


Abstract—In modern web application development,

JavaScript is the most popular programming language for
implementation and test framework automation is usually
applied in unit testing. However, developers spend a lot of time
to create test script manually. Thus, creating automated test
script tool can support them efficiently. Nonetheless, a tool for
generating test script by randomly creating test input cannot
guarantee that all paths of the code is executed and it takes
significant of time on testing to reach a high code coverage.
This paper proposes a tool for generating test cases from
JavaScript function and executing test cases to cover all
statements coverage criteria. The tool can analyze and
instrument JavaScript code to generate a control flow graph
and test cases by selecting data based on test paths and input
vector to drive the paths, evaluate coverage, execute test cases,
as well as display a test report.

Keywords— Software Testing, Automatic Testing, Input
Vector, Path Predicate Expression, JavaScript

I. INTRODUCTION

avaScript is the most popular programming language
used in web application development because developers

usually use JavaScript to improve web browser better
performance. Building an enterprise JavaScript web
application generally uses an automated test framework.
However, developers spend significant of time to generate
test script manually before running an automated test suite.

In unit testing, JavaScript code is analyzed and assigned
test input by developers before the executing test cases.
These activities require a lot of time to operate.
Furthermore, if there are many JavaScript functions to be
tested, developers have to spend a lot of time to review and
create test scripts.

In previous work [1], the research proposed a tool that
can automatically generate test module with randomly
creating parameters for JavaScript. The tool can reduce time
consuming during test script generation. However,
generated test script with randomly creating parameters
cannot execute in some test paths in a JavaScript Function
that causes low test coverage.

Manuscript received November 27, 2015; revised January 9, 2016.
Witthaya Luanghirun is with the Department of Computer Engineering

Faculty of Engineering, Chulalongkorn University, Bangkok, 10330
Thailand (e-mail: Witthaya.L@student.chula.ac.th).

Taratip Suwannasart is an Associate Professor at Department of
Computer Engineering Faculty of Engineering, Chulalongkorn University,
Bangkok, 10330, Thailand (e-mail: Taratip.S@chula.ac.th).

In this paper, we propose a tool to generate test cases by
analyzing path predicate expression [2] for automatic
JavaScript unit test. The tool can analyze an input
JavaScript file, instrument code, create control flow graph
[3], and automatically generate test cases by analyzing paths
predicate expression that cover all statements on each test
path. A value of parameters consisting string, number, and
boolean, will be created from conditional statements. Then,
a test script in D.O.H. format is generated and test cases are
executed. Finally, it will create a test report of test cases
which provides information about test function, test
parameters value, and test paths.

We have organized the rest of this paper as follows.
Section 2 describes related work. Section 3 presents
development of our proposed tool. Finally, conclusion is
represented in Section 4.

II. RELATED WORK

A. Tool for Generating Test Module for JavaScript Based
on Statement Coverage Criteria [1]

This research proposed a tool that automatically generates
test module with randomly creating parameters for
JavaScript which presents the concept of parameter type
determination on JavaScript function and the operation of
open-source frameworks in JavaScript unit testing.

Parameter Type Determinator is a module of the tool that
provides functions to determine types of parameters. They
presented an approach to determine parameter types by
inspecting parameter usages in function.

D.O.H. [4] is a component of open-source frameworks,
Dojo Toolkit [5], which provide test framework for
JavaScript. This tool automatically creates test scripts in
D.O.H. format and executes test scripts through the D.O.H.
runner. Moreover, D.O.H. can test not only JavaScript
within the framework but also normal JavaScript outside
framework.

B. Computation of the Minimal set of paths for
Observability-based statement coverage [6]

This paper presented finding a minimal set of execution
paths that assured a user-specified level of observability-
base coverage for embedded software program. This
research proposed an application white-box testing to find
the paths by building a Directed Acyclic Graph, and
generating an input value from feasibility test path due to
observability-based coverage. Moreover, the research
represented an input vector generation by deriving and
evaluating all the branch conditions on the given paths to
refine an input vector for desired outcome.

Test Cases Generation Tool for JavaScript
Based on Statement Coverage Criteria

Witthaya Luanghirun, Taratip Suwannasart

J

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

III. IMPLEMENTATION OF THE PROPOSED TOOL

In this paper, we propose a tool to generate test cases by
analyzing path predicate expression for automatically unit
testing JavaScript. The structure of the proposed tool is
presented in Fig. 1.

The tool is divided into four main parts which consist of
1) analysis and instrumentation of the JavaScript code, 2)
control flow graph generation, 3) test case and coverage
data generation and 4) test cases execution. There are also 4
minor modules in test case and coverage data generation
part which consists of path selection, path predicate
expression, input vector value generation, and test case and
coverage data generation. Each part of the tool is described
in steps as shown in Fig. 1.

A. The JavaScript code Analysis and Instrumentation

Since the tool receives a JavaScript source code from a
user. An example code is shown in Fig. 2. The tool analyzes
parameters a function as input vectors [2] which are inputs
of the function that determine the decision of predicates
within the function. Input vectors are determined the data
type by inspecting their usages. This tool supports data type
of input vector in string, number, and boolean only.

Then, the source code is read and instrumented as shown
in Fig. 3. The instrumented code is added string counter
statement name “jscounter” for inspecting the path during
test execution.

 Fig. 1. An Overview of the tool structure

1 function main(a,b){
2 var x = a + b;
3 var y = a - b;
4 if (x > y)
5 {z = x + y;}
6 else
7 {z = x - y;}
8 if (z < 0)
9 {z = 0;}
10 return z;
11 }

Fig. 2. An example JavaScript code

1 function main(a,b){
2 var jscounter ="";
3 jscounter += "1";
4 var x = a + b;
5 jscounter += "-2";
6 var y = a - b;
7 jscounter += "-3";
8 if (x > y)
9 {jscounter += "-4";
10 z = x + y;}
11 else
12 {jscounter += "-5";
13 z = x - y;}
14 jscounter += "-6";
15 if (z < 0)
16 {jscounter += "-7";
17 z = 0;}
18 jscounter += "-8";
19 console.log(jscounter);
20 return z;
21 }

Fig. 3. The instrumented code of an example code

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

B. Control Flow Graph Generation

After code instrumentation, this process extracts the code
and creates a control flow graph. In order to extract paths
for generating input vector, each node in the graph
represents a JavaScript statement and each edge in the graph
is used to represent a flow of the program.

From the given code in Fig. 2, a control flow graph is
created as shown in Fig. 4.

Fig. 4. A control flow graph of an example code

C. Test Cases and Coverage data Generation

This component provides the process to select test paths,
creates a path predicate expression for generating test vector
values, and creating test cases and calculating coverage
data.

1) Paths Selection

After a control flow graph is generated, the tool will now
select paths on a graph by using the depth first search
algorithm [7] from the start node through the end node of
the graph. For example, in Fig.4 paths through the program
which covering each statement are shown in Fig. 5.

1) 1→2→3→4→6→8
2) 1→2→3→5→6→7→8

Fig. 5. Selected paths from Fig. 4

2) Path Predicate Expression Generation

A Path predicate expression is a path that shows decisions
of program statements on each predicate for generating
input vectors. In Fig. 4, there are two condition nodes which
are node 3 and 6 in the graph. The tool gives a predicate
“A” represents the predicate on node 3 which is “x > y” and
a predicate “B” represents the predicate on node 6 which is
“z < 0”. From Fig. 6, a path predicate expression of path
no.1 is assigned as the expression “AB̄” which the
expression “A” represents predicate “x > y” which is TRUE

of predicate of “A”, and “B̄” represents “z ≥ 0” which is
FALSE of predicate of “B”.

The path predicate expression of path no.1 is AB̄
where is A: x > y, B̄: z ≥ 0
The path predicate expression of path no.2 is ĀB
where is Ā: x ≤ y, B: z < 0

Fig. 6. A path predicate expression for selected paths in Fig. 5

After creating the expression, tool interprets the
expression to local variable, constant, or input vector which
is involved. For example, the expression “AB̄” means “A”
and “B̄” where “A” is “x > y” and B̄ is “z ≥ 0”. This
predicate expression can be interpreted as “(a + b) > (a – b)”
and “(a + b) + (a – b) ≥ 0”.

3) Input Vector value Generation

The tool generates input vector values from the given
path by consider an input vector type and the path predicate
expression. This module analyzes path predicate expression
feasibility. The tool will generate input vector if the path
predicate expression is feasible. If the given path is not
feasible, the tool will return null value.

4) Test Cases and Coverage data Generation

Since input vectors are assigned with values, the test
cases are generated as shown in Table I. A test case consists
of attributes as follows:

1. Test Case ID: it is assigned after the test case
generation.

2. Test Function: it represents tested JavaScript function
to be tested.

3. Input Vector: it represents parameters of a function.
4. Input Vector value: it represents values of parameters.
5. Test Path: it represents path that will be executed a test

from given input vectors.

TABLE I AN EXAMPLE TEST CASE

Test
Case
ID

Test
Function

Input
Vector

Input
Vector
Value

Test Path

TC01 main a,b
a : 836
b : 37

1→2→3→4→6→8

TC02 main a,b
a : -568
b : -23

1→2→3→5→6→7→8

The coverage data is presented as percentage of statement

coverage of generated test cases which are executed. The
formula for calculating percentage of statement coverage is
shown as follows:

(1)

After test cases and coverage data are generated, they will

be stored in a database for using create test scripts and make
a test report in the next processes.

D. Test Cases Execution

The tool retrieves the test cases from a database,
generates test module and executes test cases in D.O.H.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

framework. An example of test module is shown in Fig. 7.

1 define(["doh"],
2 function(doh, test){
3 doh.register("test", [{
4 name: "main_1",
5 setUp: function(){
6 startTest();
7 },runTest: function(t){
8 var res = main(836,37);
9 },tearDown: function(){
10 endTest();
11 } },]);});

Fig. 7. An example of D.O.H test script

The test script will be executed through the D.O.H.
runner and return results. If the results of the test execution
match with the test path, it means that the test is passed.
Otherwise, the test is fail. Then, the tool provides a test
report is shown in Fig. 8.

Fig. 8. A Test report

IV. CONCLUSION

In this paper, we have presented a tool for automatically
generating test cases based on selective parameters for
JavaScript function. We present how to generate test data
for each test case which support only string, number and,
boolean type. The benefit of this tool is the reduction time
and effort for creating JavaScript test cases.

REFERENCES
[1] P. Janthong and T. Suwannasart, "Tool for generating test module for

JavaScript based on statement coverage criteria," in Computer Science
and Software Engineering (JCSSE), 2014 11th International Joint
Conference on, 2014, pp. 331-336.

[2] K. Naik and P. Tripathy, Software Testing and Quality Assurance
Theory and practice. Hoboken, New Jersey: John Wiley & Sons,
2008.

[3] M. Pezze and M. Young, Software testing and analysis : process,
principles, and techniques. Hoboken, New Jersey: Wiley, 2008.

[4] The Dojo Foundation. D.O.H.: Dojo Objective Harness [Online].
Available: https://dojotoolkit.org/reference-guide/1.9/util/doh.html

[5] The Dojo Foundation. The Dojo Toolkit [Online]. Available:
http://dojotoolkit.org

[6] J. Costa and J. Monteiro, "Computation of the minimal set of paths for
observability-based statement coverage," in Mixed Design of
Integrated Circuits and Systems, 2008. MIXDES 2008. 15th
International Conference on, 2008, pp. 587-592.

[7] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein, Introduction to Algorithms, Second ed.: MIT Press and
McGraw-Hill, 2001.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

