
 

  

Abstract— In this paper, an analytical solution in closed 

form is developed to determine stresses (radial and 

circumferential) made of functionally graded materials 

subjected to variable thickness and pressure. In this, Poisson 

ratio is taken as constant and the Young’s modulus depends on 

the radial coordinate only. For higher pressure a significant 

increase is seen for both radial and tangential stresses. Graphs 

are drawn for stresses and displacement against radii ratio and 

numerically discussed. 

 

Index Terms— Rotating disc, Variable thickness, Pressure, 

FGM. 

 

I. INTRODUCTION 

UNCTIONALLY  graded materials (FGM) are from 

the class of advanced material, categorized by the 

changes in the properties with the changes in the dimensions 

of the material. The properties of FGM are different from 

the properties of the constituent materials. In fact, the 

constituent materials forming FGM have less ductility and 

strength. Dynamic properties of functionally graded 

materials lead to the widespread range of its applications in 

various fields. Due to the unique graded material properties, 

FGMs have attracted a great amount of attention from 

researchers in many fields, including aerospace, 

biomaterials and engineering among others in the past 

decades. It differs from composite materials, which fails 

under extreme working conditions through a process called 

delamination (separation of fibers from matrix). FGM 

removes the sharp interfaces existing in composite materials 

where the failure occurs. It replaces the sharp interface with 

a gradient interface which produces smooth transition from 

one material to another. 

 

These materials are characterized by a microstructure that 

is spatially variable on a macroscale and were initially 

developed for high temperature applications [1-2]. A review 

on FGMs and its applications can be found in some of the 
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research papers [3-4]. You et al. [5] calculated stresses on 

the functionally graded rotating circular discs under uniform 

temperature and variation in Young’s modulus. An 

analytical solution for stresses is developed for a thin 

annular disk made of FGM under pressure by You et al. [6]. 

A numerical approach using FEM model is used for solving 

problem of a rotating thermo elastic circular disk made of 

FGM material by Sharma et al. [7] in 2012. Effect of 

thermal gradient in a secondary creep region of a rotating 

disc with variable thickness is studied by Garg et al. [8]. 

Sahni et al. [9] solved problem of a circular annular disc 

under pressure using stress function for an axis-symmetric 

case with variable thickness profile. Strength analysis of 

functionally graded disc brake subjected to mechanical 

loading is done by Rajeshwari et al. [10] 

 

In this paper, we study the strength analysis of FGM under 

variation in variable thickness and Young’s modulus 

considering both internal and external pressure. A closed-

form analytical solution is obtained and the results are 

discussed numerically and depicted graphically. The graphs 

are drawn using MATHEMATICA 5.2 software. For 

obtaining the results the gradient parameter are chosen 

between 0 and 1.0. Results obtained are compared with the 

research paper by Callioglu [11]. 

 

II. GOVERNING EQUATIONS 

 

Consider an annular disk of internal and external radii ‘a’ 

and ‘b’ respectively, subjected to internal and external 

pressure �� and �� respectively and variable thickness ‘h’ 

rotating with an angular speed ω  . 

Equations of equilibrium are all satisfied except, 

 

{ } 2 2
( ) ( ) ( ) 0,rr

d
h r rT h r T h r r

dr
θθ ρω− + =

            (1)

 

 

where ( )h r  is the thickness of the disc varying with 

position vector ‘r’ and density ρ  is constant. Here ���  and 

��� are the radial and tangential stresses respectively. 

 

The problem of plane stress is considered for functionally 

graded materials with the variation in Young’s modulus and 

thickness in a form, given as 

��	
 = ��	
, ℎ�	
 = ℎ�	�                                    (2) 
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Here 0E  and 0h   are Young’s modulus and thickness at 

m = 0 and n = 0 respectively. The parameter ‘m’ and ‘n’ in 

equation (2) are geometric parameters. 

The strain displacement relationship are given by 

dr

du
r =ε       and ,

u

r
θε =

                                    (3)

 

 

where rε  and θε
 

are strains along radial and 

circumferential direction respectively. Here u is the 

displacement in the radial direction. 

The strain compatibility equation is 

( ) .r

dd
r r

dr dr

θ
θ θ

ε
ε ε ε= = +

                              (4) 

The stress - strain relationship is defined as 

 

 )(
)(

1
θθυε TT

rE
rrr −= and 

1
( ).

( )
rrT T

E r
θ θθε υ= −

 

            

                     (5) 

The factor ν is the Poisson’s ratio, which is constant. 

Defining the stress function (F) satisfying the equilibrium 

equation of motion (1) as 

( )
rr

F
T

r h r
=

 

and 2 2'( )

( )

F r
T r

h r
θθ ρω= +

                   (6)   

Now using equations (2), (5) and (6) into a compatibility 

equation (4), we get 	��′′ + 	�′�1 −� − �
 + ����� + �
 − 1
 =−�ℎ���	����3 + � − �
               

(7) 

 

     

 

The stress function F is calculated as 

 

� = ��	� + ��	�! − �ℎ����3 + � − �
	���
"  

                                                                         (8) 

where �� and �� are the constants, and " = 8 + 3� −3� −�� + ��� + �
.  
Here %� = 
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��
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�  and        
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��'&�
��
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�  . 

Using (8) in (6), radial and circumferential stresses are 

calculated as 

��� = * 
+, 	� '�'� + *!

+, 	�!'�'� − -.!���)'


/ 	�   

                                                                                        (9) 
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The boundary conditions are defined as 

                        ��� = −��  at  r = a       

                   ��� = −��  at  r = b.                (11)       
 

Using boundary conditions (11) in equation (9), we get 

the integration constants �� and ��  as 

C1= h�

∗
3
44
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                                                                                      (13) 

Radial displacement (u) is calculated from equation (3) 

and (5) as 

( )
( )

rr

r
u T T

E r
θθ ν= −

                                      (14) 

 

 

III. NUMERICAL DISCUSSIONS WITH GRAPHS 

 

In this paper, stresses – radial and circumferential, 

displacement are calculated by varying geometric parameter 

‘m’ and ‘n’. The values that are being taken are listed below: 

a = 50 mm., b = 100 mm., ω = 650 rad/s, m, n = 0, 0.5, 

0.9, p = 20, 30 Pa, ρ =5600 kg/ m3. 

In figures 1 to 4 radial and circumferential stresses against 

radii variation has been plotted under internal and external 

pressure keeping the effect of rotation. It is seen from figure 

1 that with the increase in geometric parameters ‘m’ and ‘n’ 

the circumferential stress decreases. The radial and 

circumferential stresses both increases with the increase in 

internal pressure which can be observed from figures 1 and 

2. The radial stress is always less than the hoop stress which 

resists the disk to move out and cause the disk to fail. The 

maximum stress is at the internal radii because of the 

internal pressure. An inverse behavior is seen when the disk 

is subjected to external pressure. Because of the external 

pressure, the stresses are maximum at the external radii. 

In figures 5 to 8, plastic stresses (ν→1/2) are calculated 

under both internal and external pressure separately. A slight 

increase is seen for stresses in all the graphs as compared to 

figures 1 to 4. In figures 9 and 10, displacement (u) is 

plotted against radii (r). In figure 9, when the internal 

pressure is less than the external pressure, the displacement 

is maximum at the external surface whereas the converse 

behavior is seen when the internal pressure is more than the 

external pressure, i.e. the displacement is maximum at the 

internal surface. Figures 1 to 8 are plotted using 

MATHEMATICA software.  
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(a) 

 

 (b) 

Fig. 1: (a) Radial and (b) Circumferential stresses under 

internal pressure �� = 20.

 
(a)  

 

(b) 

Fig. 2: (a) Radial and (b) Circumferential stresses under 

internal pressure �� = 30. 

  

(a) 
 

 
 (b) 

Fig. 3: (a) Radial and (b) Circumferential stresses under 

 external pressure �� = 20. 

 
(a) 

 

(b) 

Fig. 4: (a) Radial and (b) Circumferential stresses under 

external pressure �� = 30. 
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                                          (a) 

 

(b) 

Fig. 5: Fully plastic (a) radial and (b) circumferential 

stresses under internal pressure �� = 20. 

                                          (a) 

 

         (b)         (b)  

Fig. 6: Fully plastic (a) radial and (b) circumferential 

stresses under internal pressure �� = 30. 

(a) 

 

   (b) 

Fig. 7: Fully plastic (a) radial and (b) circumferential 

stresses under external pressure �� = 20. 

(a) 

 

(b) 
Fig. 8: Fully plastic (a) radial and (b) circumferential 

stresses under external pressure �� = 30. 
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Fig. 9: Displacement in the radial direction under internal 

pressure �� = 20 Pa and external pressure �� = 30 Pa with 

rotation. 

 

 

Fig. 10: Displacement in the radial direction under internal 

pressure �� = 30 Pa and external pressure �� = 20 Pa with 

rotation. 

IV CONCLUSION 

Elastic-plastic stresses have been derived for an annular disk 

with variation in thickness and Young’s modulus. For higher 

pressure a significant increase is seen for both radial and 

tangential stresses. Radial displacement with variation in 

radii is plotted under the effect of pressure. It is seen that 

with increase in geometric parameter, the resisting stress 

decreases. 
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