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Abstract–Gaussian integers are the complex num-
bers whose real and imaginary parts are both in-
tegers. Recently, Gaussian integer sequences with
ideal autocorrelation, called the perfect Gaussian in-
teger sequences, have been extensively used in code-
division multiple-access and orthogonal frequency-
division multiplexing (OFDM) systems. In this pa-
per, binary idempotent is utilized to generate a set
of integers and can be employed as the positions for
a given Gaussian integer. The obtained perfect se-
quences are over two Gaussian integers and have high
sequence energy. As the sequence length is large,
their energy efficiency is close to 1 such that these
sequences can be used to peak-to-average power ratio
reduction in OFDM systems.
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1 Introduction

Gaussian integers are the complex numbers whose real
and imaginary parts are both integers. The complex
sequence S = {s(t)}N−1

t=0 of length N , where s(t) =
u(t) + v(t)j for u(t), v(t) ∈ Z, and j =

√−1, is said
to be a perfect Gaussian integer sequence if

RS(τ) =
N−1∑
t=0

s(t)s(t+ τ) (1)

is nonzero for τ = 0 and is zero for any 1 ≤ τ ≤ N − 1,
where a denotes the conjugate of the complex number
a. As described in [1], in order to reduce the peak-to-
average power ratio (PAPR) in orthogonal frequency di-
vision multiplexing (OFDM) systems, Li et al. used the
perfect sequences over Gaussian integers in the selected
mapping schemes. To construct more sequences needed
in communication systems, the perfect Gaussian integer
sequences of arbitrary even lengths was proposed in [2]
that uses six base sequences. At the same time, Yang et
al. [3] constructed the perfect Gaussian integer sequences
of prime length N = p from the cyclotomic classes of or-
ders 2 and 4 over the finite field Fp. A generalization
of the paper [3] was to construct the perfect Gaussian
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integer sequences of twin-primes length p(p + 2) using
the Whiteman’s generalized cyclotomy of order 2 over
Zp(p+2), see Ma et al. [4]. Different perfect Gaussian in-
teger sequences of even lengths can be found in [5] that
the interleaving method is employed. The perfect Gaus-
sian integer sequences of arbitrary lengths have been in-
vestigated in [6] and [7]. For a class of odd length 2m−1,
where m ≥ 3, it was shown in [8] that the trace repre-
sentations over finite fields provided another approach to
generate perfect Gaussian integer sequences.

In 1979, MacWilliams [9] presented a table of primitive
binary idempotents of odd length N between 7 and 511.
One of applications for idempotents is to construct cyclic
codes, which are a class of error-correcting codes. To the
best of the authors’ knowledge, the present study is the
first work that idempotents can be used to construct the
perfect Gaussian integer sequences of some odd lengths.
Some perfect Gaussian integer sequences of odd period
are proposed in this paper. These sequences over Gaus-
sian integers have the significant advantage of the energy
efficiency with value close to 1. Due to the high energy
efficiency, such sequences can be applied to the PAPR
reduction in OFDM systems [10].

The organization of this paper is as follows: Section 2
provides the important properties and listed examples
of idempotents. Section 3 constructs the perfect Gaus-
sian integer sequences of some odd periods and gives the
illustrated examples. Section 4 investigates the energy
efficient of the obtained sequences. Finally, Section 5
summarizes this letter.

2 Idempotent

Let F2 = {0, 1}. Let N be a positive integer. A binary
polynomial e(x) = e0+e1x+· · ·+eN−1x

N−1, ei ∈ F2, 0 ≤
i < N, is called idempotent if e2(x) ≡ e(x).

Example 1 Let N = 7. The idempotent e(x) of length
7 can be the following four polynomials: e1(x) = 1 + x+
x2 + x4, e2(x) = x + x2 + x4, e3(x) = 1 + x3 + x5 + x6,
and e4(x) = x3 + x5 + x6.

It is easily seen that a binary sequence 1110100 can ex-
press the coefficients of the polynomial e1(x) in Example
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Table 1: Idempotents for 7 ≤ N ≤ 511

N hexadecimal

7 e8

15 7ac8

31 85763e680

63 6885a52783731d7e

71 81164729716b1d977e

79 930b409e755186fd2f360

103 96380e9115bd964257768fe3960

127 921816c50769e137446b3997a9571f7e0

143 04314a07749d113e3b2583e756531bed5bde

199 92195692276883181d7e3d85d45e438147e73ee91bb69567b60

255 69c29059d90427d792971125196ab62f980dd23f0753586343c73dc99b795dfe

271 920d15b642339a3861580a1fc6dd5e913d437685449c07afe579e3a633bd92574fb60

359 8106142d13300cf7530e1b4541e4ef2a625b40bd539b71263542fd25b9ab08d87d5d278f3510cff3374bd79f7e

463 973e1bb806ce9e810138b5ac96f8850740565b948e33c9b1d779abd59176542a6114726c338ed62595fd1f5ee09

6ca52e37f7e868c9fe22783160

511 96793ad60adda26955c8a3a6c8192d876332e185891fdc6df48446820de3d52f6d4e0f09f8128533949317ebe2

a039f3ba31c4356579805d45a7bd0fb3735dfe0

1. Further, this binary sequence can be shown as the
hexadecimal representation e8 listed in Table 1. As a
result, Table 1 lists the hexadecimal representations for
idempotents of some odd lengths N , where 7 ≤ N ≤ 511,
which can be used to generate the perfect Gaussian in-
teger sequences. To end this section, the properties of
binary idempotents are given in the following:

Property 1 Let A(x) = 1 + x + · · · + xN−1 be all-one
polynomial of degree N−1. The idempotents of odd length
N in Table 1 have two properties:
1. ei(x) = ei+1(x) + 1 for i = 1, 3.
2. ej(x) + e5−j(x) = A(x) for j = 1, 2.

3 Proposed Gaussian Integer Sequences

To describe the construction method for the perfect
Gaussian integer sequences, some definitions are first in-
troduced.

Now, denote BN = {b(t)}N−1
t=0 , where b(t) is either 0 or

1, by a binary sequence of length N which is obtained
from the idempotent of length N . Let G1 and G2 be two
Gaussian integers.

An observation of Table 1 indicates that the length N can
be divided into three cases: N = 22k+1 − 1, N = 22k − 1,
and N = 4 × (19 + 2 ×∑k

i=1(2i − 3)) + 3. Below, three
theorems are given.

Theorem 1 A perfect Gaussian integer sequence of odd

length N = 22k+1 − 1 over two Gaussian integers G1 =
2k−1 + (2k−1 + 1)j and G2 = −2k−1 − 2k−1j can be con-
structed by

s(t) =

{
G1, for b(t) = 1
G2, for b(t) = 0

(2)

for k ≥ 1, 0 ≤ t < N , and b(t) ∈ BN .

Proof: This proof is due to the fact that binary se-
quence BN is the characteristic sequence of the (N, (N −
1)/2, (N − 3)/4) cyclic difference set (see [8]).

Example 2 Consider k = 2 and N = 22k+1 − 1 = 31.
It follows from Theorem 1 that combining two Gaus-
sian integers G1 = 2 + 3j and G2 = −2 − 2j and
B31 = 1000010101110110001111100110100 yields the per-
fect Gaussian integer sequence

S = (2 + 3j︸ ︷︷ ︸
0

,−2− 2j,−2− 2j,−2− 2j,−2− 2j, 2 + 3j︸ ︷︷ ︸
5

,

−2− 2j, 2 + 3j︸ ︷︷ ︸
7

,−2− 2j, 2 + 3j︸ ︷︷ ︸
9

, 2 + 3j︸ ︷︷ ︸
10

, 2 + 3j︸ ︷︷ ︸
11

,

−2− 2j, 2 + 3j︸ ︷︷ ︸
13

, 2 + 3j︸ ︷︷ ︸
14

,−2− 2j,−2− 2j,−2− 2j,

2 + 3j︸ ︷︷ ︸
18

, 2 + 3j︸ ︷︷ ︸
19

, 2 + 3j︸ ︷︷ ︸
20

, 2 + 3j︸ ︷︷ ︸
21

, 2 + 3j︸ ︷︷ ︸
22

,−2− 2j,

−2− 2j, 2 + 3j︸ ︷︷ ︸
25

, 2 + 3j︸ ︷︷ ︸
26

,−2− 2j, 2 + 3j︸ ︷︷ ︸
28

,−2− 2j,

−2− 2j).
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Theorem 2 A perfect Gaussian integer sequence of odd
length N = 22k − 1 over two Gaussian integers G1 =
−2k−1 − 2k−1j and G2 = (2k−1 − 1)+ (2k−1 +1)j can be
constructed by (2) for any positive integer k.

Proof: The proof of this theorem is analogous to the proof
of Theorem 1.

Example 3 Let k = 2 and N = 22k−1 = 15. There exist
two Gaussian integers G1 = −2−2j, G2 = 1+3j and the
sequence B15 = 011110101100100 such that the perfect
Gaussian integer sequence of length 15 is determined from
Theorem 2 as

S = (1 + 3j,−2− 2j︸ ︷︷ ︸
1

,−2− 2j︸ ︷︷ ︸
2

,−2− 2j︸ ︷︷ ︸
3

,−2− 2j︸ ︷︷ ︸
4

,

1 + 3j,−2− 2j︸ ︷︷ ︸
6

, 1 + 3j,−2− 2j︸ ︷︷ ︸
8

,−2− 2j︸ ︷︷ ︸
9

,

1 + 3j, 1 + 3j,−2− 2j︸ ︷︷ ︸
12

, 1 + 3j, 1 + 3j).

Theorem 3 A perfect Gaussian integer sequence of odd
length N = 4 × (19 + 2 × ∑k

i=1(2i − 3)) + 3 over two
Gaussian integers G1 = (−2− k) + (−4 + k)j and G2 =
(1+k)+(4−k)j can be constructed by (2) for 1 ≤ k ≤ 8.

Proof: This proof is similar to that of Theorem 1.

Example 4 Consider k = 1 and N = 4 × 17 + 3 = 71.
For G1 = −3 − 3j, G2 = 2 + 3j, and B71 = 10000001
0001011001000111001010010111000101101011000111011
00101110111111, in Theorem 3, there is a sequence

S = (−3− 3j︸ ︷︷ ︸
0

, 2 + 3j, 2 + 3j, 2 + 3j, 2 + 3j, 2 + 3j, 2 + 3j,

−3− 3j︸ ︷︷ ︸
7

, 2 + 3j, 2 + 3j, 2 + 3j,−3− 3j︸ ︷︷ ︸
11

, 2 + 3j,

−3− 3j︸ ︷︷ ︸
13

,−3− 3j︸ ︷︷ ︸
14

, 2 + 3j, 2 + 3j,−3− 3j︸ ︷︷ ︸
17

, 2 + 3j,

2 + 3j, 2 + 3j,−3− 3j︸ ︷︷ ︸
21

,−3− 3j︸ ︷︷ ︸
22

,−3− 3j︸ ︷︷ ︸
23

, 2 + 3j,

2 + 3j,−3− 3j︸ ︷︷ ︸
26

, 2 + 3j,−3− 3j︸ ︷︷ ︸
28

, 2 + 3j, 2 + 3j,

−3− 3j︸ ︷︷ ︸
31

, 2 + 3j,−3− 3j︸ ︷︷ ︸
33

,−3− 3j︸ ︷︷ ︸
34

,−3− 3j︸ ︷︷ ︸
35

, 2 + 3j,

2 + 3j, 2 + 3j,−3− 3j︸ ︷︷ ︸
39

, 2 + 3j,−3− 3j︸ ︷︷ ︸
41

,−3− 3j︸ ︷︷ ︸
42

,

2 + 3j,−3− 3j︸ ︷︷ ︸
44

, 2 + 3j,−3− 3j︸ ︷︷ ︸
46

,−3− 3j︸ ︷︷ ︸
47

, 2 + 3j,

2 + 3j, 2 + 3j,−3− 3j︸ ︷︷ ︸
51

,−3− 3j︸ ︷︷ ︸
52

,−3− 3j︸ ︷︷ ︸
53

, 2 + 3j,

−3− 3j︸ ︷︷ ︸
55

,−3− 3j︸ ︷︷ ︸
56

, 2 + 3j, 2 + 3j,−3− 3j︸ ︷︷ ︸
59

, 2 + 3j,

−3− 3j︸ ︷︷ ︸
61

,−3− 3j︸ ︷︷ ︸
62

,−3− 3j︸ ︷︷ ︸
63

, 2 + 3j,−3− 3j︸ ︷︷ ︸
65

,

−3− 3j︸ ︷︷ ︸
66

,−3− 3j︸ ︷︷ ︸
67

,−3− 3j︸ ︷︷ ︸
68

,−3− 3j︸ ︷︷ ︸
69

,−3− 3j︸ ︷︷ ︸
70

).

4 Energy Efficiency

As has been reported in [8], the energy efficiency ηZ of
the time-discrete sequence Z = {z(t)}N−1

t=0 of length N is
denoted to be

ηZ=
EZ

max0≤t<N |z(t)|2 , (3)

where EZ = (1/N)×∑N−1
t=0 |z(t)|2 is the average energy

of a sequence Z.

For the perfect Gaussian integer sequences derived from
three theorems in the foregoing section, their energy effi-
ciency is discussed below:

Corollary 1 Let S be the perfect sequence of length N =
22k+1−1 with two Gaussian integers G1 = 2k−1+(2k−1+
1)j and G2 = −2k−1 − 2k−1j. If the numbers of G1

and G2 appeared in the sequence S are 22k and 22k − 1,
respectively, then its energy efficiency ηS is exactly

ηS =
2× 24k + 2× 23k + 22k

(22k + 2k+1 + 2)(2× 22k − 1)
(4)

and is approximately 1 as k → ∞.

Proof: A substitution of N = 22k+1 − 1, |G1|2 = 22k−1 +
2k+1, and |G2|2 = 22k−1 into (3) yields (4). Furthermore,
(4) becomes

ηS = 1− 23k+1 + 22k+1 − 2k+1 − 2

24k+1 + 23k+2 + 22k+2 − 22k − 2k+1 − 2
.

It is easy to see that the highest power 4k + 1 of 2 in
the denominator is larger than the power 3k + 1 of 2 in
the numerator. If k → ∞, or equivalently, N → ∞, then
ηS → 1. The proof of this corollary is complete.

Corollary 2 Let S be the perfect Gaussian integer se-
quence of length N = 22k − 1. If the numbers of G1 =
−2k−1−2k−1j and G2 = (2k−1−1)+(2k−1+1)j appeared
in the sequence S are 22k−1 and 22k−1 − 1, respectively,
then its energy efficiency ηS is exactly

ηS =
24k + 22k − 22

(22k + 22)(22k − 1)
(5)

and is approximately 1 as k → ∞.

Proof: Substituting N = 22k − 1, |G1|2 = 22k−1, and
|G2|2 = 22k−1 + 2 into (3) yields (5), which can also be
expressed as

ηS = 1− 22k+2 − 22k+1

24k + 22k+2 − 22k − 22
.
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Figure 1: Energy efficiency of the proposed sequences S.

Clearly, the highest power 4k of 2 in the denominator is
larger than the power 2k + 2 of 2 in the numerator. If
k → ∞, then ηS → 1, which completes the proof of this
corollary.

Corollary 3 Let S be the perfect sequence of length N =
4×(19+2×∑k

i=1(2i−3))+3 with two Gaussian integers
G1 = (−2 − k) + (−4 + k)j and G2 = (1 + k) + (4 −
k)j, where 1 ≤ k ≤ 8. If the numbers of G1 and G2

appeared in the sequence S are (N +1)/2 and (N − 1)/2,
respectively, then its energy efficiency ηS is exactly

ηS =
4Nk2 − 10Nk + 37N + 2k + 3

4N(k2 − 2k + 10)
. (6)

Proof: Since |G1|2 = (−2− k)2 + (−4 + k)2 and |G2|2 =
(1+ k)2 + (4− k)2, it is easy to check that |G1|2 > |G2|2
for k = 1, . . . , 8. As a consequence, the energy efficiency
in (3) has the form

ηS =
(N+1)

2 × |G1|2 + (N−1)
2 × |G2|2

N × |G1|2

=
4Nk2 − 10Nk + 37N + 2k + 3

4N(k2 − 2k + 10)
. (7)

Figure 1 plots the energy efficiency ηS in (5), (6), and
(7) for 1 ≤ k ≤ 8. An observation in this figure reveals
that the perfect Gaussian integer sequences S constructed
from Theorems 1 and 2 have high energy efficiency with
value close to 1 when k is large. It is also shown that,
for S described in Theorem 3, their energy efficiency ηS
is between 0.80 and 0.95.

5 Conclusions and Future Work

This paper has presented the perfect Gaussian integer
sequences which can be constructed from binary idem-

potents. These sequences are over two Gaussian integers
and have the high energy efficiency. In the future work, it
is of interest to investigate the sequences over more than
two Gaussian integers.
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