



Abstract— Mobile applications have influence in our daily

life. There are a lot of different mobile application development

platforms and Android gains the highest market share. Hence,

Android application development has grown up, and it actually

has an effect on testing process. The problem of testing process

is that some test cases cannot be used when a program is

changed. This causes testers to spend more time, energy, and

resources for testing the changes before testing the others.

Consequently, test case impact analysis from user interface

changes for applications are important. We have proposed a

tool to analyze an impact on test cases when an user interface of

Android applications is changed by comparing two versions of

user interface files to analyze the changes, highlighting and

correcting which test cases can be used and finally generating

new test cases if necessary.

Index Terms— test cases, impact analysis, user interface

changes, mobile application, android

I. INTRODUCTION

obile applications have influence in our daily life and

there are a lot of mobile application platforms such as

Android, iOS, Windows Phone, and BlackBerry. However,

in year 2011-2014, Android gains the most market share

with an over 50% share in two years and more than 75%

over the next two years [1].

Previous researches about test case generation for several

applications [2]-[4] presented test case creation from the

user interface regardless to user interface changing which

impact for old test cases. Although, the researchers studied

on change impact analysis in several possibilities [5]-[7] but

they have not covered user interface for Android mobile

application, and they have not focused on change impact

analysis of personal computer application or web

application.

This paper presents a tool to examine the impact on test

case from user interface changes for Android mobile

applications by comparing two versions of XML user

interface files, deleting the test cases when those test cases

can be no longer used, and correcting test cases that can be

used. In addition, new test cases will be created to replace

Manuscript received December 22, 2015; revised January 15, 2016.

C. Prongsang and T. Suwannasart are with the Department of Computer

Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok,

Thailand e-mail:chatchawan.p@student.chula.ac.th, Taratip.S@chula.ac.th

the old ineffective test cases. In our research, we use

boundary value analysis which is a black-box testing

technique to assign input values for each test case.

II. BACKGROUND

A. A User Interface of Android Mobile Application

A user interface of Android mobile application [8,9]
comprises of 2 object tags which are ViewGroup and View.

ViewGroup is user interface layout which stores widgets into

group such as LinearLayout, RelativeLayout, and

ScrollView. View is user interface widget which is a graphic

format interacting with users such as Button, and EditText.

This research focuses on 9 widgets of View including

Button, EditText, CheckBox, RadioButton, ToggleButton,

Spinner, DataPicker, TimePicker, and NumberPicker. Fig. 1

shows an example of graphical user interfaces where (a) is

the old version and (b) is the new version. The differences of

two versions of GUI are as follow: <EditText> LastName is

removed, <EditText> E-mail is inserted, <Spinner> Country

is inserted, and label of <Button> OK is updated.

 (a) Old Version (b) New Version

Fig. 1. An example of two versions of Graphical User Interface

An user interface is stored in XML document files which

consists of user interface file and resource file. Fig. 2 shows

the new version of XML user interface file and Fig. 3 shows

the new version of XML resource file. A user interface file

contains information about widgets, and a resource file

contains information about boundary values and list values

of widgets.

A Tool for Test Case Impact Analysis

From User Interface Changes in Android

Mobile Application

Chatchawan Prongsang and Taratip Suwannasart

M

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

Fig. 2. A XML user interface file

Fig. 3. An example of a XML resource file

B. Test Cases

In this research, test cases are generated by using Black-

box testing technique. An example of test case is depicted in

Table I.

TABLE I

AN EXAMPLE OF TEST CASE

Application AppDemo

Screen activity_main

TestCase ID 001 Version 1.0

Data

Order Widget ID Text Value Input Data

1 editText1 Name Mr.Hello

2 editText2 Last Name Wolrd

3 editText3 Comment Good Luck!

4 Button OK Click

Output Show Toast

C. Impact Analysis

Since a user interface has been changed, the change has an

effect on XML document files and test cases. Thus, the

affected test cases must be corrected and we concern with 4

main issues as follows:

1. How do changes affect an user interface file and a

resource file?

2. How do we locate the affected positions on the user

interface file and the resource file?

3. How do changes affect test cases?

4. Can we fix and update the test cases to be ready for

use?

III. DEVELOPMENT OF THE PROPOSED TOOL

Fig. 4. The proposed tool structure

Fig. 4 presents the proposed tools structure for test cases

impact analysis from user interface changes of an Android

mobile application. There are five main steps in our

approach starting from a user imports the old and the new

version of user interface files in XML format then the tool

extracts widgets from XML document files and keeps them

into a database. Next, values from the resource file will be

extracted.

The values include maximum, minimum, and list values

for updating the widget attributes in the database.

Afterwards, the tool will analyze and compare between 2

versions of the user interface, analyze the impact to test

cases, and update the impacted test cases. Finally, the tool

will provide updated test cases for testing the new version of

user interface. The tool operations are described in the steps

as follows.

A. Widget Extraction from XML User Interface files

With the imported user interface files of the old and the

new version of user interface, the tool extracts attributes of

both versions which include attributes below.

(1) Widget No: an order of widget

(2) Widget Name: a name of widget

(3) Widget ID: an id of widget

(4) Text Value: a text value of widget

(5) Input Type: an input data type of widget

(6) Action: an action value of widget

The extracted attributes are stored in the widget database.

TABLE II shows an example of extracted attributes from

<EditText> tag in line 32-40 of Fig. 2

TABLE II

AN EXAMPLE OF EXTRACTED WIDGET ATTRIBUTES

Attributed Extraction Valuable Extraction

Widget No. 1

Widget Name EditText

Widget ID editText1

Text Value -

Input Type textPersonName

Action -

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

B. Extraction of Boundary Value and List Values from

Resource Files

The tool extracts properties from both resource files

which include max boundary value, min boundary value, and

list values. These properties are updated in the widget

database by the matched Widget ID. The boundary values

are extracted in 4 attributes which include

(1) Name: a name of boundary value as Widget ID

(2) Format: a data type

(3) Min Value: a minimum boundary value

(4) Max Value: a maximum boundary value

For example, table III shows extracted boundary values

from <item name> tag in line 14–15 of Fig. 3. It presents

editText1 which is string data type, max boundary value is

25, and min boundary value is 6.

TABLE III

AN EXAMPLE OF EXTRACTED BOUNDARY VALUE ATTRIBUTES

FROM RESOURCE FILES

Attributed Extraction Valuable Extraction

Name editText1

Format String

Min Value 6

Max Value 25

Table IV shows extracted list values whether there is

<Spinner> tag in the user interface file. They are extracted

from <string-array name> tag in line 8–12 of Fig. 3.

TABLE IV

AN EXAMPLE OF EXTRACTED LIST VALUE ATTRIBUTES

 FROM RESOURCE FILES

Attributed Extraction Valuable Extraction

Name spinner1

List Thailand, Japan, China

After extracting resource files, the extracted attributes are

updated in the widget database by the matched Widget ID

field in the widget database to complete widget information.

TABLE V

AN EXAMPLE OF COMPLETE WIDGET

Attribute Attribute Value

Widget No. 1

Widget Name EditText

Widget ID editText1

Text Value Name

Input Type textPersonName

Action -

Min Value 6

Max Value 25

C. User Interface Analysis and Comparison

The tool selected the complete widget information from

the widget database to create widget list of the old and the

new version of user interface as shown in Fig. 5 where (a) is

widget list of the old version in Fig.1 (a) and (b) is widget

list of the new version in Fig.1 (b)
After both widget lists have been created, the tool will

analyze and compare change of both widget lists. Tool

supports the changes with following cases (1) adding a new

widget, (2) removing an existing widget, (3) changing

widget order, and (4) editing widget data. The result of this

step is shown in table VI

 (a) Old version (b) New version

Fig. 5. A structure of two Versions UI Widget List

TABLE VI

A CONCLUSION OF CHANGES AND TEST CASES

IMPACT ANALYSIS

Order
Widget

ID
Text Value

Changes

Description

Impacted

Changes

1 editText1 Name Updated

minimum

boundary

value from 4

to 6 and

updated

maximum

boundary

value from 6

to 25 in new

version

Updated

test case

2 editText2 Last Name Deleted

widget in new

version

Deleted and

updated

test case

3 editText3 Comment Changed

Widget Order

from 2 to 4

Updated

test case

4 button1 OK Changed

Widget Order

from 4 to 5

Updated

test case

5 editText4 E-Mail Created and

inserted new

widget in new

version in

order 2

Created

New test

case,

update test

case

6 spinner1 Country Created and

inserted new

widget in new

version in

order 3

Updated

test case

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

D. Analyze Impact to Test Cases

The objective of this step is to analyze the affected test

cases from the result from step C which has an effect on 4

types of changes described below

1) In case of adding a new widget, the test case is updated

by adding test case order of the old test case but there is

an exception for this widget that includes EditText,

NumberPicker, CheckBox, and RadioButton. Because

of adding EditText and Number Picker, the test tool

must add a new test case based on their boundary value.

By Adding of CheckBox and RadioButton, the tool

must add a new test case to follow numbers of

Checkbox and RadioButton.

2) In case of removing an existing widget, the test case is

updated by removing test case order of the old test case

but there is an exception for this widget that includes

EditText, NumberPicker, CheckBox, and RadioButton.

Because of removing EditText and Number Picker, the

test tool must remove a test case based on their

boundary value. By removing CheckBox and

RadioButton, the tool must remove a test case to follow

numbers of Checkbox and RadioButton.

3) In case of changing widget order, the tool will rearrange

the Widget ID in each test case.

4) In case of editing widget data, the tool will analyze the

changes as follows

a. Editing boundary value, if the test data does not go

along with a new boundary value, the test case will

be updated by following a new boundary value.

However, the test case will not be changed if the

existing test data goes along with a new boundary

value.

b. Editing list values, if there is a change in list values,

the tool will randomly generate list values for a new

test case.

c. Editing text value and action, a test case is updated

by using a new text value and action value.

d. Editing input type, if the input type of test case is

updated, it needs to follow a new input type.

E. Update Impacted Test Cases

The results from the previous step are used to update test

cases. A test case in table I is updated a new test case as

shown in table VII according to the changes in table VI.

TABLE VII

An Example of Impacted Test Case

Application AppDemo2

Screen activity_main

TestCase ID 001 Version 2.0

Data

Order Widget ID Text Value Input Data

1 editText1 Name Mr.Hello

2 editText4 E-Mail Hello@mail.com

3 spinner1 Country Thailand

4 editText3 Comment Good Luck!

5 Button OK Click

Output Show Toast

IV. CONCLUSION

In this paper, we present an idea to create a tool for

analyzing the effects to test cases when an Android user

interface is changed.

This tool can analyze the changes by comparing the old

and the new version of Android user interface, analyze

impact to test cases and automatically update impacted test

cases. Finally, the benefit of this tool is reduction of time

and effort to rectify test cases which affect the changes.

REFERENCES

[1] International Data Corporation. Smartphone OS Market Share,

Q42014. Available from: http://www.idc.com/

[2] Surasak Phetmanee and Taratip Suwannasart. “A Tool for Impact

Analysis of Test Cases based on Changes of a Web Application,” in,

Proc. IMECS, 2014.

[3] R. Selvam and V. Karthikeyani. “Mobile Software Testing -

Automated Test Case Design Strategies,” in, Proc. IJCSE, 2011, vol.

3, pp.1450-1461.

[4] P. Pocatilu and F. Alecu. “An UI Layout Files Analyzer for Test Data

Generation,“ in Proc. IE, 2014, vol. 18, pp.53-61.

[5] Bohner S. A. “Software Change Impacts-An Evolving Perspective.”

Software Maintenance, Proceedings International Conference on;

2002:263-72.

[6] Sprenkle S., Pollock L., Esquivel H., Hazelwood B., Ecott S.,

“Automated Oracle Comparators for Testing Web Application”

International Symposium on Software Reliability Engineering;

2007:117-26.

[7] Yadav D., Sharma A. K., Gupta J. P., “Change Detection in Web

Pages” Information Technology, (ICIT 2007) 10th International

Conference on;2007:265-70.

[8] Android Open Source Project. Input Controls | Android Developers.

Available from: http://developer.android.com/guide/topics/ui/

controls.html

[9] Android Open Source Project. UI Overview | Android Developers.

Available from: http://developer.android.com/guide/topics/ui/

overview.html

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

