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Abstract—In this paper, a discrete robust adaptive iterative
learning control is proposed for a class of uncertain nonlinear
systems with unknown control direction and random bounded
disturbances. Based on a new design methodology, the problem
of unknown sign and upper bound of the time-varying input
gain parameter can be solved. In order to deal with the
uncertainties from random bounded disturbance and unknown
input gain parameter, a dead zone like auxiliary error with
a time-varying boundary layer is introduced. This proposed
auxiliary error is utilized for the construction of adaptive laws
and the time-varying boundary layer is applied as a bounding
parameter. By using a Lyapunov like analysis, it is shown that
the closed-loop is stable and the internal signals are bounded
for all the iterations. Besides, the norm of output tracking error
will asymptotically converge to a residual set which is bounded
by the width of boundary layer.

Index Terms—robust adaptive iterative learning control, non-
linear systems, random bounded disturbance, unknown input
gain parameter, unknown control direction.

I. I NTRODUCTION

I N order to perform the tasks of repeated tracking control
or periodic disturbance rejection in a finite time interval,

adaptive iterative learning control (AILC) is one of the most
successful and attractive ILC approaches [1], [2], [3] in
the past two decades. In the research field of AILC, most
of the AILC algorithms [4], [5], [6], [7], [8] were studied
for continuous-time linear or nonlinear systems. However, a
subsequent real implementation of the AILC algorithm needs
to store the data of desired trajectory, system output and
control parameters in memory. Therefore, it is more practical
to design the AILC in discrete-time domain. Recently, some
discrete AILC schemes have been studied for SISO [9],
[10], [11] or MIMO [12] discrete-time nonlinear systems.
In these aforementioned discrete AILC, a main required
condition on the plant is that the plant nonlinearities are
linearly parameterizable and the unknown parameters must
be linear with respective to some known nonlinear functions
in order to design suitable adaptive laws. Furthermore, the
disturbance must be assumed to be repeatable or small
enough for the technical analysis. In our previous work [13],
another discrete AILC was proposed for the similar uncertain
discrete-time nonlinear systems which can deal with not only
the problems of iteration-varying reference trajectories and
random bounded initial resetting error but also the problem
of random bounded disturbance.
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However, the system control direction or even the upper
bound of the input gain parameter is required to be known
for the design of discrete AILC in the above works [9],
[10], [11], [12], [13]. In [14], [15], [16], the ILC algo-
rithms were applied for nonlinear systems without prior
knowledge on system control direction. Since the system
control direction is unknown, Nussbaum-type gain function
was used to design the AILC algorithms for SISO [14],
[15] and MIMO [16] continuous-time nonlinear systems.
Based on the motivation of continuous Nussbaum-type gain
function, the discrete Nussbaum-type gain function and n-
step ahead predictor approach were presented in [17], [18]
for discrete AILC of nonlinear systems with unknown control
direction. Recently, a modified projection based adaptive law
without using Nussbaum-type gain function was introduced
in a discrete AILC for nonlinear systems whose control
direction is unknown. But unfortunately, the disturbance is
also required to be repeatable as those in [9], [10], [11], [12].

In this paper, a discrete robust adaptive iterative learning
control (RAILC) is proposed for a class of uncertain non-
linear systems with unknown control direction and random
bounded disturbance. Based on a new design methodology,
the problem of unknown sign and upper bound of the
time-varying input gain parameter is successfully solved. In
order to deal with the uncertainties from random bounded
disturbance and unknown input gain parameter, a new dead
zone like auxiliary error with a time-varying boundary layer
is introduced in this paper. This proposed auxiliary error is
utilized for the construction of adaptive laws and the time-
varying boundary layer is applied as a bounding parameter
for the uncertainty. By using a Lyapunov like analysis, it is
shown that the closed-loop is stable and the internal signals
are bounded for all the iterations. Besides, the norm of output
tracking error will asymptotically converge to a residual set
whose size is bounded by the width of boundary layer.

This paper is organized as follows. In section II, a problem
formulation is given. The discrete RAILC is presented in
section III. Based on the proposed discrete RAILC and a
derived error model, the analysis of closed-loop stability
and learning performance will be studied extensively in
Section IV. A simulation example will be given in Section
V to demonstrate the effectiveness of the proposed learning
controller. Finally a conclusion is made in Section VI.

II. PROBLEM FORMULATION

In this paper, we consider a class of nonlinear discrete-time
systems which can perform a given task repeatedly over a
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finite time sequencet ∈ {0, 1, · · · , N} as follows:

yj(t + 1) = θ(t)>f(yj(t), t) + b(t)uj(t) + dj(t) (1)

where yj(t) ∈ R1 is the system output,uj(t) ∈ R1

is the control input,θ(t) ∈ Rn×1 is an unknown time-
varying system parameter vector,f(yj(t), t) ∈ Rn×1 is a
known nonlinear function vector,b(t) ∈ R is an unknown
time-varying input gain parameter anddj(t) ∈ R is an
unknown non-repeatable disturbance. Here,j denotes the
index of iteration andt ∈ {0, 1, · · · , N}. Given a specified
desired trajectoryyj

d(t), t ∈ {0, 1, · · · , N + 1}, the control
objective is to force the outputyj(t) to follow yj

d(t) such
that limj→∞ |yj

d(t) − yj(t)| ≤ ε for some small positive
error tolerance boundε and for t ∈ {1, 2, · · · , N + 1}. In
order to achieve this control objective, some assumptions on
the nonlinear discrete-time system and desired trajectory are
given as follows:

(A1) The nonlinear discrete-time system is a relaxed system
whose input uj(t) and output yj(t) are related by
yj(t) = 0, t < 0.

(A2) The nonlinear functionf(yj(t), t) is bounded ifyj(t)
is bounded.

(A3) Let output tracking error be defined asej(t) = yj(t)−
yd(t). The initial output error at each iterationej(0) is
bounded.

(A4) The unknown non-repeatable disturbance is bounded,
i.e., |dj(t)| ≤ dU for an unknown positive constantdU

and for all j ≥ 1.

III. ROBUST ADAPTIVE ITERATIVE LEARNING

CONTROLLER

The output tracking error satisfies

ej(t + 1)
= yj(t + 1)− yj

d(t + 1)

= θ(t)>f(yj(t), t) + b(t)uj(t) + dj(t)− yj
d(t + 1)

= θ∗(t)>ξ(yj(t), yj
d(t + 1), t) + b(t)uj(t) + dj(t) (2)

whereθ∗(t) = [θ(t)>,−1]> ∈ R(n+1)×1 andξ(yj(t), yj
d(t+

1), t) = [f(yj(t), t)>, yj
d(t+1)]> ∈ R(n+1)×1. In the follow-

ing discussions, we will defineξj(t) ≡ ξ(yj(t), yj
d(t + 1), t)

for simplicity. Based on the error equation in (2), we propose
the adaptive iterative learning controller for the class of
repeatable discrete-time nonlinear systems (1) as follows :

uj(t) =
b̂j(t)

δ + b̂j(t)2
[−θj(t)>ξj(t)

]
(3)

whereδ > 0. Substituting (3) into (2), we can find that

ej(t + 1)

= θ∗(t)>ξj(t)− θj(t)>ξj(t) + b(t)uj(t)− b̂(t)uj(t)

+ θj(t)>ξj(t) + b̂(t)uj(t) + dj(t)

=
(
θ∗(t)− θj(t)

)>
ξj(t) +

(
b(t)− b̂j(t)

)
uj(t)

+ θj(t)>ξj(t) +
b̂j(t)2

δ + b̂j(t)2
[−θj(t)>ξj(t)

]
+ dj(t)

=
(
θ∗(t)− θj(t)

)>
ξj(t) +

(
b(t)− b̂j(t))

)
uj(t)

+
δ

δ + b̂j(t)2
[
θj(t)>ξj(t)

]
+ dj(t)

=
(
θ∗(t)− θj(t)

)>
ξj(t) +

(
b(t)− b̂j(t)

)
uj(t) + δj

L(t)
(4)

where

δj
L(t) =

δ

δ + b̂j(t)2
[
θj(t)>ξj(t)

]
+ dj(t)

The bounding function ofδj
L(t) can be shown to satisfy the

following result,

|δj
L(t)| ≤

∣∣∣∣∣
δ

δ + b̂j(t)2
[
θj(t)>ξj(t)

]
∣∣∣∣∣ +

∣∣dj(t)
∣∣

≤ ∣∣θj(t)
∣∣∣∣ξj(t)

∣∣ + dU

≤ ψ∗
(∣∣θj(t)

∣∣∣∣ξj(t)
∣∣ + 1

)
(5)

whereψ∗ = max{1, dU} is a positive constant.
In order to overcome the uncertaintyδj

L(t), we now define
an auxiliary errorej

φ(t + 1) as follows:

ej
φ(t + 1) = ej(t + 1)− φj(t)sat

(
ej(t + 1)

φj(t)

)
(6)

for t ∈ {0, 1, · · · , N}. We don’t defineej
φ(0) since it will

not be utilized in our design of controller and adaptive laws.
In (6), sat is the saturation function defined as

sat
(

ej(t + 1)
φj(t)

)
=





1 if ej(t + 1) > φj(t)
ej(t+1)
φj(t) if |ej(t + 1)| ≤ φj(t)
−1 if ej(t + 1) < −φj(t)

and φj(t) is the width of the time-varying boundary layer
designed as

φj(t) = ψj(t)
(∣∣θj(t)

∣∣∣∣ξj(t)
∣∣ + 1

)
(7)

whereψj(t) is a parameter to be updated later. It is noted
that ej

φ(t + 1) can be rewritten as

ej
φ(t + 1)

=





ej(t + 1)− φj(t) if ej(t + 1) > φj(t)
0 if |ej(t + 1)| ≤ φj(t)

ej(t + 1) + φj(t) if ej(t + 1) < −φj(t)

and it can be easily shown thatej
φ(t + 1)sat

(
ej(t+1)
φj(t)

)
=

|ej
φ(t + 1)|, ∀j ≥ 1.

In this RAILC, θj(t), b̂j(t) in (3) and ψj(t) in (7) are
designed to compensate the unknown optimal control para-
meter vectorθ∗(t), b(t) and ψ∗, respectively. The adaptive
laws for θj(t), b̂j(t) andψj(t) at (next)j +1th iteration are
given as follows :

θj+1(t)

= θj(t) +
β1e

j
φ(t + 1)ξj(t)

1 +
∣∣ξj(t)

∣∣2 +
∣∣uj(t)

∣∣2 +
(∣∣θj(t)

∣∣∣∣ξj(t)
∣∣ + 1

)2

(8)

b̂j+1(t)

= b̂j(t) +
β2e

j
φ(t + 1)uj(t)

1 +
∣∣ξj(t)

∣∣2 +
∣∣uj(t)

∣∣2 +
(∣∣θj(t)

∣∣∣∣ξj(t)
∣∣ + 1

)2

(9)

ψj+1(t)
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= ψj(t) +
β3|ej

φ(t + 1)|(∣∣θj(t)
∣∣∣∣ξj(t)

∣∣ + 1
)

1 +
∣∣ξj(t)

∣∣2 +
∣∣uj(t)

∣∣2 +
(∣∣θj(t)

∣∣∣∣ξj(t)
∣∣ + 1

)2

(10)

for t ∈ {0, 1, · · · , N}, where β1, β2, β3 > 0 are the
adaptation gains. For the first iteration, we setθ1(t) = θ1,
b̂1(t) = b̂1 to be any constant vector andψ1(t) = ψ1 > 0 to
be a small fixed value∀t ∈ {0, 1, 2, · · · , N}. It is noted that
ψj(t) > 0,∀t ∈ {0, 1, · · · , N} and ∀j ≥ 1. In general, we
will choosêb1(t) = b̂1 as a nonzero vector in order to prevent
the controller (3) from being a zero input in the beginning
of the learning process.

IV. A NALYSIS OF STABILITY AND CONVERGENCE

Define the parameter errors as̃θj(t) = θj(t) − θ∗(t),
˜̂
b
j

(t) = b̂j(t)− b(t), ψ̃j(t) = ψj(t)− ψ∗. Then it is easy to
show, by subtracting the optimal control gains on both sides
of (8)-(10), that

θ̃j+1(t)

= θ̃j(t) +
β1e

j
φ(t + 1)ξj(t)

1 +
∣∣ξj(t)

∣∣2 +
∣∣uj(t)

∣∣2 +
(∣∣θj(t)

∣∣∣∣ξj(t)
∣∣ + 1

)2

(11)

˜̂
b
j+1

(t)

= ˜̂
b
j

(t) +
β2e

j
φ(t + 1)̂bj(t)uj(t)

1 +
∣∣ξj(t)

∣∣2 +
∣∣uj(t)

∣∣2 +
(∣∣θj(t)

∣∣∣∣ξj(t)
∣∣ + 1

)2

(12)

ψ̃j+1(t)

= ψ̃j(t) +
β3|ej

φ(t + 1)|(
∣∣θj(t)

∣∣∣∣ξj(t)
∣∣ + 1

)

1 +
∣∣ξj(t)

∣∣2 +
∣∣uj(t)

∣∣2 +
(∣∣θj(t)

∣∣∣∣ξj(t)
∣∣ + 1

)2

(13)

The following theorem states the main results of this paper.
Main Theorem. Consider the nonlinear system (1) satisfying
the assumptions (A1)-(A3). If the robust adaptive iterative
learning controller, designed as in (3), (6), (8), (9) and (10),
is applied and the following condition is satisfied

2− β1 − β2 − β3 > 0, (14)

then we can get,

(t1) The adjustable parametersθj(t), b̂j(t), ψj(t) are
bounded∀t ∈ {0, 1, · · · , N}, j ≥ 1.

(t2) The auxiliary error ej
φ(t + 1) are bounded∀t ∈

{0, 1, · · · , N}, j ≥ 1 and

lim
j→∞

ej
φ(t + 1) = 0, ∀t ∈ {0, 1, · · · , N}

(t3) The output tracking errorej(t+1) and the inputuj((t)
are bounded∀t ∈ {0, 1, · · · , N}, j ≥ 1 and

lim
j→∞

|ej(t + 1)|
≤ ψ∞(t) (|θ∞(t)| |ξ∞(t)|+ 1) , ∀ t ∈ {0, 1, · · · , N}

Proof :
(t1) Define the cost functions of performance as follows

V j(t) =
1
β1

θ̃j(t)>θ̃j(t) +
1
β2

˜̂
b
j

(t)2 +
1
β3

ψ̃j(t)2

The difference betweenV j+1(t) and V j(t) can be derived
as follows :

V j+1(t)− V j(t)

=
1
β1

(
θ̃j+1(t)>θ̃j+1(t)− θ̃j(t)>θ̃j(t)

)

+
1
β2

(
˜̂
b
j+1

(t)2 − ˜̂
b
j

(t)2
)

+
1
β3

(
ψ̃j+1(t)2 − ψ̃j(t)2

)

=
2ej

φ(t + 1)θ̃j(t)>ξj(t)

1 +
∣∣ξj(t)

∣∣2 +
∣∣uj(t)

∣∣2 +
(∣∣θj(t)

∣∣∣∣ξj(t)
∣∣ + 1

)2

+
β1e

j
φ(t + 1)2

∣∣ξj(t)
∣∣2

(
1 +

∣∣ξj(t)
∣∣2 +

∣∣uj(t)
∣∣2 +

(∣∣θj(t)
∣∣∣∣ξj(t)

∣∣ + 1
)2

)2

+
2ej

φ(t + 1)̃̂b
j

(t)uj(t)

1 +
∣∣ξj(t)

∣∣2 +
∣∣uj(t)

∣∣2 +
(∣∣θj(t)

∣∣∣∣ξj(t)
∣∣ + 1

)2

+
β2e

j
φ(t + 1)2

∣∣uj(t)
∣∣2

(
1 +

∣∣ξj(t)
∣∣2 +

∣∣uj(t)
∣∣2 +

(∣∣θj(t)
∣∣∣∣ξj(t)

∣∣ + 1
)2

)2

+
2|ej

φ(t + 1)|ψ̃j(t)
(∣∣θj(t)

∣∣∣∣ξj(t)
∣∣ + 1

)

1 +
∣∣ξj(t)

∣∣2 +
∣∣uj(t)

∣∣2 +
(∣∣θj(t)

∣∣∣∣ξj(t)
∣∣ + 1

)2

+
β3e

j
φ(t + 1)2

(∣∣θj(t)
∣∣∣∣ξj(t)

∣∣ + 1
)2

(
1 +

∣∣ξj(t)
∣∣2 +

∣∣uj(t)
∣∣2 +

(∣∣θj(t)
∣∣∣∣ξj(t)

∣∣ + 1
)2

)2

(15)

By using (4), it implies that

ej
φ(t + 1)θ̃j(t)>ξj(t) + ej

φ(t + 1)̃̂b
j

(t)uj(t)

= −ej(t + 1)ej
φ(t + 1) + ej

φ(t + 1)δj
L(t) (16)

Substituting (16) into (15), it yields

V j+1(t)− V j(t)

≤ −2ej(t + 1)ej
φ(t + 1) + 2ej

φ(t + 1)δj
L(t)

1 +
∣∣ξj(t)

∣∣2 +
∣∣uj(t)

∣∣2 +
(∣∣θj(t)

∣∣∣∣ξj(t)
∣∣ + 1

)2

+
β1e

j
φ(t + 1)2

∣∣ξj(t)
∣∣2

(
1 +

∣∣ξj(t)
∣∣2 +

∣∣uj(t)
∣∣2 +

(∣∣θj(t)
∣∣∣∣ξj(t)

∣∣ + 1
)2

)2

+
β2e

j
φ(t + 1)2

∣∣uj(t)
∣∣2

(
1 +

∣∣ξj(t)
∣∣2 +

∣∣uj(t)
∣∣2 +

(∣∣θj(t)
∣∣∣∣ξj(t)

∣∣ + 1
)2

)2

+
2|ej

φ(t + 1)|ψ̃j(t)
(∣∣θj(t)

∣∣∣∣ξj(t)
∣∣ + 1

)

1 +
∣∣ξj(t)

∣∣2 +
∣∣uj(t)

∣∣2 +
(∣∣θj(t)

∣∣∣∣ξj(t)
∣∣ + 1

)2

+
β3e

j
φ(t + 1)2

(∣∣θj(t)
∣∣∣∣ξj(t)

∣∣ + 1
)2

(
1 +

∣∣ξj(t)
∣∣2 +

∣∣uj(t)
∣∣2 +

(∣∣θj(t)
∣∣∣∣ξj(t)

∣∣ + 1
)2

)2

(17)

Substituting (6) into (17) and using the fact that|δj
L(t)| ≤
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ψ∗
(∣∣θj(t)

∣∣∣∣ξj(t)
∣∣ + 1

)
in (5), we can derive that

V j+1(t)− V j(t)

≤ −2ej
φ(t + 1)2

1 +
∣∣ξj(t)

∣∣2 +
∣∣uj(t)

∣∣2 +
(∣∣θj(t)

∣∣∣∣ξj(t)
∣∣ + 1

)2

− 2|ej
φ(t + 1)|ψj(t)

(∣∣θj(t)
∣∣∣∣ξj(t)

∣∣ + 1
)

1 +
∣∣ξj(t)

∣∣2 +
∣∣uj(t)

∣∣2 +
(∣∣θj(t)

∣∣∣∣ξj(t)
∣∣ + 1

)2

+
2|ej

φ(t + 1)|ψ∗(
∣∣θj(t)

∣∣∣∣ξj(t)
∣∣ + 1

)

1 +
∣∣ξj(t)

∣∣2 +
∣∣uj(t)

∣∣2 +
(∣∣θj(t)

∣∣∣∣ξj(t)
∣∣ + 1

)2

+
2|ej

φ(t + 1)|ψ̃j(t)
(∣∣θj(t)

∣∣∣∣ξj(t)
∣∣ + 1

)

1 +
∣∣ξj(t)

∣∣2 +
∣∣uj(t)

∣∣2 +
(∣∣θj(t)

∣∣∣∣ξj(t)
∣∣ + 1

)2

+
β1e

j
φ(t + 1)2

∣∣ξj(t)
∣∣2

(
1 +

∣∣ξj(t)
∣∣2 +

∣∣uj(t)
∣∣2 +

(∣∣θj(t)
∣∣∣∣ξj(t)

∣∣ + 1
)2

)2

+
β2e

j
φ(t + 1)2

∣∣uj(t)
∣∣2

(
1 +

∣∣ξj(t)
∣∣2 +

∣∣uj(t)
∣∣2 +

(∣∣θj(t)
∣∣∣∣ξj(t)

∣∣ + 1
)2

)2

+
β3e

j
φ(t + 1)2

(∣∣θj(t)
∣∣∣∣ξj(t)

∣∣ + 1
)2

(
1 +

∣∣ξj(t)
∣∣2 +

∣∣uj(t)
∣∣2 +

(∣∣θj(t)
∣∣∣∣ξj(t)

∣∣ + 1
)2

)2

=
−2ej

φ(t + 1)2

1 +
∣∣ξj(t)

∣∣2 +
∣∣uj(t)

∣∣2 +
(∣∣θj(t)

∣∣∣∣ξj(t)
∣∣ + 1

)2

+
β1e

j
φ(t + 1)2

∣∣ξj(t)
∣∣2

(
1 +

∣∣ξj(t)
∣∣2 +

∣∣uj(t)
∣∣2 +

(∣∣θj(t)
∣∣∣∣ξj(t)

∣∣ + 1
)2

)2

+
β2e

j
φ(t + 1)2

∣∣uj(t)
∣∣2

(
1 +

∣∣ξj(t)
∣∣2 +

∣∣uj(t)
∣∣2 +

(∣∣θj(t)
∣∣∣∣ξj(t)

∣∣ + 1
)2

)2

+
β3e

j
φ(t + 1)2

(∣∣θj(t)
∣∣∣∣ξj(t)

∣∣ + 1
)2

(
1 +

∣∣ξj(t)
∣∣2 +

∣∣uj(t)
∣∣2 +

(∣∣θj(t)
∣∣∣∣ξj(t)

∣∣ + 1
)2

)2

≤ −(2− β1 − β2 − β3)e
j
φ(t + 1)2

1 +
∣∣ξj(t)

∣∣2 +
∣∣uj(t)

∣∣2 +
(∣∣θj(t)

∣∣∣∣ξj(t)
∣∣ + 1

)2

(18)

If β1, β2 andβ3 are chosen such thatk ≡ 2−β1−β2−β3 >
0, then we have

V j+1(t)− V j(t)

≤ −kej
φ(t + 1)2

1 +
∣∣ξj(t)

∣∣2 +
∣∣uj(t)

∣∣2 +
(∣∣θj(t)

∣∣∣∣ξj(t)
∣∣ + 1

)2

≤ 0 (19)

for j ≥ 1. SinceV 1(t) is bounded∀t ∈ {0, 1, · · · , N} due

to θ̃1(t) = θ1(t)−θ∗(t) = θ1−θ∗(t), ˜̂b
1

(t) = b̂1(t)−b(t) =
b̂1 − b(t) and ψ̃1(t) = ψ1(t) − ψ∗ = ψ1 − ψ∗ are bounded
∀t ∈ {0, 1, · · · , N}. We conclude from (19) thatV j(t), and

hencẽθj(t), ˜̂b
j

(t) andψ̃j(t) are bounded∀j ≥ 1. This proves
(t1) of the main theorem.
(t2) By summing (19) from1 to j leads to

V j(t)
≤ V 1(t)

−
j∑

i=1

kei
φ(t + 1)2

1 +
∣∣ξi(t)

∣∣2 +
∣∣ui(t)

∣∣2 +
(∣∣θi(t)

∣∣∣∣ξi(t)
∣∣ + 1

)2

(20)

SinceV 1(t) is bounded andV j(t) must be nonnegative, we
have

lim
j→∞

ej
φ(t + 1)2

1 +
∣∣ξj(t)

∣∣2 +
∣∣uj(t)

∣∣2 +
(∣∣θj(t)

∣∣∣∣ξj(t)
∣∣ + 1

)2 = 0 (21)

∀t ∈ {0, 1, · · · , N}. In order to prove thatuj(t) andej
φ(t +

1) are bounded andej
φ(t + 1) will converge to zero∀t ∈

{0, 1, · · · , N}, we take the following discussions.

(1) Since yj(0), yj
d(1), θj(0), b̂j(0), ψj(0) are bounded

∀j ≥ 1, we conclude thatξj(0) = ξ(yj(0), yj
d(1), 0) is

bounded by using assumption (A2). The boundedness of
ξj(0) readily implies thatuj(0) is bounded, and hence
1 +

∣∣ξj(0)
∣∣2 +

∣∣uj(0)
∣∣2 +

(∣∣θj(0)
∣∣∣∣ξj(0)

∣∣ + 1
)2

as well
as ej

φ(1) are bounded∀j ≥ 1. If we let t = 0 in (21),
we have

lim
j→∞

ej
φ(1)2 = 0 (22)

(2) Sinceej
φ(1) is bounded∀j ≥ 1, it can be easily shown

by using (6) thatej(1), yj(1) and henceξj(1) =
ξ(yj(1), yj

d(2), 1) are bounded∀j ≥ 1. Due to the fact
that θj(1), b̂j(1) are bounded∀j ≥ 1 by (t1), we have
1+

∣∣ξj(1)
∣∣2+

∣∣uj(1)
∣∣2+

(∣∣θj(1)
∣∣∣∣ξj(1)

∣∣+1
)2

andej
φ(2)

are bounded∀j ≥ 1. If we let t = 1 in (21), we have

lim
j→∞

ej
φ(2)2 = 0 (23)

(3) Assume thatej
φ(t′) is bounded∀j ≥ 1 for some

t′ ∈ {2, 3, · · · , N}. Then ej(t′), yj(t′) and ξj(t′) =
ξ(yj(t′), yj

d(t
′ + 1), t′) are bounded∀j ≥ 1. Due to

the fact thatθj(t′), b̂j(t′) are bounded∀j ≥ 1 by (t1),
we have1+

∣∣ξj(t′)
∣∣2+

∣∣uj(t′)
∣∣2+

(∣∣θj(t′)
∣∣∣∣ξj(t′)

∣∣+1
)2

andej
φ(t′ + 1) are bounded∀j ≥ 1. If we let t = t′ in

(21), we have

lim
j→∞

ej
φ(t′ + 1)2 = 0 (24)

By mathematical induction, we now conclude that

lim
j→∞

ej
φ(t + 1)2 = 0, ∀t ∈ {0, 1, · · · , N} (25)

andej
φ(t + 1) is bounded∀t ∈ {0, 1, · · · , N}, j ≥ 1.

(t3) The boundedness ofej(t + 1) at each iteration over
{0, 1, · · · , N} can be concluded from equation (6) because
φj(t) is always bounded. Furthermore, the bound ofe∞(t+
1) will satisfy

lim
j→∞

|ej(t + 1)| = |e∞(t + 1)|
≤ ψ∞(t)

(∣∣θ∞(t)
∣∣∣∣ξ∞(t)

∣∣ + 1
)
, ∀ t ∈ {0, 1, · · · , N}

This proves (t3) of the main theorem. Q.E.D.
Remark 1 : Since the output tracking errorej(t+1) can be
shown to converge to a residual set which is bounded by the
boundary layerψ∞(t)

(∣∣θ∞(t)
∣∣∣∣ξ∞(t)

∣∣ + 1
)
, it is necessary

to makeψ∞(t)
(∣∣θ∞(t)

∣∣∣∣ξ∞(t)
∣∣+1

)
as small as possible for

all t ∈ {0, 1, · · · , N}. This is why we set the initial value
of ψ1 as a small constant. The adaptation gainβ3 in (10)
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will be chosen as a small one such thatψj(t) and hence,
ψj(t)

(∣∣θj(t)
∣∣∣∣ξj(t)

∣∣ + 1
)
, t ∈ {0, 1, · · · , N} will remain in

a reasonable small value for allj ≥ 1. Fortunately, the
adaptation gainβ3 can be chosen as small as possible since
it is required to satisfy the convergent condition (14).
Remark 2 : In this theorem, we derive the sufficient con-
dition 2 − β1 − β2 − β3 > 0 to guarantee the learning
convergence. Compared with a similar convergent condition
2− bUβ1− β2 > 0 given in our previous work [13] withbU

being the upper bound of the input gain function, it is clear
that the proposed result is less restricted when choosing the
learning gainsβ1, β2 and β3. More importantly, we don’t
need the sign and upper bound ofb(t) for the controller
design.

V. SIMULATION EXAMPLE

In this section, we use the proposed RAILC to iteratively
control a nonlinear discrete-time plant [10]. The difference
equation of the nonlinear dynamic plant is given as

yj(t + 1) = θ(t) sin2(yj(t)) + b(t)uj(t) + dj(t)

where yj(t) is the system output,uj(t) is the control
input, θ(t) = 2 + 0.5 sin(t) is a time-varying parameter,
b(t) = 3 + 0.5 sin(tπ/50) is a time-varying input gain
and dj(t) = mj sin3(tπ/50) with mj = 0.1rand is a
non-repeatable random disturbance. Hererand is a uniform
distribution on the interval(0, 1). Here the reference model
is chosen as

yj
d(t + 1) = 0.3yj

d(t) + rj(t), yd(0) = 0.5rand

whererj(t) = 5 sin(2πt/5)+0.3 sin(2πj/50) is an iteration-
dependent bounded reference input.

The control objective is to make the system outputyj(t)
to track as close as possible the desired trajectoryyj

d(t) for
all t ∈ {1, · · · , 200}. To achieve the control objective, the
discrete RAILC in (3), (6), (8), (9), and (10) is applied
with the design parametersβ1 = 0.9499, β2 = 0.9499,
β3 = 0.0001 so thatk ≡ 2−β1−β2−β3 = 0.1. Furthermore,
we setδ = 0.1 and choose the initial values in (3) asθ1(t) =
[0.1,−1]>, ξ(y1(t), y1

d(t+1), t) = [sin2(yj(t)), y1
d(t+1)]>,

b̂j(t) = 0.1 and ψ1(t) = 0.0015 for t ∈ {0, 1, 2, · · · , 200},
respectively. In order to verify the robustness against varying
initial resetting errorej(0) and the non-repeatable random
disturbancedj(t), we showmaxt∈{1,···,200} |ej

φ(t)| with re-
spective to iterationj in Fig. 1(a). The asymptotical con-
vergence proves the technical result given in (t2) of main
theorem. Since the learning process is almost completed at
the 50th iteration, the learning errore50(t) is shown in Fig.
1(b). It clearly proves (t3) of the main theorem since the
trajectory ofe50(t) satisfies−ψ50(t)

(∣∣θ50(t)
∣∣∣∣ξ50(t)

∣∣+1
) ≤

e50(t) ≤ ψ50(t)
(∣∣θ50(t)

∣∣∣∣ξ50(t)
∣∣ + 1

)
, t ∈ {1, · · · , 200} in

Fig. 1(b). Since the nice output tracking performance at the
50th iteration are achieved, we show the relation between
system outputy50(t) and desired trajectoryy50

d (t) in Fig. 1(c)
for t ∈ {0, 1, 2, · · · , 200}. To see the control behavior that
y50(t) is close toy50

d (t) for t ∈ {0, 1, 2, · · · , 200} except the
initial oney50(0), the trajectories betweeny50(t) andy50

d (t)
are shown again in Fig. 1(d) but only for the time sequence
t ∈ {0, 1, 2, · · · , 10}. It is clear thaty50(t) converges to
y50

d (t) after t ≥ 1. Finally, Fig. 1(e) shows the bounded
learned control forceu50(t).
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Fig. 1. (a)maxt∈{1,···,200} |ej
φ
(t)| versus control iteration

j; (b)e50(t) (solid line) and ψ50(t)
(∣∣θ50(t)

∣∣∣∣ξ50(t)
∣∣ +

1
)
,−ψ50(t)

(∣∣θ50(t)
∣∣∣∣ξ50(t)

∣∣ + 1
)

(dotted lines) versus time

t ∈ {1, 2, · · · , 200}; (c)y50(t) (solid line) and yj
d
(t) (dotted line)

versus timet ∈ {0, 1, · · · , 200} at the 50th control iteration; (d)y50(t)
(◦ ◦ ◦) andyj

d
(t) (· · ·) versus timet ∈ {0, 1, · · · , 10} at the 50th control

iteration; (e)u50(t) versus timet.

VI. CONCLUSION

In this paper, we propose a discrete RAILC for a class
of uncertain nonlinear systems with initial resetting out-
put errors, iteration-varying reference trajectories, random
bounded disturbances and unknown control direction. The
RAILC is derived from an output tracking error model
which successfully solve the possible singularity control
problem due to unknown input gain parameter and its control
direction. Compared with all the existing works dealing
with similar discrete AILC problem, the class of nonlinear
systems in this work can be more general in the sense

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I, 
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016



that the control direction can be unknown and the input
disturbance can be non-repeatable. Three control parameters
in this RAILC are applied to compensate for the uncertainties
from the unknown system parameters and input disturbance.
By using a Lyapunov like analysis, it is shown that the
control parameters and internal signals are bounded along
the time axis for all iterations and the tracking error will
asymptotically converge to a tunable residual set which is
bounded by the width of boundary layer.
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