, and G. Rothermel, “Prioritizing test cases

for regression testing,” Proc. The 2000 ACM SIGSOFT International
Symposium on Software Testing and Analysis, Portland, Oregon, U.S.A.,
August 2000, 102–112.

[4] W. Wong, J. Horgan, S. London and H. Agrawal, “A study of effective

regression testing in practice,” In Proc. of the Eighth Intl. Symp.
onSoftw. Rel. Engr., pages 230–238, Nov. 1997.

[5] R.Beena, Dr.S.Sarala, “CODE COVERAGE BASED TEST CASE

SELECTION AND PRIORITIZATION,” International Journal of

Software Engineering & Applications (IJSEA), Vol.4, No.6, November
2013.

[6] R. Kavitha, N. Sureshkumar, “Test Case Prioritization for Regression

Testing based on Severity of Fault,” College of Engineering and
Technology Madurai, Tamilnadu, India (IJCSE) International Jthenal
on Computer Science and Engineering 2010.

[7] Samaila Musa, Abu BakarMd Sultan, Abdul Azim Bin AbdGhani,

SalmiBaharom,“A Regression Test Case Selection and Prioritization for
Object-Oriented Programs using Dependency Graph and Genetic
Algorithm” Research Inventy: International Journal of Engineering And
Science Vol.4, Issue 7 (July 2014), PP 54-64 Issn (e): 2278-4721, Issn
(p):2319-6483

[8] Sujatha, Mohit Kumar and Varun Kumar, (2010) "Requirements based

Test Case Prioritization using Genetic Algorithm", International Journal
of Computer Science and Technology, Vol.1, No, 2, pp.189-191.

[9] Q.-u.-a. Farooq, M. Z. Z. Iqbal, Z. I. Malik, and A. Nadeem. An

approach for selective state machine based regressiontesting. In
Proceedings of the 3rd International Workshop on Advances in Model-
based Testing (A-MOST 2007), pages44–52, New York, NY, USA,
2007.ACM.

[10] G. Rothermel, R. Untch, C. Chu, and M. J. Harrold. “Test case
prioritization: an empirical study”. Testing “European Journal of
Scientific Research ,ISSN 1450-216X Vol.55 No.2 (2011), pp.261-274

[11] S. Elbaum, A. G. Malishevsky and G. Rothermel,(2001), “Incorporating

varying test costs and fault severities into test case Prioritization” ,23rd
International Conference of Software Engineering, pages329-338

[12] Automated Order Management:
 http://www.infosys.com/industries/banking/automated_order_manageme

nt.asp?page=iemsl

[13] Andreas Hagerer, TizianaMargaria, OlverNiese, Bernhard Steffen,

Georg Brune and Hans-Dieter Ide, Efficient Regression Testing of CTI-
Systems: Testing a complex CallCenter Solution, In Annual Review of
Communication Volume 55, pages 1033-1040, Int. Engineering
Consortium (IEC), 2001

APFD percentage
Non
prioritised

Random

IIGRTCP

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

