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A Discrete Robust Adaptive Iterative Learning
Control for a Class of Nonlinear Systems with
Unknown Control Direction
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Abstract—In this paper, a discrete robust adaptive iterative However, the system control direction or even the upper
learning control is proposed for a class of uncertain nonlinear pound of the input gain parameter is required to be known

systems with unknown control direction and random bounded for the design of discrete AILC in the above works [9]
disturbances. Based on a new design methodology, the problem 101. (111 (121 1131 In 141 [15] [16] the ILC al ’
of unknown sign and upper bound of the time-varying input [. 1, [11], [12], [_ 1. In [ ]’.[ 1, [16], the - ago-.

gain parameter can be solved. In order to deal with the rithms were applied for nonlinear systems without prior

uncertainties from random bounded disturbance and unknown knowledge on system control direction. Since the system
input gain parameter, a dead zone like auxiliary error with  control direction is unknown, Nussbaum-type gain function
a time-varying boundary layer is introduced. This proposed \ya5 ysed to design the AILC algorithms for SISO [14]
auxiliary error is utilized for the construction of adaptive laws 15 d MIMO [16 fi i i t '
and the time-varying boundary layer is applied as a bounding [15] an [, ]_Con muou;- Ime noniinear sys ems..
parameter. By using a Lyapunov like analysis, it is shown that Based on the motivation of continuous Nussbaum-type gain
the closed-loop is stable and the internal signals are bounded function, the discrete Nussbaum-type gain function and n-
for all the iterations. Besides, the norm of output tracking error  step ahead predictor approach were presented in [17], [18]
‘t’)"'” ﬁsymgtgt'cgty Cog"ergle to a residual set which is bounded ¢o giscrete AILC of nonlinear systems with unknown control
y the width of boundary ay.er. _ _ _ direction. Recently, a modified projection based adaptive law
_ Index Terms—robust adaptive iterative learning control, non-  without using Nussbaum-type gain function was introduced
linear systems, ranlflom bounde(ljdc_ilstu!'bance, unknown Input iy 5 dgiscrete AILC for nonlinear systems whose control
gain parameter, unknown control direction. direction is unknown. But unfortunately, the disturbance is
also required to be repeatable as those in [9], [10], [11], [12].
I. INTRODUCTION In this paper, a discrete robust adaptive iterative learning
I N order to perform the tasks of repeated tracking contrPNtrol (RAILC) is proposed for a class of uncertain non-
or periodic disturbance rejection in a finite time intervalinear systems with unknown control direction and random
ounded disturbance. Based on a new design methodology,

successful and attractive ILC approaches [1], [2], [3] iff'® Problem of unknown sign and upper bound of the
the past two decades. In the research field of AILC, modf€-varying input gain parameter is successfully solved. In
of the AILC algorithms [4], [5], [6], [7], [8] were studied order to deal with the uncertainties from random bounded

for continuous-time linear or nonlinear systems. However, disturbance and unknown input gain parameter, a new dead

subsequent real implementation of the AILC algorithm need&n€ like auxiliary error with a time-varying boundary layer

to store the data of desired trajectory, system output aﬁdiptroduced in this paper. This proposed auxiliary error is
control parameters in memory. Therefore, it is more practicdiiized for the construction of adaptive laws and the time-
to design the AILC in discrete-time domain. Recently, soméying boundary layer is applied as a bounding parameter

discrete AILC schemes have been studied for SISO [dPF the uncertainty. By using a Lyapunov like analysis, it is

[10], [11] or MIMO [12] discrete-time nonlinear systems.ShOW” that the closed-loop is stable and the internal signals

In these aforementioned discrete AILC. a main requiré?.'fe bounded for all the iterations. Besides, the norm of output

condition on the plant is that the plant nonlinearities afs@cking error will asymptotically converge to a residual set

linearly parameterizable and the unknown parameters miidloSe size is bounded by the width of boundary layer.

be linear with respective to some known nonlinear functions This paper is organized as follows. In section Il, a problem
in order to design suitable adaptive laws. Furthermore, tHgmulation is given. The discrete RAILC is presented in
disturbance must be assumed to be repeatable or sn§gftion Ill. Based on the proposed discrete RAILC and a
enough for the technical analysis. In our previous work [13<}I’erived error model, the analysis of closed-loop stability
another discrete AILC was proposed for the similar uncertafifld learning performance will be studied extensively in
discrete-time nonlinear systems which can deal with not ongection IV. A simulation example will be given in Section
the problems of iteration-varying reference trajectories arit0 demonstrate the effectiveness of the proposed learning
random bounded initial resetting error but also the problef@ntroller. Finally a conclusion is made in Section VI.

of random bounded disturbance.

adaptive iterative learning control (AILC) is one of the mo
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finite time sequence € {0,1,---, N} as follows: = (0°(t) = 07(1)) (1) + (b(t) — B (1))l (&) + &% ()
(1) =007 f@ (0.0 + b () + () (D) “

where yi(t) € R! is the system outputyi(t) € R! Where

is the control input,d(t) € R"*! is an unknown time- G 0 T ;

varying system parameter vectgf(y’(t),t) € R"*! is a oL.(t) = 5+ bi(t)? HORJVIREL0

known nonlinear function vectoh(t) € R is an unknown ,
time-varying input gain parameter anéf(t) € R is an Thebounding function ob7 (¢) can be shown to satisfy the
unknown non-repeatable disturbance. Hejegenotes the following result,
index of iteration and < {0,1,---,N}. Given a specified

desired trajectory)(t), t € {0,1,---, N + 1}, the control |67 ()] AL [67(1)Te ()] | + | (1)]
objective is to force the outpuf (¢) to follow y’(¢) such §+bi(t)?

that lim; |y§(t) — I (t)] < e for some small positive < }aj(t)||§j(t)| +dy

error tolerance bound and fort € {1,2,---,N 4+ 1}. In < w*(wj(t)ng(t)’ 4 1) )

order to achieve this control objective, some assumptions on
the nonlinear discrete-time system and desired trajectory aveeret)* = max{1,dy} is a positive constant.
given as follows: In order to overcome the uncertairﬁi'(t), we now define
(A1) The nonlinear discrete-time system is a relaxed systean auxiliary errore), (¢ + 1) as follows:
whose inputu’(t) and outputy’(¢) are related by

i , _ , J
¥ (t)=0,t<0. , 4 efb(t +1) =€ (t+1) — ¢’(t)sat <6(t+1)> (6)
(A2) The nonlinear functionf(y’(t),t) is bounded ify? (t) ¢7(t)
is bounded. . : for t € {0,1,---,N}. We don't definee,(0) since it will

(A3) Let output tracking error be defined a&t) = y7(t) —

I ) -~ 7 A7 not be utilized in our design of controller and adaptive laws.
ya(t). The initial output error at each iteratief(0) is

In (6), satis the saturation function defined as

bounded. _ _
(A4) The unknown non-repeatable disturbance is bounded, j ) 1 if e?(t+1) > ¢?(t)
i.e., |d(t)| < dy for an unknown positive constadf; gat (e(t‘”) = <UDt lei(t 4 1)] < ¢ (1)
and for allj > 1. ¢ (t) ¢_(1) if ed(t+1) < —¢?(t)
[Il. ROBUST ADAPTIVE ITERATIVE LEARNING and ¢(t) is the width of the time-varying boundary layer
CONTROLLER designed as
The output tracking error satisfies (1) = wj(t)(}ej(t)ng (t)\ +1) @
el (t + 1) ‘ where )7 (t) is a parameter to be updated later. It is noted
= y(t+1)—y)(t+1) thate,(t + 1) can be rewritten as
= 0)T 7 (£),1) + () () + & () — gt + 1) e+ 1)
_ J J J
= ST O+ D+ + (O @) Gt 1)~ i) I eIt +1) > 6i(1)
whered* (t) = [G(t)T, —1]T € R DX1 andé(y/ (), v (t+ = _ 0 ifeE+) <)
1),t) = [f(&/ (1), )T,y (t+1)]T € R*+D*1 In the follow- t+1)+¢(t) if el(t+1) <—¢/(t)

ing discussions, we will defing’ (t) = £(y7 (), y(t +1),1)
for simplicity. Based on the error equation in (2), we propos@f‘d it can be easily shown thaj} (t + 1)sat (
the adaptive iterative learning controller for the class q&J (t+1)], vy > 1

repeatable discrete-time nonlinear systems (1) as follows : | this RAILC, 69 (t), gj(t) in (3) and«(t) in (7) are

B (t) N designed to compensate the unknown optimal control para-
—— [0 (t) & (t)] (3) meter vector*(t), b(t) and+*, respectively. The adaptive
I+ (1) laws for 67 (t), b?(t) and+’ (¢) at (next); + 1th iteration are
whered > 0. Substituting (3) into (2), we can find that given as follows :

ul(t) =

el(t+1) R 67+ (1)
= 070 - 07 (M)TE (1) + bt} (t) — bty (1) _ s+ Brel,(t+ 1)& ()
FRO O @ T ) Lo +[wmf + (o olloo]+1)°
= (") —07(1) " (1) + (b(t) — V(1) (1) . (®)
j j V(0T j Yr) .
PO G e ot + D (1)
= (0°() —0° ) T () + (b1) — B (1) (1) L+ + [w @ + (o7 (1)] |7 ()] +1)°
9 rpip\Tei j )
e R $()
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— W)+ Bsley,(t+ DI(|07(1)][€7(1)] +1) The difference betweer/’/*+1(t) and V7 (t) can be derived
1+ |&0(6)|* + |wi () |* + (|67 (2)]|€7(2)] + 1)* @s Tollows :
(10) j+1 j
J _ V7
for t € {0,1,---,N}, where 81,5,,03 > 0 are the v (t)l ‘i_(t) _ _ _
adaptation gains. For the first iteration, we 8étt) = ¢°, = — <9J+1(t)T03“(t) —0i(t)" 0 (t))
b'(¢) = b' to be any constant vector and (¢) = ¢! > 0 to ﬁ11 it :7,
be a small fixed valug't € {0,1,2,---, N}. It is noted that 4= (b )2 —b (t)2)
YIi(t) > 0,Vt € {0,1,---,N} ande > 1. In general, we 52
will chooseb! (t) = b as a nonzero vector in order to prevent (WH( )2 — 1’/}3‘(15)2)
the controller (3) from being a zero input in the beginning 63
of the learning process. zei(t + 1)§J’(t)T§J’ (t)

. 2 . 2 . . 2
IV. ANALYSIS OF STABILITY AND CONVERGENCE 1+ |£J(t)’ + |u]<t)‘ + (IHJ(t)Hfﬂ(t)\ + 1)

B Define the parameter errors @(t) = 69(t) — 0*(t), + /Blegﬁ(t+ e @) 5
b (t) = bi(t) — b(t), $(t) = ¥ (t) — v*. Then it is easy to (1+ g @+ @ + (0]l ®]+1)*)
show, by subtracting the optimal control gains on both sides ] ~j ,
of (8)-(10), that 264 (t + 1)b ()u (1)
310 e w0l + (POle o]+ 1)’
_ hos Brel (¢ + DEN (1) . Bael(t +1)? |l (1)
1+|£j<t>|2+|uﬂ'<t>|2+<|9j<t>|\fj<t>|+i>2) (1+le O] + ol + (o0& ] +1)?)
11 )
o 21el,(t + 1)[97 (1) (07 (1) | €2 (1)] + 1)
" PP Lr e + o + (@ ollen] -+ )°
= b( — 264’( +2) Ewe) Bael (¢ +1)(|6 ()] €7 (1) | +1)°
L& @) + | O + (|09 (1) [ (0] + 1) + 2 | 22
(12) (1+ g @ + 1w @ + (@]l ®]+1)*)
1;j+1(t) (15)
e BP0l @]+ 1) o
1+ lﬁj(t)\g n ]uj(t)|2 n (\ej(t)Hgﬁ(tﬂ N 1)2 By using (4), it implies that
(13)
The following theorem states the main results of this paper. e (t+1)07 (1) T (t) + €, (t + )b (t)’u] (t)
Main Theorem. Consider the nonlinear system (1) satisfying = —el(t+1)e ¢( 1)+e (t +1)8(t)  (16)

the assumptions (A1)-(A3). If the robust adaptive iterative

learning controller, designed as in (3), (6), (8), (9) and (102\’ubst|tut|ng (16) into (15), it yields
is applied and the following condition is satisfied

2= p1—=P2—P3>0, (14) VIith) - Vi)
then we can get, - =27 (t + 1)ej(t + 1) + 2e)(t + 1)d7,(¢)
(t1) The adjustable parametem(t), b/(t), ¢i(t) are 1+|§J’(t)|2+ |ui(t) |2+ (|67 (t)]|€7(t) |+1)2
boundedvt € {0,1,---,N},j > 1. Bred (t+1) |§] |
(t2) The auxiliary errore)(t + 1) are boundedvt € + 126 5
{0,1,---,N},j > 1 and (1+lg@®] + |uJ(t )+ (o)l 0] +1)°)
]E}H;Oe{;ﬁ(t+1)zothe{O71avN} n 6 (t "LLJ(t)|
(t3) The output tracking errar’ (¢ + 1) and the inputu? ((t) (1 + &) | + |uﬂ (t) \ + (|07(1)||&7 ()] + 1)2)2
are bounded/t € {0,1,---,N}, j > 1 and
L 20el, ¢+ DIF (0 (00l 0] + 1)
e vl L+ IO + [l + (0@l o]+ 1)
< @) (0=@1E* @) +1),v t€{0,1,---, N} Bael (t+1)2(|0 (1) |7 (1)] + 1)
Proof : " 14+ |ei i)[* + (|67 (t)||€d 2’
(t1) Define the cost functions of performance as follows ( + ‘5 (t) ’ + |“ (t) ‘ + (’ t) Hf (m T ) )
4 1~ o 15, 1~ 17)
Vi) = [79] (t) 67 (t) + 3" ()" + FW (t)
! 2 ’ Substituting (6) into (17) and using the fact théi(t) <
ISBN: 978-988-19253-8-1 IMECS 2016
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V(|67 ()]|€7 (t)
VITLt) — V(1)

| +1) in (5), we can derive that

—2¢l,(t + 1)
L+ g @ + [ (0] + (je7 ()] |& (0] + 1)
B %%@+1hw (|7 ®)]]g'®)] +1)
L& @) + [w @) + (09 (0)]|& @) +1)°
ﬂ%@+1MbOWQMH@H+D
L+|g 0] + [uw ()" + (07 (1) (1) + 1)
2\e¢<t+1|wﬂ (10" @] ®)] + 1)
L+ |G @ + [wi(t)]” + (|9ﬂ ||£J ®]+1)"
ﬁl% +1)2|&i(t |
(1+|§J )P+ i ()| + (|67 (1) |€7 (¢ )\+1)2)2
e(t—l—l |u? t)|
(
)

+

T 0F el + (@oleo] 7).
L e ollen]+ 1)’
(1416 + WO + (# Ol o] +1)7)
B —2e¢,(t+1)2
o+ g+ e+ (7w @)] + 1)
N Brel(t + 12|/ (1) [
(1+|§J )W+ i ()| + (|67 (1) |€9 (¢ \+1))
. @%@+1|m)|
(110 + o + (ol em]+1)?)
. Bael (¢ +1)2(|6 ()] €7 (1) | +1)°
(1+1ei O + w0 + (050 |e20)] +1)°)°
—(2— B — B2 — Ba)el(t + 1)
L+ &) + [ @) + (|67 (1)||€7 (1)] + 1)°

(18)

If 31, B2 and(3; are chosen such that=2— 3, — (3, — 33 >
0, then we have

VIt — V()
—kel,(t + 1)2
1+ |60 + [ () + (|07@)||¢7 (1) + 1)°
< 0 (19)
for j > 1. SinceV1(t) is boundedvzle {0,1,---,N} due

10 0'(t) = 01 (t) — 0% (t) = 0 —0%(t), b (t) = b (t) — b(t)
bt — b(t) and el (t) = ¢i(t) — ¢* = ! — ¢* are bounded
vt € {0,1,---, N}. We conclude from (19) thalt/(¢), and

hencedi (t),

= ~
b (t) andy’ (t) are boundedj > 1. This proves
(t1) of the main theorem.

(t2) By summing (19) froml to j leads to

Vi (t)
< Vi)
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kefb(t—i- 1)?
)P+ [ui ()] + (|0t

J
;1+]§Z )| +1)°

(20)

)|[gie

SinceV'(t) is bounded and’’(t) must be nonnegative, we
have

el (t+1)?
2+ i ()] + (|63 (¢)

=0 (21)

lim . : 5
=0 14 |gi(t) |€7()] +1)

vt € {0,1,---,N}. In order to prove that/(¢) and eé(t +
1) are bounded andi(t + 1) will converge to zerovt €
{0,1,---, N}, we take the following discussions.
(1) Sincey?(0), y(1), 67(0), b(0), ¥7(0) are bounded
Vj > 1, we conclude that’(0) = £(y7(0),)(1),0) is
bounded by using assumption (A2). The boundedness of
£7(0) readily implies that7(0) is bounded, and hence
1+ |€7(0))* + [wd (0)* + (|67 (0)||¢7 (0)] +1)* as well
ase)(1) are bounded/j > 1. If we let¢ = 0 in (21),
we have
lim e¢(1)2 =0

J—»OO

(22)
(2 Sinceefl;(l) is boundedvj > 1, it can be easily shown
by using (6) thate’(1), y’(1) and henceg(1)
£(y(1),y(2),1) are bounded/j > 1. Due to the fact
that 67(1), b(1) are bounded’j > 1 by (t1), we have
1|67 (O + |/ () + (|69 (1)] 67 ()| +1)" ande;, (2)

are bounded/j > 1. If we let¢t =1 in (21), we have

(23)

lim e¢(2)2 =0

Jj—o0

@)

Assume thategb(t’) is boundedVj > 1 for some
t € {2,3,---,N}. Thenel(t'),y? (') and & (t') =
(1), yh(t" + 1),t') are boundedvj > 1. Due to
the fact that? (¢'), b (¢') are bounded/j > 1 by (t1),
we havel +|¢7 (#')|* + [u? (¢') |+ (|67 ()] |7 ()] +1)
ande), (¢ + 1) are bounded’j > 1. If we lett =t' in
(21), we have

jlggo e¢(t +1)2=0 (24)
By mathematical induction, we now conclude that
jg&%ﬁ+n2:QW€{QL~WN} (25)
ande)j(t + 1) is boundedvt € {0,1,---,N},j > 1.

(t3) The boundedness af’ (¢ + 1) at each iteration over
{0,1,---, N} can be concluded from equation (6) because
#’(t) is always bounded. Furthermore, the bound®f(t +

1) will satisfy

ﬁgyéﬁ+1ﬂ=kmﬁ+lﬂ
(|o=@||&>=@)|+1),v t€{0,1,---,N}

This proves (t3) of the main theorem. Q.E.D.
Remark 1 : Since the output tracking erref (t + 1) can be
shown to converge to a residual set which is bounded by the

< (1)

boundary layer)> (t (\9°° H§°° )| + 1), it is necessary
to makey > (¢ (]900 )|[£%°(t)| +1) as small as possible for
all t € {0,1,---,N}. This is why we set the initial value

of ! as a small constant. The adaptation g&inin (10)

IMECS 2016
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will be chosen as a small one such thdtt) and hence, 2

W) (167(1)]|€7(1)] + 1),t € {0,1,---, N} will remain in
a reasonable small value for ajl > 1. Fortunately, the '} §
adaptation gairp; can be chosen as small as possible since
it is required to satisfy the convergent condition (14). 10° L
Remark 2 : In this theorem, we derive the sufficient con-
dition 2 — 5, — B2 — (B3 > 0 to guarantee the learning 1o*
convergence. Compared with a similar convergent conditior

2 —byB1 — PB2 > 0 given in our previous work [13] witlb 05 ®
being the upper bound of the input gain function, it is clear

that the proposed result is less restricted when choosing th |- , S o
learning gainsf;, (> and 3. More importantly, we don'’t "WW/VWMWW\/\VMWW
need the sign and upper bound &f) for the controller ; v v B o v

design.

k

20 39 58 77 96 115 134 153 172 191

V. SIMULATION EXAMPLE

In this section, we use the proposed RAILC to iteratively ©
control a nonlinear discrete-time plant [10]. The difference
equation of the nonlinear dynamic plant is given as

Yl (t+1) = 0(t)sin®(y7 (1)) + b(t)u (t) + d’(t)

where y/(t) is the system outputy’(t) is the control
input, 6(t) = 2 + 0.5sin(¢) is a time-varying parameter,

b(t) = 3 + 0.5sin(tn/50) is a time-varying input gain 2 ® s 7 s s 1% 15 1z 1
and d/(t) = m?sin®(tw/50) with m? = 0.lrand is a

(d)

non-repeatable random disturbance. Hared is a uniform 6 ;i ‘ ‘ ‘ ‘

distribution on the interva(0, 1). Here the reference model *f ? °e 7

is chosen as 2r 1
o+ o 7

Y (t+1) = 0.3y%(t) +77(t), va(0) = 0.5rand

whererd (t) = 5sin(27t/5)+0.3sin(275 /50) is an iteration- 4| 1
dependent bounded reference input. & 1 2 3 . 5 s 7 s PR

The control objective is to make the system outpiift)
to track as close as possible the desired trajecydty) for

(e)
T

all t € {1,---,200}. To achieve the control objective, the |

discrete RAILC in (3), (6), (8), (9), and (10) is applied * |
with the design parameter§; = 0.9499, B2 = 0.9499, 0 1
B3 = 0.0001 so thatk = 2— 31 —3>— 33 = 0.1. Furthermore, -1t

we set§ = 0.1 and choose the initial values in (3) @5(t) = "

01,17, €' (1), yh(t +1),1) = [sin® (@ () b+ 0T, I

b](t) — 01 a.nd w] (t) — 00015 fOI‘ t E {071727 . 7200}, 0 20 40 60 80 100 120 140 160 180 200

respectively. In order to verify the robustness against varyil,"g%. 1
initial resetting errore’ (0) and the non-repeatable random.
diStur_banced_J (t), -We. S-hOV\{maXte{]_’...ygoo} ‘eé(t)‘ W|th re- 1')7_wso(t)ﬂeso(t)HESO(t)’ + 1) (dotted lines) versus time
spective to iterationj in Fig. 1(a). The asymptotical con- € {1,2,--,200}; (©u™(t) (solid line) and (1) (dotted line)
vergence proves the technical result given in (t2) of magsys tir7ne’t‘ € {0,1,---,200} at the 50th control iteration; (@5°(t)
theorem. Since the learning process is almost completed(&t o) andy?(t) (- - -) versus timet € {0,1,---,10} at the 50th control
the 50th iteration, the learning erret(t) is shown in Fig. iteration; (@50 (1) versus time.

1(b). It clearly proves (t3) of the main theorem since the

trajectory ofe®(t) satisfies—y%°(¢) (|6°°(¢)[|€°° ()| +1) <

65O(t) < wSO(t)( 950(0’ §5O(t)| + 1)' t e {17.”,200} in VI. CONCLUSION

Fig. 1(b). Since the nice output tracking performance at theln this paper, we propose a discrete RAILC for a class
50th iteration are achieved, we show the relation betweeh uncertain nonlinear systems with initial resetting out-
system outpuy°®(¢) and desired trajectory’’(¢) in Fig. 1(c) put errors, iteration-varying reference trajectories, random
for t € {0,1,2,---,200}. To see the control behavior thatbounded disturbances and unknown control direction. The
y°0(t) is close toy3°(t) for t € {0,1,2,---,200} exceptthe RAILC is derived from an output tracking error model
initial one y°°(0), the trajectories betweeyt®(¢) andy5°(t) which successfully solve the possible singularity control
are shown again in Fig. 1(d) but only for the time sequengeoblem due to unknown input gain parameter and its control

(@)max;e(1,...,200} \ei(t)\ versus control iteration
(b)e5°(t)  (solid line) and ¢50(t)(950(t)\|g50(t)| +

t € {0,1,2,---,10}. It is clear thaty5’(t) converges to direction. Compared with all the existing works dealing

y2(t) aftert > 1. Finally, Fig. 1(e) shows the boundedwith similar discrete AILC problem, the class of nonlinear

learned control force:5°(¢). systems in this work can be more general in the sense
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that the control direction can be unknown and the inpui9] Weili Yan and Mingxuan Sun, “Adaptive iterative learning control
disturbance can be non-repeatable. Three control parametersOf discrete-time varying systems with unknown control direction,”
in this RAILC lied t te for th tainti International Journal of Adaptive Control and Signal Processivg,

in this are applied to compensate for the uncertainties 57 “\sq e 4, pp. 340348, 2013.

from the unknown system parameters and input disturbance.

By using a Lyapunov like analysis, it is shown that the

control parameters and internal signals are bounded along

the time axis for all iterations and the tracking error will

asymptotically converge to a tunable residual set which is

bounded by the width of boundary layer.
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